
SUPPLEMENTARY MATERIAL

S1 Proofs for results in Section 2

S1.1 Proof of Proposition 2.1

We prove (i) in Proposition 2.1 for both Algorithm 1 and 2. First we define Q, Q̃,H as

follows:

Q(θ; θm) := n−1Eθm [logLf (θ)|zn1 , xn1 ]

Q̃(θ; θm) := −Q(θ; θm) + Pλ(θ)

H(θ; θm) := n−1Eθm [logPθ(y
n
1 |zn1 , xn1 )|zn1 , xn1 ].

Note that for any θm, Fn(θ) = Q̃(θ; θm) + H(θ; θm) holds and H(θm; θm) ≥ H(θ; θm) by

Jensen’s inequality. Also since θm+1 is a minimizer of Q̃(θ; θm), we have

Fn(θ
m+1) = Q̃(θm+1; θm) +H(θm+1; θm) ≤ Q̃(θm; θm) +H(θm; θm) = Fn(θ

m). (S1)

To show that the inequality is strict, it suffices to show that if θm ̸∈ S, θm is not a stationary

point of Q̃. Since θm ̸∈ S, there exists θ′ such that

▽Fn(θ
m)T (θ′ − θm) < 0, ∀▽Fn(θ

m) ∈ ∂Fn(θ
m) (S2)

Since θm is a maximizer of H(·; θm), ▽H(θm; θm) = 0. Then ∂Fn(θ
m) = ∂Q̃(θm; θm). Thus

by (S2), θm is not a stationary point of Q̃(·; θm).

For Algorithm 2 (PUlasso algorithm), since Q is a surrogate function of Q which satisfies

following two properties

Q(θm; θm) = Q(θm; θm), Q(θ; θm) ≤ Q(θ; θm), ∀θ (S3)
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and θm+1 is a minimizer of −Q(θ; θm) + Pλ(θ), we have

Fn(θ
m) = −Q(θm; θm) + Pλ(θ

m) +H(θm; θm)

= −Q(θm; θm) + Pλ(θ
m) +H(θm; θm)

≥ −Q(θm+1; θm) + Pλ(θ
m+1) +H(θm; θm)

≥ −Q(θm+1; θm) + Pλ(θ
m+1) +H(θm+1; θm) = Fn(θ

m+1)

The strict inequality follows from the fact that ▽Q(θm; θm) = ▽Q(θm; θm).

Now we address (ii) and (iii) in Proposition 2.1. Using the same argument as in Wu

(1983), we appeal to the global convergence theorem stated below as Theorem S1.1 in Zang-

will (1969) with Γ = S, α = Fn, and letting A be a mapping from θm to θm+1 defined by

Algorithm 1 or 2. As stated in Wu (1983), condition (iii) in Theorem S1.1 follows from the

continuity of −Q(θ, θ′) + Pλ(θ) or −Q̄(θ; θ′) + Pλ(θ) in both θ, θ′. Therefore, if we show

that Θ̃0 is compact, both (ii) and (iii) follow from the fact that (θm)∞m=0 lie in a compact

set. Since Θ̃0 ⊆ Rp it suffices to show that Θ̃0 is closed and bounded in Rp. Θ̃0 is bounded

since Fn(θ) → ∞ whenever ∥θ∥2 → ∞ since ∥θ∥G,2,1 ≥ minj wj∥θ∥2 → ∞. For closedness

of the set, consider (θk)k≥1 such that θk ∈ Θ̃0 and θk → θ′. We have Fn(θk) ≤ Fn(θnull) for

all k. Then by the continuity of Fn, Fn(θ
′) ≤ Fn(θnull) thus θ

′ ∈ Θ̃0.

Theorem S1.1 (Global Convergence Theorem, Zangwill (1969)). Let the sequence {xk}∞k=0

be generated by xk+1 ∈ A(xk), where A is a point-to-set map on X. Let a solution set Γ ∈ X

be given, and suppose that:

(i) The sequence {xk}∞k=0 ⊂ S for S ⊂ X a compact set.

(ii) There is a continuous function α on X such that (a) if x ̸∈ Γ, then α(y) < α(x) for

all y ∈ A(x). (b) if x ∈ Γ, then α(y) ≤ α(x) for all y ∈ A(x).

(iii) The mapping A is closed at all points of X \ Γ.
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Then all the limit points of any convergent subsequence of (xk)
∞
k=0 are in the solution set

Γ and α(xk) converges monotonically to α(x) for some x ∈ Γ.

S2 Proofs for results in Section 3

S2.1 Derivation of the log-likelihood in the form of GLMs

logL(θ;x, z, s = 1) = log

(∏
i

Pθ(zi|xi, si = 1)

)
=
∑
i

zi logPθ(zi = 1|xi, si = 1) + (1− zi) logPθ(zi = 0|xi, si = 1)

=
∑
i

zi log
Pθ(zi = 1|xi, si = 1)

Pθ(zi = 0|xi, si = 1)
+ logPθ(zi = 0|xi, si = 1).

From Lemma 2.1, we have Pθ(z = 1|x, s = 1) =

nl
πnu

eθ
T x

1 + (1 + nl
πnu

)eθT x
. Then,

log
Pθ(z = 1|x, s = 1)

Pθ(z = 0|x, s = 1)
= log

nl
πnu

eθ
T x

1 + eθT x
= log

nl

πnu
+ θTx− log(1 + eθ

T x).

and,

logPθ(z = 0|x, s = 1) = − log

(
1 + (1 + nl

πnu
)eθ

T x

1 + eθT x

)
= − log

(
1 +

nl
πnu

eθ
T x

1 + eθT x

)

= − log

(
1 + elog

nl
πnu

+θT x−log(1+eθ
T x)

)
.

Therefore we obtain,

log

(∏
i

Pθ(zi|xi, si = 1)

)
=
∑
i

ziηi − log(1 + eηi)

where ηi = log nl
πnu

+ θTx− log(1 + eθ
T x).
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S2.2 Useful inequalities and technical lemmas

In this section, we provide some results that will be useful for our proofs. First we state the

symmetrization inequality, which shows relationships between empirical and Rademacher

processes.

Theorem S2.1. (Symmetrization theorem[van der Vaart and Wellner (1996)]) Let U1, . . . , Un

be independent random variables with values in U and (ϵi) be an i.i.d. sequence of Rademacher

variables, which take values ±1 each with probability 1/2. Let Γ be a class of real-valued

functions on U. then

E

(
sup
γ∈Γ

∣∣∣∣∣
n∑

i=1

{γ(Ui)−E(γ(Ui))}

∣∣∣∣∣
)

≤ 2E

(
sup
γ∈Γ

∣∣∣∣∣
n∑

i=1

ϵiγ(Ui)

∣∣∣∣∣
)
.

The next theorem is Ledoux-Talagrand contraction theorem. The stated version is

Theorem 2.2 in Koltchinskii (2011), which allows T be any subset in Rn, thus slightly more

general than the original theorem in Ledoux and Talagrand (1991) where T needs to be

bounded.

Theorem S2.2. (Contraction theorem[Ledoux and Talagrand (1991)]) Let T ⊂ Rn and let

φi : R → R, i = 1, . . . , n be contractions which satisfy |φi(s)− φi(t)| ≤ |s− t|, s, v ∈ R and

φi(0) = 0. Let (ϵi) be independent Rademacher random variables. Then

E

(
sup
t∈T

∣∣∣∣∣
n∑

i=1

ϵiφi(ti)

∣∣∣∣∣
)

≤ 2E

(
sup
t∈T

∣∣∣∣∣
n∑

i=1

ϵiti

∣∣∣∣∣
)
.

Finally, we state the bounded differences inequality, also sometimes called as Hoeffding-

Azuma inequality.

Theorem S2.3. (Bounded difference inequality[McDiarmid (1989)]) Let X1, . . . , Xn be

arbitrary independent random variables on set A and φ : An → R satisfy the bounded

difference assumption: there exists constants ci, i = 1, . . . , n such that for all i = 1, . . . , n
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and all x1, x2, . . . , xi, x
′
i, . . . , xn,

|φ(x1, . . . , xi, . . . , xn)− φ(x1, . . . , x
′
i, . . . , xn)| ≤ ci

Then ∀t > 0,

P (φ(X1, . . . , Xn)− E[φ(X1, . . . , Xn)] ≥ t) ≤ exp(−2t2/

n∑
i=1

c2i )

Now we state and prove some useful results about sub-Gaussian and sub-exponential

random variables.

Lemma S2.4. Let v, u ∈ Rp and (g1, . . . , gJ) be a partition of (1, . . . , p). For G =

((g1, . . . , gJ), (wj)
J
1 ) and Ḡ = ((g1, . . . , gJ), (w

−1
j )J1 ) such that all gj are non-empty and

wj > 0, |vTu| ≤ ∥v∥G,2,1∥u∥Ḡ,2,∞.

Proof. We note ∥v∥G,2,1 =
∑J

j=1wj∥vgj∥2 and ∥u∥Ḡ,2,∞ := max1≤j≤J∥w−1
j ugj∥2. By Cauchy-

Schwarz inequality, we have

|vTu| ≤
J∑

j=1

|wjv
T
gjw

−1
j ugj | ≤

J∑
j=1

∥wjvgj∥2∥w
−1
j ugj∥2.

Taking the maximum of the second quantity,

|vTu| ≤ max
1≤j≤J

∥w−1
j ugj∥2

J∑
j=1

wj∥vgj∥2 = ∥v∥G,2,1∥u∥Ḡ,2,∞.

Lemma S2.5. Let x ∈ Rp such that xT v ∼ subG(∥v∥22σ2
x) for any fixed v ∈ Rp and

E[x] = 0. For any i ∈ (1, . . . , p), k ≥ 1,

E[|xi|k] ≤ k(2σ2
x)

k/2Γ(k/2).
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Proof. Taking v = ei where ei is an ith coordinate vector, we have E(exp(tvTx)) =

E[exp(txi)] ≤ exp(t2σ2
x/2) for t ∈ R. Then following a standard argument for sub-Gaussian

random variables,

E[|xi|k] =
∫ ∞

s=0
P(|xi| ≥ s1/k)ds

≤ 2

∫ ∞

s=0
exp(−s2/k/2σ2

x)ds

= k(2σ2
x)

k/2

∫ ∞

s=0
e−uuk/2−1du = k(2σ2

x)
k/2Γ(k/2)

where the third inequality comes from the change of variable u = s2/k/2σ2
x.

The next lemma concerns distribution of x ◦ x = [x21, . . . , x
2
s] for independent sub-

Gaussian (xi)
s
i=1.

Lemma S2.6. Let x ∈ Rs such that xT v ∼ subG(∥v∥22σ2
x) for any fixed v ∈ Rs and

E[x] = 0. Also, assume (xi)
s
i=1 are independent. Then we have vT (x ◦ x) ∼ subExp(ν, b)

with ν = 16σ2
x∥v∥2, b = 16σ2

x∥v∥∞ for any fixed v ∈ Rs.

Proof. Let z := x ◦ x− E[x ◦ x]. For any given v ∈ Rs and t > 0,

E[exp(tvT z)] = E[exp(tv1z1 + . . . tvszs)]

=
s∏

i=1

E[exp(tvizi)]

where we use independence. Then by Taylor series expansion,

E[exp(tvT z)] =
s∏

i=1

E

(
1 + tvizi +

t2(vizi)
2

2
+ . . .

)

=
s∏

i=1

(
1 +

∞∑
k=2

tkE
(
vi(x

2
i − E[x2i ])

)k
k!

)
By Jensen’s inequality, we have,

E(vix
2
i − E[vix

2
i ])

k ≤ |vi|k2k−1(E[x2ki ] + E[x2i ]
k),
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and by applying Jensen’s inequality again, we get

E[exp(tvT z)] ≤
s∏

i=1

(
1 +

∞∑
k=2

tk|vi|k2kE[x2ki ]

k!

)
. (S4)

We let ti = t|vi|. By Lemma S2.5, we have,

E[x2ki ] ≤ (2k)(2σ2
x)

kΓ(k) = 2(k!)(2σ2
x)

k (S5)

Substituting (S5) into (S4),

E[exp(tvT z)] ≤
s∏

i=1

(
1 +

∞∑
k=2

tki 8
k(σ2

x)
k

)

=
s∏

i=1

(
1 + (8tiσ

2
x)

2
∞∑
k=0

(8tiσ
2
x)

k

)

≤
s∏

i=1

(
1 + 128t2iσ

4
x

)
if t|vi| ≤ 1/(16σ2

x), for all i. By the fact that 1 + 128t2iσ
4
x ≤ exp(128t2iσ

4
x)

E[exp(tvT z)] ≤
s∏

i=1

exp(128t2iσ
4
x) = exp(

s∑
i=1

128t2v2i σ
4
x) = exp(128t2∥v∥22σ

4
x)

for t ≤ 1/(16σ2
xmaxi |vi|). Therefore vTx ◦ x ∼ subExp(ν, b) with ν = 16σ2

x∥v∥2, b =

16σ2
x∥v∥∞).

Also, we have a lemma about maximum of sum of variables with sub-exponential tails.

Lemma S2.7. Consider (uj)
J
j=1 where uj ∈ Rmj such that 1Tuj ∼ subExp(νj , b) with

E[uj ] = 0 for 1 ≤ j ≤ J . We let m := maxj mj. Also, assume ∃ν∗ > 0 such that

νj ≤ ν∗
√
m for all j and ∃c > 0 such that b ≤ cν∗. Then we have,

E[ max
1≤j≤J

1
Tuj ] ≤ cν∗(log J +m/(2c2)).

In particular, when c = 1, E[ max
1≤j≤J

1
Tuj ] ≤ ν∗(log J +m/2).
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Proof. For |t| ≤ 1/b we have,

E[exp(t1Tuj)] ≤ exp(t2ν2j /2) ≤ exp(mt2ν2∗/2) (S6)

Then,

E[ max
1≤j≤J

1
Tuj ] =

1

t
E
(
log emax1≤j≤J t(1Tuj)

)
≤ 1

t
logE

(
emax1≤j≤J t(1Tuj)

)
=

1

t
logE

(
max
1≤j≤J

et(1
Tuj)

)
.

where the second inequality comes from Jensen’s. Using a union bound,

1

t
logE

(
max
1≤j≤J

et(1
Tuj)

)
≤ 1

t
log

 J∑
j=1

E
(
et(1

Tuj)
)

≤ 1

t
log
(
Jemt2ν2∗/2

)
. (S7)

where the last inequality uses (S6). Since 1/(cν∗) ≤ 1/b by assumption, the inequality (S7)

holds for t = 1/(cν∗). Plugging t = 1/(cν∗) into (S7), we obtain,

E[ max
1≤j≤J

1
Tuj ] ≤ cν∗(log J +m/(2c2))

as claimed.

Finally, in Lemma S2.8 and S2.9, we provide expectation and probability tail bounds

of a dual ℓ1/ℓ2 norm of a sub-Gaussian vector.

Lemma S2.8. Let G = ((g1, . . . , gJ), (wj)
J
1 ). Consider a random vector v ∈ Rp such that

for each j and any fixed u ∈ R|gj |, uT vgj ∼ subG(σ2∥u∥22) with E[vgj ] = 0 and uT (vgj ◦vgj ) ∼

subExp(ν∥u∥2, ν∥u∥∞). Then,

E[∥v∥Ḡ,2,∞] ≤ c
√

log J +m

for c = (min1≤j≤J wj)
−1
√

max(ν, 8σ2), where we define Ḡ = ((g1, . . . , gJ), (w
−1
j )J1 ) and

m := maxj |gj |, the largest group size.
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Proof. First we let mj = |gj |. By Holder’s inequality, we have,

E[ max
1≤j≤J

∥w−1
j vgj∥2] ≤ E[ max

1≤j≤J
∥w−1

j vgj∥
2
2]
1/2 = E[ max

1≤j≤J
w−2
j (v2gj ,1 + . . . v2gj ,mj

)]1/2

Then,

E[ max
1≤j≤J

w−2
j (v2gj ,1 + . . . v2gj ,mj

)] ≤ ( max
1≤j≤J

w−2
j )E[ max

1≤j≤J
(v2gj ,1 + . . . v2gj ,mj

)]

= ( max
1≤j≤J

w−2
j )E[ max

1≤j≤J

mj∑
i=1

(ugj ,i + E[v2gj ,i]))]

≤ ( max
1≤j≤J

w−2
j )

(
E[ max

1≤j≤J
1
Tugj ] + 4mσ2

)
where ugj

d
:= vgj ◦ vgj − E[vgj ◦ vgj ] and the last inequality uses Lemma S2.5 and mj ≤ m,

for all j. By assumption, we have, 1Tugj ∼ subExp(ν
√
mj , ν) and E[ugj ] = 0. Then, by

Lemma S2.7,

LHS ≤ ( max
1≤j≤J

w−2
j )[ν(log J +m/2) + 4mσ2]

≤ ( max
1≤j≤J

w−2
j )max(ν, 8σ2)(log J +m).

Since max1≤j≤J w
−2
j = 1/(min1≤j≤J wj)

2, defining c = (min1≤j≤J wj)
−1
√

max(ν, 8σ2), we

obtain

∥v∥Ḡ,2,∞ ≤ c
√

log J +m

as desired.

Lemma S2.9. Let G = ((g1, . . . , gJ), (wj)
J
1 ). Consider a random vector v ∈ Rp such

that for each j and for any fixed u ∈ R|gj |, uT vgj ∼ subG(σ2∥u∥22) with E[vgj ] = 0 and

uT (vgj ◦ vgj ) ∼ subExp(ν∥u∥2, ν∥u∥∞). Then,

P
(
∥v∥Ḡ,2,∞ ≥ δ

)
≤ J exp

(
−1

2
min(C2

δ /ν
2, Cδ/ν)

)
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where we define Cδ := (minj w
2
j )δ

2/m−4σ2, Ḡ = ((g1, . . . , gJ), (w
−1
j )J1 ), and m := maxj |gj |,

the largest group size.

Proof. By the union bound, we have

P
(

max
1≤j≤J

∥w−1
j vgj∥2 ≥ δ

)
≤

J∑
j=1

P
(
∥w−1

j vgj∥
2
2 ≥ δ2

)
.

Defining ugj
d
:= vgj ◦ vgj − E[vgj ◦ vgj ] and mj := |gj |.

P
(

max
1≤j≤J

∥w−1
j vgj∥2 ≥ δ

)
≤

J∑
j=1

P

(mj∑
k=1

v2gj ,k ≥ w2
j δ

2

)

≤
J∑

j=1

P
(
1
Tugj ≥ (min

j
w2
j )δ

2 − 4mjσ
2

)

where the last inequality uses Lemma S2.5. By assumption, we have 1Tugj ∼ subExp(ν
√
mj , ν)

and E[ugj ] = 0. We use Bernstein type inequality to bound the probability. More concretely

for any s > 0 such that |s| ≤ 1/ν, we have,

P
(
1
Tugj ≥ (min

j
w2
j )δ

2 − 4mjσ
2

)
≤ P

(
s1Tugj ≥ smCδ

)
≤ exp(−smCδ)E

[
exp

(
s1Tugj

)]
≤ exp(−smCδ + s2mν2/2).

In the first and third inequality, the bound mj ≤ m was also used. Optimizing over s > 0,

we take s = min{Cδ/ν
2, 1/ν}. Hence, we have,

P
(

max
1≤j≤J

∥w−1
j vgj∥2 ≥ δ

)
≤ J exp

(
−m

2
min(C2

δ /ν
2, Cδ/ν)

)
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S2.3 Proof for Proposition 3.1

The proof of this result follows similar lines to the proof of Theorem 1 in Loh andWainwright

(2013), which established the result with a different tolerance function and an additive

penalty. Since θ∗ is feasible, by the first order optimality condition, we have the following

inequality

(▽Ln(θ̂) + ▽Pλ(θ̂))
T (θ∗ − θ̂) ≥ 0.

Letting ∆̂ := θ̂−θ∗, since θ̂ ∈ Θ0 by the setup of the problem, we can apply RSC condition

to obtain

α∥∆̂∥22 − τ(∥∆̂∥G,2,1) ≤ (−▽Pλ(θ̂)− ▽Ln(θ
∗))T ∆̂. (S8)

On the other hand, convexity of Pλ(θ) implies

Pλ(θ
∗)− Pλ(θ̂) ≥ −▽Pλ(θ̂)

T ∆̂. (S9)

Combining (S8) with (S9), we obtain

α∥∆̂∥22 − τ(∥∆̂∥G,2,1) ≤ (−▽Pλ(θ̂)− ▽Ln(θ
∗))T ∆̂

≤ Pλ(θ
∗)− Pλ(θ̂) + ∥▽Ln(θ

∗)∥Ḡ,2,∞∥∆̂∥G,2,1.

by Lemma S2.4. Since τ(∥∆̂∥G,2,1) = τ1
log J +m

n
∥∆̂∥2G,2,1 + τ2

√
log J +m

n
∥∆̂∥G,2,1,

α∥∆̂∥22 ≤ Pλ(θ
∗)−Pλ(θ̂)+∥∆̂∥G,2,1

(
τ1
log J +m

n
∥∆̂∥G,2,1 + τ2

√
log J +m

n
+ ∥▽Ln(θ

∗)∥Ḡ,2,∞

)
,

By the choice of λ,

τ1
log J +m

n
∥∆̂∥G,2,1 + τ2

√
log J +m

n
+ ∥▽Ln(θ

∗)∥Ḡ,2,∞ ≤ λ

2
.

11



Then by using the triangle inequality

α∥∆̂∥22 ≤ Pλ(θ
∗)− Pλ(θ̂) +

λ

2
∥∆̂∥G,2,1

= λ
∑
j∈S

wj∥θ∗gj∥2 − λ
∑
j∈S

wj∥θ̂gj∥2 − λ
∑
j∈Sc

wj∥θ̂gj∥2 +
λ

2

J∑
j=1

wj∥∆̂gj∥2

≤ λ
∑
j∈S

wj∥∆̂gj∥2 − λ
∑
j∈Sc

wj∥θ̂gj∥2 +
λ

2

J∑
j=1

wj∥∆̂gj∥2

where S := {j ∈ (1, . . . , J); θ∗gj ̸= 0} where the last inequality comes from the triangle

inequality. Since for j ∈ Sc, θ̂gj = θ̂gj − θ∗gj ,

α∥∆̂∥22 ≤ λ
∑
j∈S

wj∥∆̂gj∥2 − λ
∑
j∈Sc

wj∥∆̂gj∥2 +
λ

2

J∑
j=1

wj∥∆̂gj∥2

=
3λ

2

∑
j∈S

wj∥∆̂gj∥2 −
λ

2

∑
j∈Sc

wj∥∆̂gj∥2.

In particular, we have ∑
j∈Sc

wj∥∆̂gj∥2 ≤ 3
∑
j∈S

wj∥∆̂gj∥2 (S10)

and

α∥∆̂∥22 ≤
3λ

2

∑
j∈S

wj∥∆̂gj∥2. (S11)

Then,

α∥∆̂∥22 ≤ (max
j∈S

wj)
3λ

2
(
∑
j∈S

∥∆̂gj∥
2
2)

1/2(
∑
j∈S

1)1/2 ≤ (max
j∈S

wj)
3λ

2

√
|S|∥∆̂∥2.

The ℓ1/ℓ2 upper bound follows from the ℓ2-bound and

∥∆̂∥G,2,1 =
∑
j∈S

wj∥∆̂gj∥2 +
∑
j∈Sc

wj∥∆̂gj∥2 ≤ 4(max
j∈S

wj)
∑
j∈S

∥∆̂gj∥2 ≤ 4(max
j∈S

wj)
√

|S|∥∆̂∥2

.

12



S2.4 Proof of Lemma 3.1

Recalling Ln(θ) =
1
n

∑n
i=1

(
−zif(θ

Txi)−A(f(θTxi))
)
, we have

▽Ln(θ
∗) =

1

n

n∑
i=1

(
−zi + µ(f(θ∗Txi))

) 1

1 + eθ∗
T xi

xi,

where we define A(η) = log(1+eη), µ(η) = A′(η) = eη/(1+eη) and f(θTx) = log(nℓ/πnu)+

θTx−log(1+eθ
T x). For 1 ≤ i ≤ n and 1 ≤ j ≤ p, define Vij :=

(
−zi + µ(f(θ∗Txi))

) 1

1 + eθ∗
T xi

xij .

We note ▽Ln(θ
∗)j =

1
n

∑n
i=1 Vij .

Considering the event, with C := 36σ2
x,

E =

{
max
1≤j≤p

1

n

n∑
i=1

x2ij ≤ C

}
.

we have,

P
(
∥▽Ln(θ

∗)∥Ḡ,2,∞ ≥ δ
)
≤ P(Ec) + P

(
∥▽Ln(θ

∗)∥Ḡ,2,∞ ≥ δ|E
)
P(E).

First we show that P(Ec) is small. Since each xij is a sub-Gaussian variable with sub-

Gaussian parameter σx, defining zij = x2ij − E[x2ij ],

P(Ec) ≤ pP

(
1

n

n∑
i=1

x2ij ≥ 36σ2
x

)
≤ pP

(
1

n

n∑
i=1

zij ≥ 32σ2
x

)
where we use the fact that E[x2ij ] ≤ 4σ2

x. We note that (zij)
n
i=1 are i.i.d. samples from

mean-zero distribution with sub-Exponential tail with parameter ν = b = 16σ2
x by applying

Lemma S2.6 with s = 1. By Bernstein-type tail bound of the sub-exponential random

variable,

P(Ec) ≤ pP

(
1

n

n∑
i=1

zij ≥ 32σ2
x

)
≤ exp(−n

2
(2− 2 log p

n
)) ≤ exp(−n/2), (S12)

by the sample size condition n ≳ log J+m, assuming sufficiently large n. Now we show that

1
n

∑n
i=1 Vij is a sub-Gaussian variable on E. In particular, we show that E[exp(t 1n

∑n
i=1 Vij)|E] ≤

exp(t2v2/2) for some v > 0.

13



Defining ti :=
t

n(1 + eθ∗
T xi)

, by definition of Vij , we have

E

[
exp(

t

n
Vij)|xi

]
= E

[
exp (−tizixij) · exp

(
tiµ(f(x

T
i θ

∗))xij
)
|xi
]

= E [exp (−tizixij) |xi] · exp
(
tiµ(f(x

T
i θ

∗))xij
)
. (S13)

By the property of exponential family, we obtain

E [exp (−tizixij) |xi] =
∫

exp (−tizxij) · exp(zf(xTi θ∗)−A(f(xTi θ
∗))dz

= exp
{
A(f(xTi θ

∗)− tixij)−A(f(xTi θ
∗))
}
. (S14)

Therefore combining (S13) and (S14), we obtain

E

[
exp(

t

n
Vij)|xi

]
= exp

{
A(f(xTi θ

∗)− tixij)−A(f(xTi θ
∗)) + tiµ(f(x

T
i θ

∗))xij
}

≤ exp

{
1

8n2
(txij)

2

}
where the second inequality comes from the second order Taylor expansion, µ(·) = A′(·),

supuA
′′(u) ≤ 1/4, and ti ≤ t/n. Therefore

n∏
i=1

E

[
exp(

t

n
Vij)|xi

]
≤ exp

(
t2

8n2

n∑
i=1

x2ij

)
,

and conditioned on E, we have the bound

exp

(
t2

8n2

n∑
i=1

x2ij

)
≤ exp

(
t2C

8n

)
.

Therefore, 1
n

∑n
i=1 Vij ∼ subG(C/4n), i.e. ▽Ln(θ

∗)j ∼ subG(C/4n) for all j.

Now we discuss the distribution of uT▽Ln(θ
∗)gj and uT▽Ln(θ

∗)gj ◦▽Ln(θ
∗)gj on E, for

any u ∈ R|gj |, to apply Lemma S2.9. By Assumption 1, (▽Ln(θ
∗)j)j∈gj are independent.

With independence, it is easy to see for any j and any fixed u ∈ R|gj |, uT▽Ln(θ
∗)gj ∼

subG(∥u∥22(C/4n)) and E[▽Ln(θ
∗)] = 0. Then Lemma S2.6 gives

uT (▽Ln(θ
∗)gj ◦ ▽Ln(θ

∗)gj ) ∼ subExp(∥u∥2(4C/n), ∥u∥∞(4C/n))

14



for any j and fixed u ∈ R|gj |. Therefore the condition of Lemma S2.9 is satisfied with

σ2 = C/4n and ν = 16σ2 = 4C/n.

We let δ2 = 16C(log J +m)/(minj w
2
jn) and note that

Cδ =
(minj w

2
j )δ

2

m
− C

n
=

16C(log J +m)

mn
− C

n
=

4C

n

(
16 log J

4m
+

15

4

)
By Lemma S2.9,

P
(
∥▽Ln(θ

∗)∥Ḡ,2,∞ ≥ δ|E
)
≤ exp

(
−m

2
min

(
C2
δ

(4C/n)2
,

Cδ

4C/n

)
+ log J

)
,

and because log J/m ≥ 0, Cδ ≥ 4C/n, and min
(

C2
δ

(4C/n)2
, Cδ
4C/n

)
= Cδ

4C/n if Cδ ≥ 4C/n, we

have,

P
(
∥▽Ln(θ

∗)∥Ḡ,2,∞ ≥ δ|E
)
≤ exp

(
−m

2

(
4 log J

m
+

15

4

)
+ log J

)
≤ exp (− log J −m) . (S15)

Putting (S12) and (S15) together, and noting δ = (24σx/minj wj)
√

log J+m
n , we obtain

P

(
∥▽Ln(θ

∗)∥Ḡ,2,∞ ≥ (24σx/min
j

wj)

√
log J +m

n

)
≤ exp(−0.5n) + exp(− log J −m) ≤ ϵ

where the last inequality follows from the sample size condition n ≳ (log J +m)∨ (1/ϵ)1/β.

S2.5 Proof of Theorem 3.2

S2.5.1 Proof Outline

Defining f(θTx) = log(nl/πnu) + θTx− log(1 + eθ
T x), we recall that

Ln(θ) =
1

n

n∑
i=1

(
−zif(θ

Txi) + log(1 + ef(θ
T xi))

)
.

15



Taking a derivative with respect to θ of Ln(θ), we obtain

▽Ln(θ) =
1

n

n∑
i=1

(
−zi + µ(f(θTxi))

)
f ′(θTxi)xi

and

(▽Ln(θ)− ▽Ln(θ
∗))T ∆

=

(
1

n

n∑
i=1

(
µ(f(θTxi))− zi

)
f ′(θTxi)−

(
µ(f(θ∗Txi))− zi

)
f ′(θ∗Txi)

)
xTi ∆ (S16)

where ∆ is defined as ∆ := θ − θ∗, and A(·), µ(·) defined as A(η) := log(1 + eη), µ(η) :=

A′(η) = eη/(1 + eη). Also we let ei := µ(f(θ∗Txi))− zi.

To prove that (S16) is positive with high probability, we decompose (S16) into two terms,

whose first term I has a positive expectation and the second term II has an expectation

zero. To do so, we add and subtract 1
n

∑n
i=1 eif

′(θTxi)xi to (S16) to obtain

(S16) =
1

n

n∑
i=1

(
µ(f(θTxi))− µ(f(θ∗Txi)

)
)f ′(θTxi)x

T
i ∆+ ei(f

′(θTxi)− f ′(θ∗Txi))x
T
i ∆.

Applying a Taylor expansion around f(θ∗Txi), we obtain

(▽Ln(θ)− ▽Ln(θ
∗))T ∆

=
1

n

n∑
i=1

A′′(f(θ∗Txi) + vi(f(θ
Txi)− f(θ∗Txi)))(f(θ

Txi)− f(θ∗Txi))f
′(θTxi)x

T
i ∆︸ ︷︷ ︸

I

(S17)

+
1

n

n∑
i=1

ei(f
′(θTxi)− f ′(θ∗Txi))x

T
i ∆︸ ︷︷ ︸

II

for vi ∈ [0, 1] (S18)

where A′′(η) = eη/(1 + eη)2. We will show that the expectation of I is positive. We

immediately see E[ei(f
′(θTxi)− f ′(θ∗Txi))x

T
i ∆] = 0 because E[ei|xi] = 0.
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We aim to show each inequality

I ≥ κ0∥∆∥22 − κ1∥∆∥G,2,1∥∆∥2

√
log J +m

n
(S19)

|II| ≤ κ2∥∆∥G,2,1

√
log J +m

n
(S20)

holds for all ∆ ∈ {∆; ∥∆∥2 ≤ r} with probability at least 1− ϵ/2 for some κ0, κ1, κ2 > 0.

Then

I + II ≥ κ0∥∆∥22 − κ1∥∆∥G,2,1∥∆∥2

√
log J +m

n
− κ2∥∆∥G,2,1

√
log J +m

n

holds for all ∆ ∈ {∆; ∥∆∥2 ≤ r} with probability at least 1 − ϵ. Finally, by the inequality

a2 + b2 ≥ 2ab, we obtain,

I + II ≥ (κ0/2)∥∆∥22 − (2κ21/κ0)

(
log J +m

n

)
∥∆∥2G,2,1 − κ2

√
log J +m

n
∥∆∥G,2,1

for all ∆ ∈ {∆; ∥∆∥2 ≤ r} with probability at least 1− ϵ.

S2.5.2 Obtaining a lower bound of term I

We use a similar argument in Negahban et al. (2012) to obtain a lower bound of the first

term. The main difference is that we get the dependence on θ for a curvature term, which

is not the case for a canonical link f(θTx) = θTx. Since f ′(u) =
1

1 + eu
, the first term I

becomes

I =
1

n

n∑
i=1

A′′(f(θ∗Txi) + vi(f(θ
Txi)− f(θ∗Txi)))

(xT∆)2

(1 + ex
T
i θ∗+v′ix

T
i ∆)(1 + ex

T
i θ)

.

for some v′i ∈ [0, 1] by Taylor expansion. We note

I ≥ 1

n

n∑
i=1

A′′(f(θ∗Txi) + vi(f(θ
Txi)− f(θ∗Txi)))

(1 + ex
T
i θ∗+v′ix

T
i ∆)(1 + ex

T
i θ)

(xTi ∆)21{|∆Txi| ≤ τ∥∆∥2}
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for any τ ≥ 0, as A′′(u) = eu

(1+eu)2
≥ 0, ∀u. A suitable τ will be chosen shortly. Since on

the event

|∆Txi| ≤ τ∥∆∥2, (S21)

we have θTxi ≤ |θ∗Txi|+ |∆Txi| ≤ Kr
1 + τr and

|f(θ∗Txi) + vi(f(θ
∗Txi)− f(θTxi))| ≤ |f(θ∗Txi)|+ |f(θ∗Txi)− f(θTxi)|

≤
∣∣∣∣log nl

πnu

∣∣∣∣+ |θ∗Txi|+ |∆Txi|,

by Assumption 3 and the fact that xT θ − log(1 + ex
T θ) is 1-Lipschitz in xT θ, I can be

further lower-bounded by

I ≥ L0(τ)

n

n∑
i=1

(xTi ∆)21{|∆Txi| ≤ τ∥∆∥2},

where L0(τ) is defined as L0(τ) := inf
|u|≤K2+Kr

1+τr

A′′(u)

(1 + eK
r
1+τr)2

. Finally, we truncate each

term (xTi ∆)21{|∆Txi| ≤ τ∥∆∥2} so that each term is Lipschitz in (xTi ∆). For a truncation

level τ > 0, we define the following function:

φτ (u) =


u2 if |u| ≤ τ

2

(τ − u)2 if τ
2 ≤ |u| ≤ τ

0 otherwise

and note that I ≥ 1
n

∑n
i=1 L0(τ)φτ∥∆∥2(∆

Txi), since if the event (S21) holds, (∆Txi)
2 ≥

φτ∥∆∥2(∆
Txi), and both left and right-hand sides are 0 if the event does not hold.

Defining Iℓ as

Iℓ :=
L0(τ)

n

n∑
i=1

φτ∥∆∥2(∆
Txi), (S22)

we note that it is sufficient to show the inequality

Iℓ ≥ κ0∥∆∥22 − κ1∥∆∥G,2,1∥∆∥2

√
log J +m

n
(S23)
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holds with high probability for all ∆ ∈ {∆; ∥∆∥2 ≤ r} to prove (S19). To do so, first we

will show the inequality (S23) is true for ∆ ∈ S(δ, t), where we define

S(δ, t) := {∆ ∈ Rp; ∥∆∥2 = δ, ∥∆∥G,2,1/∥∆∥2 ≤ t}. (S24)

If ∆ = 0, the inequality (S23) is trivially true. Otherwise, we show that

L0(τ)

nδ2

n∑
i=1

φτ∥∆∥2(∆
Txi) ≥ κ0 − κ1t

√
log J +m

n
, (S25)

is true for all ∆ ∈ S(δ, t) with high probability. Then we will use a homogeneity property

of φ and peeling argument to obtain a uniform result over (δ, t).

S2.5.3 Bounding Expectation of Term I

We note that Iℓ is lower bounded by,

Iℓ = E[Iℓ] + (Iℓ − E[Iℓ]) ≥ E[Iℓ]− sup
∆∈S(δ,t)

|Iℓ − E[Iℓ]|.

In this sub-section, we obtain the lower bound of E[Iℓ], which is strictly positive with a

suitably chosen τ . In the next sub-section, we will control the deviation term sup∆∈S(δ,t) |Iℓ−

E[Iℓ]|. First we have E[Iℓ] = L0(τ)E
[
φτ∥∆∥2(∆

Tx)
]
where x

d
= xi, and

E
[
φτ∥∆∥2(∆

Tx)
]
= E[(∆Tx)2]−E[(∆Tx)2 − φτ∥∆∥2(∆

Tx)].

We lower and upper bound each two terms on the right-hand side by

E[(∆Tx)2] ≥ K0∥∆∥22

and

E[(∆Tx)2 − φτ∥∆∥2(∆
Tx)] ≤ E

[
(∆Tx)21

{
|∆Tx| ≥

τ∥∆∥2
2

}]
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Applying the Cauchy-Schwarz inequality, we obtain

E

[
(∆Tx)21

{
|∆Tx| ≥

τ∥∆∥2
2

}]
≤
√

E(∆Tx)4

√
P
(
|∆Tx| ≥

τ∥∆∥2
2

)
≤ 4

√
2σ2

x exp

(
− τ2

16σ2
x

)
∥∆∥22

by using expectation and tail-bound of sub-Gaussians, since ∆Tx ∼ subG(∥∆∥22σ2
x). As

4
√
2σ2

x

(
exp

(
− τ2

16σ2
x

))
≤ K0

4
for τ2 ≥ 16σ2

x log
16

√
2σ2

x

K0
, we take τ = K3 := 4σx

(
log 16

√
2σ2

x
K0

)1/2
to have

E[Iℓ] = L0(K3)E
[
φK3∥∆∥2(∆

Tx)
]

≥ L0(K3)∥∆∥22
(
K0 − 4

√
2σ2

x exp

(
− τ2

16σ2
x

))
≥ ∥∆∥22

3L0(K3)K0

4
. (S26)

For simplicity, we write L0 := L0(K3) for future references.

S2.5.4 Controlling the difference of Term I from its expectation

We now bound the term sup
∆∈S(δ,t)

|Iℓ−E[Iℓ]| using the concentration property of an empirical

process. We have sup
∆∈S(δ,t)

|Iℓ − E[Iℓ]| = δ2L0U1(t), where we define U1(t) as

U1(t) := sup
∆∈S(δ,t)

∣∣∣∣∣ 1

n∥∆∥22

n∑
i=1

φK3∥∆∥2(∆
Txi)− E

[
φK3∥∆∥2(∆

Tx)
]∣∣∣∣∣ ,

since ∥∆∥2 = δ for all ∆ ∈ S(δ, t). Since we have ∥φK3∥∆∥2∥∞ ≤
K2

3∥∆∥22
4

by definition of

φτ (·), we apply bounded difference inequality with ci = K2
3/2n (Theorem S2.3) to obtain

P(U1(t) ≥ EU1(t) + u1) ≤ 2 exp

(
−8nu21

K4
3

)
.

Setting u1 = K0/4,

P(U1(t) ≥ E[U1(t)] +
K0

4
) ≤ 2 exp(−c1n) (S27)
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where c1 = K2
0/2K

4
3 is a constant depending on K0 and K3. Now we calculate EU1(t). By

symmetrization and contraction inequalities (Theorems S2.1, S2.2), we have

E[U1(t)] ≤ 2E

[
sup

∆∈S(δ,t)

∣∣∣∣∣ 1

n∥∆∥22

n∑
i=1

ϵiφK3∥∆∥2(∆
Txi)

∣∣∣∣∣
]

≤ 8K3δ

δ2
E

[
sup

∆∈S(δ,t)

∣∣∣∣∣ 1

n

n∑
i=1

ϵi∆
Txi

∣∣∣∣∣
]

≤ 8K3δ
−1

(
sup

∆∈S(δ,t)
∥∆∥G,2,1

)
E

[
∥ 1
n

n∑
i=1

ϵixi∥Ḡ,2,∞

]

≤ 8K3K4t

√
log J +m

n
(S28)

where (ϵi)
n
i=1 are i.i.d Rademacher variables andK4 := 20σx(minj wj)

−1. Note that φK3∥∆∥2

is a Lipschitz function with the Lipschitz constant = 2K3∥∆∥2 = 2K3δ for ∆ ∈ S(δ, t)

which allows us to apply the Ledoux-Talagrand contraction theorem. The second last

inequality is from Lemma S2.4 and the last inequality follows from E
[
∥ 1
n

∑n
i=1 ϵixi∥Ḡ,2,∞

]
≤

K4

√
log J+m

n , which will be proven shortly in Lemma S2.10.

Therefore, combining (S26), (S27) and (S28), we have

inf
∆∈S(δ,t)

L0

n∥∆∥22

n∑
i=1

φK3∥∆∥2(∆
Txi) ≥ κ0 − κ′1t

√
log J +m

n
(S29)

with probability at least 1−exp(−c1n) where κ0 = K0L0/2 and κ′1 = 8L0K3K4. It remains

to prove Lemma S2.10.

Lemma S2.10.

E

[
∥ 1
n

n∑
i=1

ϵixi∥Ḡ,2,∞

]
≤ c

√
log J +m

n
(S30)

for n ≥ log p, where c := 20σx(minj wj)
−1 is a constant depending on σx, (wj)

J
1 .

Proof. Conditioned on xn1 ,
1
n

∑n
i=1 ϵixij is a sub-Gaussian with a parameter 1

n2

∑
i x

2
ij , since

ϵi ∼ subG(1). Then 1
n

∑n
i=1 ϵixij ∼ subG(C(x)/n), where we define C(x) = max1≤j≤p

1
n

∑
i x

2
ij
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conditioned on xn1 . Defining u := [u1, . . . , up]
T ∈ Rp as uj = 1

n

∑n
i=1 ϵixij , we have in-

dependence of (uj)j∈gj by Assumption 1. Following similar arguments as in the proof

of Lemma 3.1, we obtain for any j and v ∈ R|gj |, vTugj ∼ subG((C(x)/n)∥v∥22) and

vT (ugj ◦ ugj ) ∼ subExp(ν∥v∥2, ν∥v∥∞) with ν = 16C(x)/n. Then Lemma S2.8 gives,

E

[
∥ 1
n

n∑
i=1

ϵiui∥Ḡ,2,∞|xn1

]
≤ 4(min

j
wj)

−1
√

C(x)

√
log J +m

n
.

Therefore,

E

[
∥ 1
n

n∑
i=1

ϵixi∥Ḡ,2,∞

]
≤ 4(min

j
wj)

−1

√
log J +m

n
E[
√

C(x)]

Now we upper-bound E[
√

C(x)]. By Holder’s inequality,

E

√√√√max
1≤j≤p

1

n

n∑
i=1

x2ij

 ≤ E

[
max
1≤j≤p

1

n

n∑
i=1

x2ij

]1/2

Now we define zij := x2ij −E[x2ij ] for each 1 ≤ i ≤ n and 1 ≤ j ≤ p and zj = [z1j , . . . , znj ]
T .

Using Lemma S2.5, we have,

E

[
max
1≤j≤p

1

n

n∑
i=1

x2ij

]
≤ E

[
max
1≤j≤p

1

n

n∑
i=1

zij

]
+ 4σ2

x.

Since 1T zj ∼ subExp(16σ2
x

√
n, 16σ2

x) by Lemma S2.6, we apply Lemma S2.7 with ν∗ =

16σ2
x

√
n, c = 1/

√
n (taking mj = 1, ∀j) to obtain

n−1E[ max
1≤j≤p

1
T zj ] ≤ n−116σ2

x(log p+ n/2) = 16σ2
x

log p

n
+ 8σ2

x,

Hence,

E[
√

C(x)] ≤ 4σx
√

log p/n+ 1/2 ≤ 5σx

by the condition of log p/n ≤ 1, and thus,

E

[
∥ 1
n

n∑
i=1

ϵixi∥Ḡ,2,∞

]
≤ 20σx(min

j
wj)

−1

√
log J +m

n
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S2.5.5 Extending the inequality (S29) for all ∆ ∈ B2(r)

In this section, we show

L0

n∥∆∥22

n∑
i=1

φK3∥∆∥2(∆
Txi) ≥ κ0 − κ1

(
∥∆∥G,2,1
∥∆∥2

)√
log J +m

n
(S31)

holds for all ∥∆∥2 = δ with probability at least 1 − ϵ/2 where κ1 = 2κ′1. Note if (S31)

holds, for any ∆′ such that ∥∆′∥2 = δ′ ̸= δ, we can apply (S31) to ∆ = ∆′(δ/δ′) to obtain

L0

n∥∆′∥22

n∑
i=1

φK3∥∆′∥2(∆
′Txi) ≥ κ0 − κ1

(
∥∆′∥G,2,1
∥∆′∥2

)√
log J +m

n

by using homogeneity property of φ,i.e. φτ (x) = c−2φcτ (cx) for any c > 0. Thus proving

that (S31) holds for all ∥∆∥2 = δ with probability at least 1 − ϵ/2 is enough to prove

that the same inequality holds for all ∥∆∥2 ≤ r with the same high probability. We let

S2(δ) := {∆ ∈ Rp; ∥∆∥2 = δ} and Kw > 0 be a constant such that minj wj ≥ Kw, where

the existence of Kw is guaranteed by Assumption 4.

P (∃∆ ∈ S2(δ) such that inequality (S31) fails )

≤
NL∑
l=1

P
(
∃∆ ∈ S2(δ);Kw2

l−1 ≤
∥∆∥G,2,1
∥∆∥2

≤ Kw2
l s.t inequality (S31) fails

)
(S32)

where 2NL ≤ (maxj wj/Kw)
√
J , i.e. NL :=

⌈
log2

(
maxj wj

√
J/Kw

)⌉
, by the inequality

Kw∥∆∥2 ≤ (minj wj)∥∆∥2 ≤ ∥∆∥G,2,1 ≤ (maxj wj)
√
J∥∆∥2.

NL∑
l=1

P
(
∃∆ ∈ S2(δ);Kw2

l−1 ≤
∥∆∥G,2,1
∥∆∥2

≤ Kw2
l such that inequality (S31) fails

)

≤
NL∑
l=1

P

 inf
∆∈S2(δ);

∥∆∥G,2,1
∥∆∥2

≤(Kw2l)

L0

n∥∆∥22

n∑
i=1

φK3∥∆∥2(∆
Txi) < κ0 − κ1(Kw2

l−1)

√
log J +m

n


=

NL∑
l=1

P

(
inf

∆∈S(δ,(Kw2l))

L0

n∥∆∥22

n∑
i=1

φK3∥∆∥2(∆
Txi) < κ0 − κ′1(Kw2

l)

√
log J +m

n

)
≤ exp(−c1n+ logNL)
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by κ1 = 2κ′1 and the inequality (S29). Finally,

exp(−c1n+ logNL) ≤ exp
(
−c1n+ log log2(J

3/2/Kw)
)
≲ exp (−c1n+ log log J) ≤ ϵ/2

by the sample size condition n ≳ (log J +m) ∨ (1/ϵ)1/β and maxj wj/J ≤ 1.

S2.5.6 Controlling the difference of Term II from its expectation

For the second term, we recall the definition :

II =
1

n

n∑
i=1

ei(f
′(θTxi)− f ′(θ∗Txi))x

T
i ∆,

and note that E[II] = 0 by E[ei|xi] = 0. Similar to U1(t), we define a following quantity,

U2(t) := sup
(1/2)t≤∥∆∥G,2,1≤t

∣∣∣∣∣ 1

n∥∆∥G,2,1

n∑
i=1

ei(f
′(θTxi)− f ′(θ∗Txi))x

T
i ∆.

∣∣∣∣∣
, and bound E(U2(t)) using symmetrization and contraction theorem. First we define

gi(∆
Txi) := ei

(
f ′(θ∗Txi +∆Txi)− f ′(θ∗Txi)

)
∆Txi.

and prove that gi/Lg is a contraction map where Lg := 3 + (Kr
1/4).

Lemma S2.11. gi(s)/Lg is a contraction map with gi(0) = 0.

Proof. We consider the first derivative of gi. For ease of notation, we let u∗i := θ∗Txi. We

note f ′(u) = 1/(1 + eu),f ′(u) = −eu/(1 + eu)2. Thus supu |f ′(u)| ≤ 1, supu |f ′′(u)| ≤ 1/4.

Also, elementary calculation shows that supu |uf ′(u)|, supu |uf ′′(u)| ≤ 1/2. Since,

gi(u) = ei(f
′(u∗i + u)− f ′(u∗i ))u

we have,

|g′i(u)| = |ei(f ′′(u∗i + u)u+ f ′(u∗i + u)− f ′(u∗i ))|

≤ |f ′′(u∗i + u)(u∗i + u)− f ′′(u∗i + u)u∗i + f ′(u∗i + u)− f ′(u∗i ))|

≤ 3 + (1/4)|u∗i |
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where |ei| ≤ 1 was used in the first inequality. By Assumption 2, u∗i := |θ∗Txi| ≤ Kr
1 , thus

we can take Lg := 3 + (1/4)Kr
1 .

Back to E(U2(t)), by symmetrization and contraction theorem (Theorems S2.1,S2.2),

E(U2(t)) ≤ 4LgE

[
sup

(1/2)t≤∥∆∥G,2,1≤t

∣∣∣∣∣ 1

n∥∆∥G,2,1

n∑
i=1

ϵi∆
Txi

∣∣∣∣∣
]

≤ 4LgE

[
sup

(1/2)t≤∥∆∥G,2,1≤t

1

(1/2)t
∥∆∥G,2,1∥

1

n

n∑
i=1

ϵixi∥Ḡ,2,∞

]

≤ 8K4Lg

√
log J +m

n
. (S33)

where the second inequality uses the fact that (1/2)t ≤ ∥∆∥G,2,1 ≤ t and Lemma S2.4, and

the last inequality comes from Lemma S2.10.

Now, we apply bounded difference inequality to show that U2(t) is close to E(U2(t))

with probability at least 1− exp(−c′n). We have,

sup
i,θ

1

n∥∆∥G,2,1
|gi(∆Txi)| = sup

i,θ

1

n∥∆∥G,2,1

∣∣∣ei (f ′(θ∗Txi +∆Txi)− f ′(θ∗Txi)
)
∆Txi

∣∣∣
≤ sup

i,θ

2

n∥∆∥G,2,1
|∆Txi| ≤

2

n
max
i,j

w−1
j ∥(xi)gj∥2

by Lemma S2.4. We note for any w ∈ Rp such that wgcj
= 0 and ∥w∥2 = 1, u ∈ Rp, defined

as u := θ∗+rw, satisfies ∥u−θ∗∥2 ≤ r and supp(u−θ∗) ⊆ gj . By Assumption 2, |xTi u| ≤ Kr
1

a.s. for all i. Then |xTi w| = |xTi (u− θ∗)|/r ≤ 2Kr
1/r a.s., which implies ∥(xi)gj∥2 ≤ 2Kr

1/r

since ∥(xi)gj∥2 = sup
v∈R|gj |;∥v∥2=1

|(xi)Tgjv| = sup
w∈Rp;∥w∥2=1,wgc

j
=0

|xTi w|. As the bound holds for

any i, j, we have maxi,j ∥(xi)gj∥2 ≤ 2Kr
1/r.

Hence by applying Theorem S2.3 with ci = (8Kr
1/Kwr)n

−1, we obtain

P(U2(t) ≥ EU2(t) + u2) ≤ exp(−2u22/

n∑
i=1

c2i )

25



Taking u2 = K4Lg

√
log J +m

n
, we get

P

(
U2(t) ≥ 9K4Lg

√
log J +m

n

)
≤ exp(−c2(log J +m))

where c2 := (KwrK4Lg)
2/32(Kr

1)
2. In other words, we have shown, for any t > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

ei(f
′(θ∗Txi +∆Txi)− f ′(θ∗Txi))x

T
i ∆

∣∣∣∣∣ ≤ κ′2∥∆∥G,2,1

√
log J +m

n
, ∀(1/2)t ≤ ∥∆∥G,2,1 ≤ t

)
≥ 1− exp(−c2(log J +m)) (S34)

where we define κ′2 := 9K4Lg.

S2.5.7 Extending the inequality (S34) for all ∆ ∈ B2(r)

In this section, we obtain a uniform result for term II. More concretely, we consider the

following inequality:∣∣∣∣∣ 1n
n∑

i=1

ei(f
′(θ∗Txi +∆Txi)− f ′(θ∗Txi))x

T
i ∆

∣∣∣∣∣ ≤ κ2∥∆∥G,2,1

√
log J +m

n
(S35)

where κ2 := 10K4Lg. Equivalently, defining

ϕ(∆;xn1 , z
n
1 ) :=

1

n∥∆∥G,2,1

n∑
i=1

ei(f
′(θ∗Txi +∆Txi)− f ′(θ∗Txi))x

T
i ∆

for ∆ ̸= 0, we aim to establish the result,

P

(
|ϕ(∆;xn1 , z

n
1 )| ≤ κ2

√
log J +m

n
, ∀∆ ∈ B2(r)

)
≥ 1− ϵ/2.

We first define

A(r1, r2) := {∆ ∈ Rp; r1 < ∥∆∥G,2,1 ≤ r2}

26



and decompose B2(r) into different regions. We have,

P (∃∆ ∈ B2(r) such that inequality (S35) fails )

≤ P (∃∆ ∈ A(0, Cn) such that inequality (S35) fails ) (S36)

+

NK∑
k=1

P (∃∆ ∈ A(rk−1, rk) such that inequality (S35) fails ) (S37)

where we define

Cn := K4Lg

(
(minj wj)r

Kr
1

)2
√

log J +m

n

rk := Cn2
k.

Here Cn is chosen to ensure the probability (S36) to be small enough, which will be

shown shortly. We take NK such that rNK
= Cn2

NK ≥ rmaxj wj

√
J since ∥∆∥G,2,1 ≤

(maxj wj)
√
J∥∆∥2 ≤ r(maxj wj)

√
J . Then we can let,

NK :=

⌈
log2

(
cmax

j
wj

√
nJ

log J +m

)⌉

for c := (Kr
1)

2/(rK2
wK4Lg)∨1. By the sample size assumption, maxj wj/n ≤ 1 and J ≳ nβ,

thus

NK ≤ log2

(
cmax

j
wj

√
nJ

log J +m

)
≤ 2 log

(
c′n(3+β)/2

)
.

for some c′ > 1. Since P (∃∆ ∈ A(rk−1, rk) such that inequality (S35) fails ) ≤ exp(−c2(m+

log J)) for any k by (S34), we have for (S37),

(S37) ≤ exp(−c2(m+ log J) + logNK)

≤ 2 exp
(
−c2(m+ log J) + log log c′n(3+β)/2

)
≤ c3 exp(−c2(m+ log J) + log log n)
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for c3 = 2((3 + β)/2 + log c′) > 1, as log log c′n(3+β)/2 ≤ log log n+ log((3 + β)/2 + log c′).

Now we address (S36):

(S36) = P

(
∃∆ ∈ A(0, Cn); |ϕ(∆;xn1 , z

n
1 )| > κ2

√
log J +m

n

)

For s ∈ (0, Cn], we define a function ϕ̃ : R+ ×Rp → R , whose first argument takes the size

(measured in ∥·∥G,2,1 norm ), second argument takes normalized direction (i.e. ∥d∥G,2,1 = 1)

such that

ϕ̃(s, d;xn1 , z
n
1 ) :=

1

n

n∑
i=1

ei(f
′(θ∗Txi + sxTi d)− f ′(θ∗Txi))x

T
i d = ϕ(sd;xn1 , z

n
1 )

In particular, for any ∆ ∈ A(0, Cn), we have ϕ̃(∥∆∥G,2,1,∆/∥∆∥G,2,1;xn1 , zn1 ) = ϕ(∆;xn1 , z
n
1 ).

Now we calculate how much ϕ changes when the size of the input vector varies while

fixing the direction. In other words, we calculate the rate of change of ϕ̃ with respect to its

first argument. To ease the notation, we suppress the dependence of ϕ, ϕ̃ on (xn1 , z
n
1 ).

| d
ds

ϕ̃(s, d)| =

∣∣∣∣∣ dds
(
1

n

n∑
i=1

eif
′(θ∗Txi + sxTi d)− f ′(θ∗Txi))x

T
i d

)∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣eif ′′(θ∗Txi + sxTi d)
∣∣∣ (xTi d)2

≤ 1

4
∥xi∥2Ḡ,2,∞∥d∥2G,2,1 ≤

(
Kr

1

(minj wj)r

)2

by |ei| ≤ 1 and ∥f ′′∥∞ ≤ (1/4). Then for any normalized direction d ∈ Rp such that

∥d∥G,2,1 = 1, we have,

|ϕ̃(s, d)− ϕ̃(u, d)| ≤
(

Kr
1

(minj wj)r

)2

|s− u|

In particular, for any 0 < s ≤ Cn,

|ϕ̃(s,∆/∥∆∥G,2,1)| ≤ |ϕ̃(Cn,∆/∥∆∥G,2,1)|+
(

Kr
1

(minj wj)r

)2

Cn
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Therefore,

(S36) = P

(
∃∆ ∈ A(0, Cn); |ϕ̃(∥∆∥G,2,1,∆/∥∆∥G,2,1)| > κ2

√
log J +m

n

)

≤ P

(
∃∆ ∈ A(0, Cn); |ϕ̃(Cn,∆/∥∆∥G,2,1)| > κ2

√
log J +m

n
−
(

Kr
1

(minj wj)r

)2

Cn

)

= P

(
∃∆ ∈ A(0, Cn); |ϕ̃(Cn,∆/∥∆∥G,2,1)| > 9K4Lg

√
log J +m

n

)

where the last line uses the fact
(

Kr
1

(minj wj)r

)2
Cn = K4Lg

√
log J+m

n . Since ϕ̃(Cn,∆/∥∆∥G,2,1) =

ϕ(Cn∆/∥∆∥G,2,1) and Cn∆/∥∆∥G,2,1 ∈ {∆′ ∈ Rp; ∥∆′∥G,2,1 = Cn}, we have,

(S36) ≤ P

(
sup

∥∆∥G,2,1=Cn

|ϕ(∆)| > 9K4Lg

√
log J +m

n

)

≤ P

(
sup

(1/2)Cn≤∥∆∥G,2,1≤Cn

|ϕ(∆)| > 9K4Lg

√
log J +m

n

)
≤ exp(−c2(log J +m))

by (S34). Therefore,

(S36) + (S37) ≤ exp(−c2(log J +m)) + c3 exp(−c2(m+ log J) + log log n)

≤ 2c3 exp(−c2(m+ log J) + log log n) ≤ ϵ/2

by the sample size condition n ≳ (log J +m) ∨ (1/ϵ)1/β , noting log log n = o(log J).
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S3 Supplementary simulation results in Section 4

In this section, we display additional classification performance results. We recall the sim-

ulation setting: dimension of features p ∈ (10, 5000), auto-correlation level among features

ρ ∈ (0, 0.2, 0.4, 0.6, 0.8), separation distance d ∈ (1.5, 2.5, 3.5), and the model specifica-

tion scheme (logistic, misspecified). The sample size is nℓ = nu = 500 in all setting and

experiments are repeated 50 times.

S3.1 The logistic model scheme

S3.1.1 F1 scores under the logistic model scheme
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Figure S1: F1 scores of algorithms (i)-(vi) under correct (logistic) model specification
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S3.2 The misspecified model scheme

Heavy-tailed distribution tends to generate more separated samples, leading to better classi-

fication performance. The scaling of Σρ, which sets V ar(xTi θ
∗) the same across ρ, indirectly

changes the separation between the two classes. As a result, we observe improved classifica-

tion performance with higher ρ in the misspecified setting. PUlasso algorithm continues to

out-perform other algorithms in most cases, but performance difference among algorithms

decreases under the model misspecification scheme.

S3.2.1 Mis-classification rates under the misspecified model
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Figure S2: Mis-classification rates of algorithms (i)-(vi) under model misspecification.
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S3.2.2 F1 scores under the misspecified model
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Figure S3: F1 scores of algorithms (i)-(vi) under model misspecification
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