SUPPLEMENTARY MATERIAL

S1 Proofs for results in Section 2

S1.1 Proof of Proposition 2.1

We prove (i) in Proposition 2.1 for both Algorithm 1 and 2. First we define Q,@,H as

follows:

Q(6;6™) := n"" Egn[log L;(0)|2T, z7)
Q(0;0™) := —Q(6;0™) + Px(6)
H(0;0™) := n" ' Egn[log Pe(y} |27, 27|28, 7).

Note that for any 0™, F,(0) = Q(0;60™) + H(0;0™) holds and H(0™;0™) > H(0;0™) by

Jensen’s inequality. Also since ™! is a minimizer of @(0; 0"), we have
Fo (0™ = QO™ ™) + H(O™ L 0™) < Q(0™;0™) + H(6™: ™) = F,(6™).  (S1)

To show that the inequality is strict, it suffices to show that if 6" & 8, ™ is not a stationary
point of @ Since 6™ ¢ 8, there exists €’ such that

VF (0™ (0 — 0™) < 0,YVF,(0™) € 0F,(6™) (S2)

Since 0™ is a maximizer of H(-;6™), VH(8™;6™) = 0. Then 0F,(0™) = Q(6™;6™). Thus
by (82), 6™ is not a stationary point of @(, o).
For Algorithm 2 (PUlasso algorithm), since @Q is a surrogate function of Q which satisfies

following two properties

QO™ 0™) = Q0™ 0™), Q0;0™) < Q(0;0™),V0 (S3)



and ™% is a minimizer of —Q(0;6™) + P\(), we have

Fn(0™) = —Q(0™;0™) + Py(0™) + H(0™;0™)

> Q0™ 0™) + PA(0™TY) + H(0™;0™)

(
— —Q(0™;0™) + PA(6™) + H(0™;0™)
(
> 7Q(em+1;9m) + P)\(em—i-l) + H(9m+1; gm) — Srfn(em—i-l)

The strict inequality follows from the fact that vQ(0™;0™) = vQ(6™; ™).

Now we address (ii) and (iii) in Proposition 2.1. Using the same argument as in Wi
(983), we appeal to the global convergence theorem stated below as Theorem BT in Zang
will (1969) with I' = 8, = F,, and letting A be a mapping from 6™ to ™+ defined by
Algorithm 1 or 2. As stated in Wi (T983), condition (iii) in Theorem ST follows from the
continuity of —Q(0,0") + Py(6) or —Q(6;0") + Px(0) in both 6,60". Therefore, if we show
that Oy is compact, both (ii) and (iii) follow from the fact that (6™)>°_, lie in a compact
set. Since évo C RP it suffices to show that évo is closed and bounded in RP. évo is bounded
since F;,(#) — oo whenever [|0]|, — oo since ||0]|g 5, > min; w;[|f]l, — co. For closedness

of the set, consider (0f)r>1 such that 0, € (30 and 0, — 6. We have F,,(0;) < F,(0pup) for
all k. Then by the continuity of F,,, F,,(6') < F,(0pu) thus 6" € GA)E).

Theorem S1.1 (Global Convergence Theorem, Zangwill (T969)). Let the sequence {x1}72,
be generated by x11 € A(xy), where A is a point-to-set map on X. Let a solution setT" € X

be given, and suppose that:
(i) The sequence {x}32, C S for S C X a compact set.

(ii) There is a continuous function o on X such that (a) if x ¢ T', then a(y) < a(zx) for
ally € A(z). (b) if x €T, then a(y) < a(z) for ally € A(x).

(iii) The mapping A is closed at all points of X \ T



Then all the limit points of any convergent subsequence of (x1)72, are in the solution set
I’ and a(zxy) converges monotonically to a(x) for some x € T'.
S2 Proofs for results in Section 3

S2.1 Derivation of the log-likelihood in the form of GLMs

log L(6; x, 2,5 = 1) = log (HPG(Zi|$ia 5i = 1))

7

=Y zilogPy(zi = 1|mi,si = 1) + (1 — 2;) log Py(2; = Oz, s = 1)

3
Po(z; = 1|zi, 85 = 1)
=Y 2 +log Po(2: = Oli, 55 = 1).
i 2 Og]P)g(Zi E—y ogPy(z |, Si )

ORPCA
From Lemma 2.1, we have Py(z = 1|z, s = 1) = T . Then,
oz =1l =13 (1+ 2)edTa
T
Py(z = 1|z, s = 1) DL ny T 0T
1 =log ———— =log — + 0" x — log(1 .
°8 Py(z =0z, s =1) %89 +ef'z °8 TNy + 07w —log(l+¢77)

and,

1-}-(1—‘,—:—’)60TI %GGTQJ
logPy(z = 0|z,s =1) = _10g< 1+60nTux = —log| 1+ ﬂm

L aT. 0T
= —log <1 + 108 7y, H07 w—log(l4e )> )

Therefore we obtain,
log <HIP’9(zi|a:i, s; = 1)) = szi —log(1 + e™)
i i

where 7; = log 71 + 0Tz — log(1 + € @).



S2.2 Useful inequalities and technical lemmas

In this section, we provide some results that will be useful for our proofs. First we state the
symmetrization inequality, which shows relationships between empirical and Rademacher

processes.

Theorem S2.1. (Symmetrization theorem[uan_der Vaart and Wellnet (1996)]) Let Uy, ..., Uy,
be independent random variables with values in W and (¢;) be an i.i.d. sequence of Rademacher

variables, which take values +1 each with probability 1/2. Let T' be a class of real-valued
functions on U. then

sup .
yel

The next theorem is Ledoux-Talagrand contraction theorem. The stated version is

n

Z{v U»)}D <28 <sup > a(Uy)

vyel i—1

Theorem 2.2 in Kolfchinskii (2011), which allows T be any subset in R™, thus slightly more
general than the original theorem in Ledoux and Talagrand (I991) where 7" needs to be

bounded.

Theorem S2.2. (Contraction theorem[Ledoux and Talagrand (1991)]) Let T C R™ and let
vi:R—=R,i=1,...,n be contractions which satisfy |;(s) — @i(t)] < |s —t|,s,v € R and
©0i(0) = 0. Let (¢;) be independent Rademacher random variables. Then

sup egpt < 2F | sup €til| | -

=1
Finally, we state the bounded differences inequality, also sometimes called as Hoeffding-

Azuma inequality.

Theorem S2.3. (Bounded difference inequality[McDiarmid (1989)]) Let Xq,...,X, be
arbitrary independent random variables on set A and ¢ : A" — R satisfy the bounded

difference assumption: there exists constants ¢;,t = 1,...,n such that for alli =1,...,n



/
and all x1,x9,...,%4T;, ..., Ty,

lo(x1, .oy iy ey T) — @1,y Ty )| <

Then ¥t > 0,

P(o(X1,.-, Xn) = Blp(X1,..., Xp)] > t) < exp(=2t2/ D )
=1

Now we state and prove some useful results about sub-Gaussian and sub-exponential

random variables.

Lemma S2.4. Let v,u € RP and (¢1,...,97) be a partition of (1,...,p). For § =

((g1s---,97), (wj)]) and G = ((gl,...,gj),(wj_l)l‘]) such that all g; are non-empty and

w; >0, |UTU| < HU||9,2,1| U||§,2,oo'

J —
Proof. We note HU||9,2,1 = Zj:l wjllvg, [l and [|u] G,2,00 ‘T maXlSjSJij lugj [, By Cauchy-

Schwarz inequality, we have

J J

ohul <) lwjvgw; g, | <Y llwjvg, [l lw; g, -

j=1 J=1
Taking the maximum of the second quantity,

J

o7 < lrg%l!wjlugj!bijvajHQ = [lvllg 2,1 llullg 2,00
<< st

O]

Lemma S2.5. Let x € R? such that z7v ~ subG(||[v|502) for any fired v € RP and
E[z] =0. For anyi€ (1,...,p), k> 1,

Efjail"] < k(203)*°T(k/2).



Proof. Taking v = e; where e; is an ith coordinate vector, we have F(exp(tv’z)) =
Elexp(tz;)] < exp(t?02/2) for t € R. Then following a standard argument for sub-Gaussian

random variables,
Bllad ) = [ Pllad = 5ds
<2 /: exp(—s2/* /202 ds
= k(202)F/? / : e k2 Ny = k(202)F2T (k/2)

where the third inequality comes from the change of variable u = 5%/ /202 O

The next lemma concerns distribution of z o z = [z2,...,2?%] for independent sub-

Gaussian (x;);_;.
Lemma S2.6. Let x € R® such that z7v ~ subG(HvH%ag) for any fized v € R® and
E[z] = 0. Also, assume (x;){_, are independent. Then we have v™ (

with v = 1602||v||5, b = 1602||v||, for any fived v € RS.

xox) ~ subExp(v,b)

Proof. Let z:= xox — E[x oxz|. For any given v € R® and ¢t > 0,

Elexp(tv? 2)] = Elexp(tvyzy + .. . tvszs)]

= H Elexp(tv;z;)]

=1

where we use independence. Then by Taylor series expansion,

T 2 t2(vizi)2
Elexp(tv Z)}ZI_IIE Lt tvizg + ————+ ...
e

—H <1+Zt E (vi(z —E[asg]))k>

By Jensen’s inequality, we have,

E(viz} — Efvizf))* < |oi*2" " Y(B[23*] + El2f)"),



and by applying Jensen’s inequality again, we get

- 2 R k2R B[22
T 1 1
Elexp(tv' 2)] < H (1 + Z | (S4)
i=1 k=2
We let t; = t|v;|. By Lemma 821, we have,
E[27*] < (2k)(202)"T (k) = 2(K!)(207)" (S5)

Substituting (83) into (84),
Elexp(tvT2)] < H (1 + thsk(ag)k>
_H<1+ (8tio2)* > (8tio2) )
k=0
H (1+ 128702

if t|v;| < 1/(1602), for all 4. By the fact that 1+ 128207 < exp(128tZ0%)

S
Elexp(tv 2)] < l_Iexp(128tl2 4 =exp Z 128t%020%) = exp(128%||v]302)
i=1

for t < 1/(1602max; |v;]). Therefore vIz o x ~ subExp(v,b) with v = 1602||v]|,, b =
1607 ]v]l)- O

Also, we have a lemma about maximum of sum of variables with sub-exponential tails.

Lemma S2.7. Consider (uj)‘jjzl where u; € R™ such that 1Tu; ~ subBxp(v;,b) with
Eluj] = 0 for1 < j < J. We let m := max;m;. Also, assume v, > 0 such that

vj < vey/m for all j and 3¢ > 0 such that b < cv,. Then we have,

<
E[lrgjaécj]l uj] < cvi(log J 4+ m/(2¢%)).

In particular, when ¢ =1, E[lglaécj 17u;] < vi(log J +m/2).
<<



Proof. For |t| < 1/b we have,

E[eXp(tﬂTUj)] < exp(t2V32/2) < eXp(mt2yf/2) <S6)
Then,
E[ max HTU‘] = 1E (log emaXléngt(]lTuj))
<<y~
1 i<y t(1Tu;
< Llog B (emasisies 107w))
—t
1 < t(]lTu-)>
= —logE | max e i) .
t 1<j<J

where the second inequality comes from Jensen’s. Using a union bound,

J
1 (1T u;) 1 (1 ;)
- < =
" log E (11%1%)(]6 ) < " log ]E_l E (e J )
1 2,,2
< = mt2vz/2 )
<7 log (Je ) (S7)

where the last inequality uses (88). Since 1/(cvy) < 1/b by assumption, the inequality (57)
holds for ¢ = 1/(cvy). Plugging ¢t = 1/(cv) into (84), we obtain,

T . < 2
E[@angl uj] < evi(log J +m/(2¢%))

as claimed. O

Finally, in Lemma 828 and 8279, we provide expectation and probability tail bounds

of a dual ¢1/¢3 norm of a sub-Gaussian vector.
Lemma S2.8. Let § = ((g1,-..,97), (wj){). Consider a random vector v € RP such that
for each j and any fized u € RI93, ulvg, ~ subG(o?||ul|3) with Elvg,] = 0 and u” (vg, ovg,) ~

subBap(vjully. v|ull,.). Then,

Ell[vllg 2,00] < ev/log J +m

for ¢ = (minj<j<yw;)~ty/max(v,802), where we define § = ((gl,...,gJ),(wj_l)i]) and

m 1= max; |g;|, the largest group size.



Proof. First we let m; = |g;|. By Holder’s inequality, we have,

_ _ 2 _
Lo v, ] < Blagaus e e, 151 = Bl ggae w0 20,0+ v, )12
Then,
) -2
Bl o i Wy 4ty an, ) < (o 0 BLma (0,0 4, )
mj
—92 2
= (ax w; ) E{max ) (ug; i+ Elvg,i]))]
- T =1

< (1?;2{ij ) <E[11%13ang]l ug,| + 4mo )

d . .
where ug, = vy, 0 vy, — Efvy, 0vy,] and the last inequality uses Lemma BZH and mj; < m,
for all j. By assumption, we have, IlTugj ~ subExp(v,/mj,v) and Efug] = 0. Then, by

Lemma 5277,

LHS < (lréljag}% w]72)[v(log J +m/2) + 4mo?]

< -2 2 _
< (fgjangwJ ) max(v, 8¢°)(log J + m)

Since maxi<j<s w;Q = 1/(minj<;j<s w;)?, defining ¢ = (min;<;<y w;)~1y/max(v,802), we

obtain
[v]lg.2.00 < cV1ogJ +m

as desired.

O]

Lemma S2.9. Let § = ((g1,..-,97), (w;){). Consider a random vector v € RP such
that for each j and for any fized u € RI9!, ulvg, ~ subG(o?||ull3) with Elvg,] = 0 and

vy, 0 u5,) ~ subBap(vljully, wlull.). Then
) IR T
P ||v\|9727OO >0) < Jexp 5 min(Cj /v, Cs/v)

9



where we define Cs := (min; w]z)52/m—402, S=((g1,---,97), (wy YY), and m = max; |g;|,

the largest group size.

Proof. By the union bound, we have

J
-1 2 2
P (s 0) < 32 (s 15> ).

j=1
Defining ug; :d: vg,; 0 vg; — Elvg; o vy, ] and mj = |g;].
J m;
252
P (fmagior el 20) < 2 (L o2 i)
J

Z (]1 Ug, > mjnwjz)52—4mj02)
— J

where the last inequality uses Lemma E2ZH. By assumption, we have lTugj ~ subExp(v,/mj, V)
and Elugy,] = 0. We use Bernstein type inequality to bound the probability. More concretely

for any s > 0 such that |s| < 1/v, we have,

P (]lTugj > (mjinw?)éQ — 4mj02> <P (s]lTug]. > smC'g)
< exp(—smCs)E [exp (s]lTugj)]

< exp(—smCs + s*mv?/2).

In the first and third inequality, the bound m; < m was also used. Optimizing over s > 0,

we take s = min{Cs/v?, 1/v}. Hence, we have,

M in(C2 /12
P <1I£1ja<lew vngQ > 5) < Jexp( 5 min(C§ /v ,Cg/l/))

10



S2.3 Proof for Proposition 3.1

The proof of this result follows similar lines to the proof of Theorem 1 in [Loh and Wainwright
(2013), which established the result with a different tolerance function and an additive
penalty. Since 0* is feasible, by the first order optimality condition, we have the following
inequality

(VLn(0) + vPA(0))T(6" - 6) > 0.

Letting A=6- 0%, since 6 € O by the setup of the problem, we can apply RSC condition
to obtain

Al = 7([Allg2,) < (~VPA(6) — VLA (67))TA. (S8)

On the other hand, convexity of Py(f) implies
P\(6%) — P\(f) > —vPy(0)TA. (S9)
Combining (88) with (89), we obtain

a| A = 7(|Allg o) < (=VPA(0) — VL, (67)TA
< PA(0%) = PA(0) + || VL0 (67) g,

. A logJ +m  » logJ +m
by Lemma 8Z3. Since 7(|Allg 1) = =" Alg 51 + 721/ = ——[Allg 2,

. . . ~ log J +m log J +m X
al|All5 < Pr(07)=PA(0)+I|A g0, <71||AH921 o\ T [[VLa(0 )||9,2,oo> ,

By the choice of A,

log J +m log J +m N
7HAH921 \/?‘i’HVLn(Q Mg ,2,00 <

w\y

11



Then by using the triangle inequality

ollAll3 < PA(6%) — Pa(6) +

J
* A A )\ ~
=AY Wyl lls =AY willfy, s = A D7 will o+ 5 D willAg,
7j=1

j€eSs jeSs jeSe
R Py

<AD willAglly = A D willfg,lla + 5 D will Ay,
jes jese j=1

where S == {j € (1,...,J );9;], # 0} where the last inequality comes from the triangle
inequality. Since for j € S€, égj = égj — G;j,

J
« « X« A «
oA AN willAg,lly =AD" willdglly + 5 Y willAg,

jes jese j=1
3\ A A .
=5 2 wil Ayl = 5 D will Ay,
jeSs jese
In particular, we have
> willdglly <3) wjlldgll, (S10)
jese jes
and
~ o 3\ R
allAll; < 72“@'”Ag]‘”2' (S11)
JjES
Then,

oflAl; < maij ZIIAgJH QDY < (maxw;) \/IS 1A]l.

JjeS jES

The ¢1/¢5 upper bound follows from the ¢3-bound and

HAH921 = ngHAngg + Z wJHAggH2 < 4(maxw] ZHAQ Iy < 4(maij VIS ”AH2
J€eSs jese jes

12



S2.4 Proof of Lemma 3.1

Recalling £,(0) = 1 30| (=2 f(672;) — A(f(67x;))), we have
oIS, Ty LI
TEE) = 3 (=24 0O 20) T
where we define A(n) = log(1+e"), u(n) = A'(n) = e"/(1+e") and (07 z) = log(ne/mn,) +
HT:z:—log(l—i—eeTm). For1l <i<mnandl<j<p,define Vi := (—z + ,u(f(H*Txi)))
We note VL, (0%); = 13" | V.

1 +69*Txi )

Considering the event, with C := 3602,

we have,

P (I19£0(0") g 200 = ) < PE) +P (| 7£n(6)g2,00 = 31€) P(E).

First we show that P(E¢) is small. Since each z;; is a sub-Gaussian variable with sub-

- E[$2],

. . o 2
Gaussian parameter o, defining z;; = ; i

]
P(E°) < pP (1 ix? > 36a2> < pP (1 i Zij > 3202>
- i v ) i T :
where we use the fact that E [:U?j} < 402. We note that (z;;)™, are i.i.d. samples from
mean-zero distribution with sub-Exponential tail with parameter v = b = 1602 by applying
Lemma 28 with s = 1. By Bernstein-type tail bound of the sub-exponential random

variable,

P(EC) < pP < sz > 320 > < exp(—g(Q - 21(;Lgp)) < exp(—n/2), (S12)

by the sample size condition n 2 log J+m, assuming sufficiently large n. Now we show that
LS~ | Vij is a sub-Gaussian variable on €. In particular, we show that Elexp(t1 3" | V;;)]€] <

exp(t?v?/2) for some v > 0.

13



t

Defining t; := ——
g K3 n(l—i—eG*T‘Il)

, by definition of V;;, we have

B [exp (Vi | =  [exp (<) -exp (6 (07 b
= F [exp (—tizixij) |x;] - exp (tiu(f(a:ZTG*))xij) . (S13)
By the property of exponential family, we obtain
E lexp (—tizixij) |zi] = /exp (—tizxij) - exp(zf(x] 0%) — A(f(x]6%))d=
= oxp {A(f(z] 0%) — tizij) — A(f(=]67))} . (S14)
Therefore combining (8T3) and (814), we obtain

E [exp(;Vijﬂxi] = exp {A(f(xZTH*) — tiwy) — A(f(xl0%) + tl,u(f(xZTG*))mU}

1
S exXp {W(tﬂjm)Z}

where the second inequality comes from the second order Taylor expansion, u(-) = A'(),

sup, A”(u) < 1/4, and t; < t/n. Therefore

HE[exp Vi |x} < exp <8222 zj)

and conditioned on &€, we have the bound

2 K, t2C
exp szw < exp =)
=1

Therefore, 2 3% | Vi; ~ subG(C/4n), i.e. VL,(0%); ~ subG(C/4n) for all j.

Now we discuss the distribution of u? V., (6%),, and u” VL, (6*)y, 0 VL, (6%)g, on &, for
any u € RI%!, to apply Lemma §29. By Assumption 1, (V.£,,(8* )j)jeg; are independent.
With independence, it is easy to see for any j and any fixed u € RI9! uTVLn(H*)gj ~
subG (||ul3(C/4n)) and E[VL,(6*)] = 0. Then Lemma 828 gives

ul (VEn(0%)g; © VL (67)g,) ~ subExp(||ully(4C/n), [[ull - (4C/n))

J

14



for any j and fixed v € RI9!. Therefore the condition of Lemma 821 is satisfied with
0? = C/4n and v = 160% = 4C/n.
We let 62 = 16C(log J + m)/(min; wJQn) and note that

(min; w})é*> ¢ 16C(logJ +m) C  4C (16logJ 15
Csy=—"-"2"  — = - =— + —
m n mn n n 4m 4

By Lemma 829,

m C? Cs
Ma o > < —— mi 9
P <||VLn(0 5200 = 5|8> < exp( 5 min ((40/71)2’ 4C/n> +logJ> ,

2
and because log J/m > 0, Cs > 4C'/n, and min <(4g/‘5n)2, 4gjn> = 4gjn if C5 > 4C/n, we

have,

. m (4logJ 15
P (19600 > 01E) < 0xp (=5 (P27 + 37 ) 4 1ox )

<exp(—logJ —m). (S15)

Putting (812) and (8I3) together, and noting 6 = (240, / min; wj)\/log%, we obtain

1 m
P (\VLn(H*)HS 900 = (240, / minwj)y / oS Tm Jn+ ) < exp(—0.5n) + exp(—logJ —m) < €
< j

where the last inequality follows from the sample size condition n > (log J +m) V (1/€)'/5.

S2.5 Proof of Theorem 3.2
S2.5.1 Proof Outline

Defining f(672) = log(n;/mny) + 6T — log(1 + ¢ ), we recall that

£a(0) = )3 (=2 (67i) +log(1 + /@20 )
=1

15



Taking a derivative with respect to 6 of £,,(#), we obtain

)= 23 (s 4 u(F(O72)) £ (0727
=1

3

and
(VL,(0) — VL, (6%)" A
1 . .
= <n > (O @) = z) 107 2) — (n(FO 7))~ =) 10 T:m) x/ A (S16)
i=1
where A is defined as A := 6§ — 6*, and A(-), u(-) defined as A(n) := log(1 + €"), u(n) =
Al(n) =e"/(1 +e"). Also we let e; := u(f(0* z;)) — z.

To prove that (8I8) is positive with high probability, we decompose (SI8) into two terms,
whose first term I has a positive expectation and the second term I has an expectation
zero. To do so, we add and subtract = 37 | e; f/(672;)z; to (8IB) to obtain

1 a * *
T8 = 23 (w67 2)) - n(F 6 ) )1 (7 2)aT A + e F(O07) — /(0T w))a A,

n -
=1

Applying a Taylor expansion around f(8*7z;), we obtain

(VLn(0) = VL, (0*)T A

- Z A"(FO i)+ oi(F(0T i) — £(07 i) (F(0Tws) — (07 i) f/(0Twi)al A (S17)

|

n

«T
1 1 )L .
+ - ; 1 ei(f (0" ;) — /(0" x;))x; A for v; € [0,1] (S18)

IT

where A”(n) = €7/(1 + e")2. We will show that the expectation of I is positive. We
immediately see Ele;(f'(07x;) — f(6*Tx;))xl A] = 0 because E[e;|z;] = 0.

16



We aim to show each inequality

logJ +m
1> rol|AJ2 21l Ay = (S19)
logJJ +m
1] < | Allg g, =2 (520)

holds for all A € {A;||A|l2 < r} with probability at least 1 — €/2 for some kg, K1, kK2 > 0.
Then

log J +m logJ +m
T+ 1T 2 rol| Al = k| Allg g, 1A 2 — gl Alg 5222

holds for all A € {A;||A|l2 < r} with probability at least 1 — e. Finally, by the inequality

[log J +m
2 1 k2 7HAH921

for all A € {A;||All2 < r} with probability at least 1 — e.

a® + b% > 2ab, we obtain,

log J +
T I o/ G - (2 ) (2T

S2.5.2 Obtaining a lower bound of term [

We use a similar argument in Negahban et al] (201%7) to obtain a lower bound of the first
term. The main difference is that we get the dependence on 6 for a curvature term, which

1
is not the case for a canonical link f(67x) = 6Tx. Since f'(u) = Tr e the first term I
e

becomes

(z7A)?
(1 + exiTG*Jrv;:(:lTA)(l + exiTG)'

ZA” 1O i)+ vi(£(0" ) = £(07Twi)))

for some v, € [0, 1] by Taylor expansion. We note

A'(f 9*7 x;) + Uz(f(eC x;) — f(9* i), T A2 T
I>= x x; A)TL{|A ;| < T]|A
E T T Y1t et ) ( )7 1{] ‘ A}
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el

= e > 0,Yu. A suitable 7 will be chosen shortly. Since on

for any 7 > 0, as A”(u)
the event

AT zi| < T A, (521)

we have 07z; < |0*Tx;| + |ATz;| < KT 4 7r and

£ @) + v (F(0 T i) — F(OT2:))| < |0 i) + | £(0 i) — £(67 ;)]

l

n
< + 10T 2] + | ATz,
TNy

log

by Assumption 3 and the fact that 276 — log(1 + exTe) is 1-Lipschitz in 76, I can be

further lower-bounded by

Lo(7) ¢
I2— (a7 A)*1{|A | < 7] Al },
i=1
) . A" (u) )
where Lo(7) is defined as Lo(7) := inf ——————. Finally, we truncate each

lu| <Ko+ KT 47r (1 + eB1+77)2
term (z7 A)21{|ATz;| < 7||A|l,} so that each term is Lipschitz in (z] A). For a truncation

level 7 > 0, we define the following function:

u? if jul <3
or(u) =9 (1 —u)? if 5<|ul <7
0 otherwise

and note that 7 > 3" Lo(T)gOT||A||2(AT:E¢), since if the event (SZI) holds, (ATz;)% >
<pTHA||2(ATxi), and both left and right-hand sides are 0 if the event does not hold.

Defining I, as

Lo(7)

I, :=

> orjal, (ATz)), (522)
=1

we note that it is sufficient to show the inequality

log J +m
g2 llAlpy BT (523)

18

I > kol All5 — k1]|A




holds with high probability for all A € {A;||All2 < r} to prove (814). To do so, first we
will show the inequality (§23) is true for A € S(4,t), where we define

S, 1) = {A e R% [|Ally = 0, [[Allg o1 /1Al < 2 (524)

If A =0, the inequality (§823) is trivially true. Otherwise, we show that

Lo(T) & logJ +m
52 > erjal, (A @) > Ko — raty — (525)
=1

is true for all A € S(d,t) with high probability. Then we will use a homogeneity property

of ¢ and peeling argument to obtain a uniform result over (4, 1).
S2.5.3 Bounding Expectation of Term [
We note that I, is lower bounded by,
Iy = BE[I ) + (I, — E[I,]) > E[l;] — sup |l — E[I]|.
AES(5,t)

In this sub-section, we obtain the lower bound of E[I;], which is strictly positive with a
suitably chosen 7. In the next sub-section, we will control the deviation term supaegs ) [1e—

E[I;]|. First we have E[I;] = Lo(7)FE {@THAHQ(AT:U) where 2 £ z;, and
E [¢ral, (AT2)| = BI(AT2)%] - E[(AT2)? = ¢pa),(AT2)].
We lower and upper bound each two terms on the right-hand side by
E[(AT2)] > Kol All3
and

BI(ATS) — sy, (ATo)] < B | (@1 {1aTal = 1T L

19



Applying the Cauchy-Schwarz inequality, we obtain

p|@ropn {|ata > TR0 Y] < \/m\/ﬁ” (172> T2l

2
)
S
T

by using expectation and tail-bound of sub-Gaussians, since ATz ~ SubG(HAHgUg)- As
K, 16v/202 1/2
420 (eXp (_15%» = 70 for 7% > 1607 log I\(f% , we take T = K3 1= 4o, (log %)
’ 0

to have

BILL] = Lo(Ks)E [xcyja, (AT2)]

2
2 2 T
> Lo(Ks)|All3 (Ko — 4V207 exp (- 1602))

x

23Lo(K3)Kp

(526)

For simplicity, we write Ly := Lo(K3) for future references.

S2.5.4 Controlling the difference of Term [ from its expectation

We now bound the term sup |I;— E[I;]| using the concentration property of an empirical
AES(8,t)

process. We have sup |I, — E[Ij]| = §°LoU; (t), where we define U (t) as
AES(4,t)

1

3D Prslal,(ATz) — B @KsuAHQ(ATx)}

Ui(t) :== sup
1) aes() |nlIAll =

)

K3|

Al
since [|Afl, = ¢ for all A € S(4,¢). Since we have |||, lo < 4”2 by definition of

©-(+), we apply bounded difference inequality with ¢; = K2/2n (Theorem EZ3) to obtain

8 2
P(U1(t) = EUL(t) +u1) < 2exp <— ;‘(Zl> .
3

Setting u1 = Ko/4,
P(UL (1) > BUA(1)] + ) < 2exp(—ein) (s27)

20



where ¢; = K2/2K3 is a constant depending on K and K3. Now we calculate EU; (t). By

symmetrization and contraction inequalities (Theorems 8270, B29), we have
1 n
T
3D €1 al, (A7)
nl|All3 i=1 :

1 n
— E eiAT:c,-
n“

=1

_ 1
< 8K36 1( sup HAH9,2,1>E ||nzfi$i”§,2,oo]

AES(8,t) —

I
< 8K K| 28 (S28)
n

where (¢;)""_; are i.i.d Rademacher variables and K4 := 200, (min; w;)~!. Note that PK3|All,

ElUh(H)] < 2E | sup

A€ES(5,t)

8K36
<

E

sup
AEeS(5,t)

is a Lipschitz function with the Lipschitz constant = 2K3||A|, = 2K30 for A € S(4,t)
which allows us to apply the Ledoux-Talagrand contraction theorem. The second last
inequality is from Lemma 824 and the last inequality follows from F [H% Yo €l G2.00| <
Ky W, which will be proven shortly in Lemma §2T1.

Therefore, combining (828), (824) and (S528), we have

i Lo Y T / log J +m
2) nIATE AT @) 2 ko — by ———— 29
Aelg((s,t) ’I’LHAH% ZzlcpK:f”A'Q( €T ) = Ko K/l o ( )

with probability at least 1 —exp(—cin) where kg = KoLg/2 and k] = 8LoK3K 4. It remains
to prove Lemma S27T0.

Lemma S2.10.
E

1 — log J +m
Hﬁ Z fﬂ’i’g,zoo] <cyf e (S30)

i=1

1

for n > logp, where ¢ := 200, (min; w;)~! is a constant depending on o, (w;)7.

2
ij>
€ ~ subG(1). Then 2 3% | e;z;; ~ subG(C(z)/n), where we define C(z) = maxi<j<p =

oy . n 1 n PSR . . L .
Proof. Conditioned on x7, - > 7" | €;7;; is a sub-Gaussian with a parameter —5 >, x7;, since

21
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conditioned on x7. Defining u := [ug,...,up]T € RP as uj = %Z?:l €;x;j, we have in-
dependence of (u;)jey, by Assumption 1. Following similar arguments as in the proof
of Lemma 3.1, we obtain for any j and v € RI%! vlug, ~ subG((C(z)/n)|v|3) and

v (ug, 0 ug,) ~ subExp(v|v]y, v||v|l,,) with v = 16C(z)/n. Then Lemma EZ3 gives,

1 — logJ+m
HnZeZqu52w|x’f] <4 mmw] -1/c

i=1

1 — . 1 JlogJ +m
anﬁiﬂfng,Q,oo] §4(mjmwj) 1\/TE[ C(z)]

=1

Therefore,

Now we upper-bound E[/C(x)]. By Holder’s inequality,

1/2
max — E l‘z]
1<]<pn

Now we define z;; := x?j — E[a?,f]] foreach 1 <i<mnand1l<j<pandz = [z,... ,znj]T.

Using Lemma EZH, we have,

n
s
Since ]szj ~ subExp(1602\/n, 1603) by Lemma B2Zd, we apply Lemma 8§27 with v, =

1602/n, ¢ = 1/y/n (taking m; = 1,Vj) to obtain

<E + 402,

max — E x”
1<j<p n 4

621gp

n'E[max 172;] <n '160%(logp +n/2) =1 + 802,

1<5<p
Hence,

E[\/C(z)] < 4oz+/logp/n+1/2 < 50,

by the condition of logp/n < 1, and thus,

'S -1, [log S +m
aneixiH9’27°°] SQOU:v(mjlnwj) 1\/T

i=1
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S2.5.5 Extending the inequality (§29) for all A € By(r)

In this section, we show
L ||AH921 10gJ—|—m
Crcyal,(ATTi) > Ko — k1 ( — (S31)
AN Z A E n
holds for all ||Al2 = § with probability at least 1 — €¢/2 where k; = 2x}. Note if (53T)
holds, for any A’ such that [|A||s = ¢ # d, we can apply (83T) to A = A’(§/§) to obtain
Ly

[A"llg21Y [logJ+m
n||A| ’2 2:901(3”A Hz(A 37%) 2> Ko — K1 ( [A[| n

by using homogeneity property of p,i.e. o, (z) = ¢ 2¢qr(cx) for any ¢ > 0. Thus proving

that (S310) holds for all ||A|l2 = ¢ with probability at least 1 — ¢/2 is enough to prove
that the same inequality holds for all ||Alls < r with the same high probability. We let
Sa2(6) := {A € RP;||All2 = 6} and K, > 0 be a constant such that min; w; > K, where

the existence of K, is guaranteed by Assumption 4.

P (3A € Sy(0) such that inequality (831) fails )

< Z]P’ (EIA € Sp(0); K27t < | Hl‘(ﬁzl < Ku2' s.t inequality (S3T) fails ) (S32)
2

where 2V < (max; w;/Ky)VJ, ie. Np = ’710g2 (maxj wj\ﬁ/Kwﬂ, by the inequality
Kol All2 < (mingw))[Allz < |A]lg2,1 < (max; w))VI[|All2.

Np
Z]P’ <E!A € S9(6); K271 < | ”i?‘fl < K2 such that inequality (S3T) fails >
2

Np

, Ly & =
<2.P N AR Y rsal, (ATe) < ko — r1(K,2' 1)\/T
=1 AGSQ(5),$<(KW2Z) 251

§ Lo log J +m
B AT, — k(K2 =2
(AES 5(Kw21 nHAHQ Z(‘OKBHAHQ( i ) < Ko F\Zl( )\/T)

< exp(—cm +log Np1)
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by k1 = 2k} and the inequality (§829). Finally,
exp(—cin +log Np) < exp (—cm + log logQ(J?’/Q/Kw)) Sexp(—cin+loglog J) < ¢e/2

by the sample size condition n > (log J +m) V (1/€)'/# and max; w;/J < 1.

S2.5.6 Controlling the difference of Term I/ from its expectation

For the second term, we recall the definition :

1 n
I = = s /0Ti_ /G*Ti TA
2 O = 0T s
and note that E[II] = 0 by E[e;|z;] = 0. Similar to U;(t), we define a following quantity,

> e 10T wi) — /(07 3i))a] A,

=1

1

U t = su —_—
2(1) P | ATsen

(1/2)t<||Allg 21 <t

, and bound E(Us(t)) using symmetrization and contraction theorem. First we define

gi(AT ) = e (f’(H*Txi + ATgy) — f’(H*Txi)> ATz
and prove that g;/L, is a contraction map where L, := 3 + (K7 /4).
Lemma S2.11. g;(s)/L, is a contraction map with g;(0) = 0.
Proof. We consider the first derivative of g;. For ease of notation, we let u; := 0*Tz;. We
note f'(u) = 1/(1+ e%),f'(u) = —e*/(1 + e*)%. Thus sup,, |f'(u)| < 1,sup, |f"(u)| < 1/4.
Also, elementary calculation shows that sup,, |uf’(u)],sup,, [uf”(u)] < 1/2. Since,

gi(w) = ei(f'(uj +u) — f'(uf))u
we have,
91(0)| = e (w4 7' ) — F(u)
<1t ) — £ + )+ ) — ()

<3+ (1/4)|u;
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where |e;| <1 was used in the first inequality. By Assumption 2, u} := 10T 2| < K7, thus

we can take Lg := 3+ (1/4)K7. O

Back to E(Ux(t)), by symmetrization and contraction theorem (Theorems S2Z1,879),

n

1
— ) ATy,
nl|Allg2,a ; o

E(Us(t)) <4L4E sup

(1/2)t<||Allg 2.1 <t

<4L,E

1 1 &
sup T [Allg 2 ll= D €iillg
(1/2)t<[|Allg,2,1 <t (1/2)t 9210y ; #2l1G,2,00

< 8K4Lgy/ log‘]%. (S33)

where the second inequality uses the fact that (1/2)t < ||Aflg21 < ¢ and Lemma 824, and
the last inequality comes from Lemma S27T0.

Now, we apply bounded difference inequality to show that Us(t) is close to E(Usx(t))
with probability at least 1 — exp(—c'n). We have,

1 T 1 1T T Pyl T
0.0 n||A||9,2,1| i ol 0 n|Allgar | ( ¢ i) ( i) i
2
<su ATzl < 2 maxw (),

by Lemma §24. We note for any w € R? such that wge = 0 and |lw|le =1, u € RP, defined
as u := 0*+rw, satisfies ||u—0*||2 < r and supp(u—6*) C g;. By Assumption 2, [z]u| < K7
a.s. for all i. Then |z} w| = |z (u — 6%)|/r < 2K /r a.s., which implies ||(z;), [|2 < 2KT /7

since [|(7;)g;]l2 = sup |(l’1)§]1}’ = sup |zFw|. As the bound holds for
veR!9 ! ||v]]2=1 we]RP;Hng:ngJc_:O

any i, j, we have max; ; ||(z;)g, |2 < 2K7 /7.

Hence by applying Theorem 823 with ¢; = (8K /K,,r)n~!, we obtain

P(Us(t) > EUs(t) + uz) < exp(—2u3/ Y ¢f)
=1
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f
Taking us = K4L, m, we get
n
log J
P (Ug(t) > 9K,y Ly / Ogn*m> < exp(—ca(log J +m))

where g := (K7 K4Lg)?/32(K])?. In other words, we have shown, for any ¢ > 0,

logJ +m
< K5l|Allg 2,1 \/ gT,V(lﬂ)t <[Allg21 < t>

> 1 —exp(—cz(log J +m)) (S34)

’ <‘i zn: ei(f/ (07" xi + ATay) — /(0" a;))al A

=1

where we define xf, := 9K, L,.

S2.5.7 Extending the inequality (534) for all A € Ba(r)

In this section, we obtain a uniform result for term II. More concretely, we consider the

log J +m
< Rl Aflgzay/ =S (S85)

following inequality:

% S el /(0w + ATzg) — 110" z))aT A
=1

where kg := 10K4L,. Equivalently, defining

1 . 1 nxT T 1nxT T
— S e (f (0T a4+ ATx) — f1(0° )2l A
nHA,W; (' )~ £(67 ;)

P(A; 21, 21) =

for A # 0, we aim to establish the result,

1
P (lqﬁ(A;x?,z?)\ < o[RBT yn Bw“)) >1-¢/2

We first define

A(ry,m) = {A € RP;ry < ||Allg 21 < ra}
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and decompose By(r) into different regions. We have,

P (3A € Ba(r) such that inequality (833) fails )

<P (3A € A(0,C),) such that inequality (S33) fails ) (S36)
Ng

+ ZIP’ (3A € A(rk_1, 7)) such that inequality (833) fails ) (S37)
k=1

where we define

(min; wj)r > fNlogJ +m
Cp = K4L, ( KT -

T = Cn2k.

Here C), is chosen to ensure the probability (836G) to be small enough, which will be
shown shortly. We take Nk such that ry, = C, 2Nk > 7 Max; wj\/j since |Allg21 <
(max; w;)VJ||All2 < r(max; w;)v/J. Then we can let,

nJ
= 1 ; —_—
WK |70g2 (ijaij logJer)“

for ¢ := (K7)?/(rK2K4Ly)V1. By the sample size assumption, max; w;/n < 1 and J > n”,

thus

s o ( m 1g3J+m> < 2log (¢n*197).

for some ¢ > 1. Since P (A € A(rg_1, 7)) such that inequality (833) fails ) < exp(—co(m+
log J)) for any k by (834), we have for (837),

(837) < exp(—co(m + log J) + log Ni)
< 2exp (—CQ(’I’I’L +log J) + loglog Cln(3+6)/2>

< cgexp(—ca(m + log J) + loglogn)
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for c3 = 2((3+ )/2 +log ) > 1, as loglog ¢nB+A/2 < loglogn + log((3 + )/2 + log ).
Now we address (838):

(sam) = P (HA € A0, Cu); [B(As 2, )] > iy W)

For s € (0,C,], we define a function qg Ry x RP — R, whose first argument takes the size
(measured in ||-[/g 2,1 norm ), second argument takes normalized direction (i.e. ||d||g21 =1)

such that

n

Z ei(f/ (0" x; + szld) — /(0T z))al d = ¢(sd; 2}, 2})
i=1

3\'—‘

¢(3 d; 371721

In particular, for any A € A(0,C,,), we have (E(HAHQ’QJ,

1 2f) = B(AaT, o).
Now we calculate how much ¢ changes when the size of the input vector varies while
fixing the direction. In other words, we calculate the rate of change of gg with respect to its

first argument. To ease the notation, we suppress the dependence of ¢, gz~5 on (zf, 27).

js (1 > eif (07w + sald) — f1(0°T x;))a] d)‘

=1

d ~
(s, d)] =

IN
3=
(]

i (0w + sl d)| (] d)?

2
521 = (min; wj)r

by |ei] < 1 and [|f”|loc < (1/4). Then for any normalized direction d € RP such that

=1

2
< lzillg o o

ld|lg.2,1 =1, we have,

135, d) — du, )| < (K)> o ul

(min; wj)r

In particular, for any 0 < s < C,

. 2
1805, A/ Allg )] < 13 (Cn,A/HAHgm)H(.Kl)) c,

(minj wj)r
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Therefore,

~ log J +m
(538) = P (HA € A0, Ca)i 8(11Allg.21:A/18]l52.0)] > m/gn)
~ log J + m K7 2
< : —
_P(BA € A0, F(Ca A8 2] > BT - () Cn>
~ log J +
=P <3A € A(0,C); 16(Cry A || Allg 2,1)] > 9K4Lg,/gnm>

. KT 2 .~
where the last line uses the fact (W) Cp = KaLg\/ 5™ Since ¢(Chy A/||Allg.2,1) =
P(CnA/[[Al[g2,1) and CrA/[|Allg 2,1 € {A” € RP; [[Al|lg 2,1 = Cn}, we have,

log J
(833) <P sup  |p(A)] > 9K4Lg\/W
||A||9,2,1:Cn n
log J
<P sup lo(A)] >9K4Lg\/m
(1/2)Crn<||Allg,2,1<Cn n

< exp(—ca(log J +m))

by (534). Therefore,

(838) + (8310) < exp(—ca(log J +m)) + c3 exp(—ca(m + log J) + loglog n)

< 2czexp(—co(m + log J) +loglogn) < €/2

by the sample size condition n > (log.J +m) V (1/€)Y/#, noting loglogn = o(log .J).
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S3 Supplementary simulation results in Section 4

In this section, we display additional classification performance results. We recall the sim-

ulation setting: dimension of features p € (10, 5000), auto-correlation level among features

p € (0,0.2,0.4,0.6,0.8), separation distance d € (1.5,2.5,3.5), and the model specifica-

tion scheme (logistic, misspecified). The sample size is ny = n,, = 500 in all setting and

experiments are repeated 50 times.

S3.1 The logistic model scheme

S3.1.1 F} scores under the logistic model scheme

d=3.5

0.90
0.85 A

0.80%

0.751
0.70 1
0.65 -

Flscore
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o = =

—F 5 1

ooos=d
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Algorithm

~ (i) Reference

- (ii) PUlasso

- (iii) EN1

- (iv) EN2

+ (v) biased-SVM
(vi) PNS

Figure S1: F scores of algorithms (i)-(vi) under correct (logistic) model specification
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S3.2 The misspecified model scheme

Heavy-tailed distribution tends to generate more separated samples, leading to better classi-

fication performance. The scaling of ¥, which sets Var(xiTH*) the same across p, indirectly

changes the separation between the two classes. As a result, we observe improved classifica-

tion performance with higher p in the misspecified setting. PUlasso algorithm continues to

out-perform other algorithms in most cases, but performance difference among algorithms

decreases under the model misspecification scheme.

S3.2.1 Mis-classification rates under the misspecified model

misclassification rate
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Figure S2: Mis-classification rates of algorithms (i)-(vi) under model misspecification.



S3.2.2 F} scores under the misspecified model
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Figure S3: F} scores of algorithms (i)-(vi) under model misspecification
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