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1 Main Theorem

Let X = [0, 1]p and q(x) : X → (0,+∞) be a continuous function. Given a design D =
{x1, . . . , xn} ⊂ Ω, n ≥ 2, for s > 0, define

Es(D) = max
i,j

q(xi)q(xj)

ds(xi, xj)
, (1)

with

ds(u, v) =

(
p∑
i=1

|ui − vi|s
)1/s

,

where u = (u1, . . . , up) and v = (v1, . . . , vp). Consider the minimum energy design D0 under
ds satisfying

Es(D0) = min
D⊂Ω

card(D)=n

Es(D), (2)

where card(D) denotes the cardinality of the set D.
We now introduce the index of a design. Fix 0 < s <∞. For a design D = {x1, . . . , xn},

define its index, denoted by IN(D), to be the number of pairs (xk, xl), 1 ≤ k < l ≤ n, with
the greatest value of (q(xi)q(xj))/ds(xi, xj) over all i 6= j, i.e.,

IN(D) = card

{
(xk, xl) : 1 ≤ k < l ≤ n,

q(xk)q(xl)

ds(xk, xl)
= min

1≤i<j≤n

q(xi)q(xj)

ds(xi, xj)

}
.
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We are particularly interested in the minimum energy designs with the smallest index, be-
cause such designs are more space-filling than regular minimum energy designs.

Theorem 1. Suppose q is Lipschitz continuous, i.e., |q(x)− q(y)| ≤ L‖x− y‖, for x, y ∈ X
and a constant L > 0, where ‖ · ‖ denotes the Euclidean distance. Let D∗ = {x∗1, . . . , x∗n}
be an n-point minimum energy design under ds with the smallest index and B be the Borel
σ-algebra of X . Define the following probability measures on (X ,B):

Pn(A) =
card{x∗i : 1 ≤ i ≤ n, x∗i ∈ A}

n
, for any A ∈ B. (3)

Then there exists a probability measure P such that Pn converges to P weakly for all fixed
s ∈ (0,+∞) as n→∞. Moreover, P has a density f over X with f(x) ∝ 1/q2p(x).

2 Comparison of Measure

The proof of Theorem 1 relies on some results in measure theory, stated by Theorem 2 and
Theorem 3 below. First we introduce some necessary notation.

Let P be a probability measure on (X ,B), satisfying P (∂X ) = 0. Let Cu(x, l) denotes
the open cube centered at x with side length 2l, i.e.,

Cu(x, l) :=

{
y ∈ Rp : max

1≤i≤p
|yi − xi| ≤ l

}
,

where xi, yi denote the ith entry of x and y respectively. We will use the following Condition
1 for P . Denote the set of interior points of X by X ◦.

Condition 1. Let g : X → (0,+∞) be a continuous function. For all x1, x2 ∈ X ◦,

lim
r↓0

P (Cu(x1,
r

g(x1)
))

P (Cu(x2,
r

g(x2)
))

= 1. (4)

The main aim of this section is to prove Theorem 2.

Theorem 2. Suppose P is a Borel probability measure on X with P (∂X ) = 0 and P satisfies
Condition 1. Then P has a density function f with respect to the Lebesgue measure m on
X , i.e., P (E) =

∫
E
fdm for all Borel set E ⊂ X . Moreover, f ∝ gp, m-almost everywhere

on X .

We will first prove that P is absolutely continuous with respect to m and then find the
density function. To prove the absolute continuity, we find that it is more convenient to
work with the following Condition 2, which is weaker than Condition 1.
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Condition 2. There exist positive constants c1, c2 and c3, such that

lim inf
r↓0

P (B(x1, c1r))

P (B(x2, c2r))
≥ c3, (5)

where B(x,R) = {y ∈ Rp : d2(x, y) < R} is the Euclidean open ball centered at x.

Theorem 3. Suppose P is a Borel probability measure on X with P (∂X ) = 0 and P satisfies
Condition 2. Then P has a density function f , with respect to the Lebesgue measure m on
X .

The proof of Theorem 2 is based on Theorem 3. The proof of Theorem 3 is accomplished
in two steps: the first step, formalized as Lemma 2, is to compare P with m around a
point x ∈ X ◦; the second step, given in Lemma 3, is to compare P with m on an arbitrary
rectangular region in X .

Because X ⊂ Rp, P can also be regarded as a probability measure on Rp. For notational
simplicity, for any Borel set E ⊂ Rd, P (E ∩ X ) will still be denoted as P (E). For fixed
r > 0, define

φr(x) := P (B(x, r)).

We will need some measurability properties of φr later, which is ensured by Lemma 1.

Lemma 1. For fixed r > 0, and any Borel probability measure P on X , φr(x) is lower
semi-continuous, in the sense that (φr)

−1(α,+∞) is open for all α ∈ R.

Proof. Fix α ∈ R, x ∈ Rd, with φr(x) > α. It suffices to show that there is an open ball
centered at x and contained in (φr)

−1(α,+∞).
First we show

lim
δ↓0

P (B(x, r − δ)) = φr(x), (6)

or equivalently, for all sequences δn ↓ 0,

lim
n→∞

P (B(x, r − δn)) = φr(x).

For such a sequence, denote En = B(x, r−δn) and E = B(x, r). Then En is an increasing
sequence of Borel sets converging to E. Hence limn→0 P (En) = P (E), i.e., limn→∞ P (B(x, r−
δn)) = φr(x), and (6) follows.

Consequently, there exists δ0 > 0, such that P (B(x, r − δ0)) > α. Clearly y ∈ B(x, δ0)
implies B(y, r) ⊃ B(x, r − δ0), and thus φr(y) > α. Therefore, B(x, δ0) ⊂ (φr)

−1(α,+∞).
The desired result follows.

Lemma 2 gives a comparison between the magnitude of P and m around an interior point
of X in a limiting sense.
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Lemma 2. Under the conditions of Theorem 3, for all x ∈ X ◦, we have

lim sup
r↓0

φr(x)

rp
≤M < +∞,

where

M =
4

c3

(8c1

c2

)p
is a constant.

Proof. We will prove the result by showing the contrary will lead to a contradiction. Suppose
that there exists x0 ∈ X ◦, such that

lim sup
r↓0

φr(x0)

rp
> M.

Then there exists a sequence rn ↓ 0 with

φc2rn(x0)

(c2rn)p
> M, (7)

for all n. Consider function

fn(x) =
φc1rn(x)

φc2rn(x0)
, (8)

which is Borel measurable on Rp according to Lemma 1. Let

Fn(x) = inf
k≥n

fk(x),

then Fn is a sequence of Borel measurable functions converging to

F (x) = lim inf
n→+∞

fn(x).

Hence by Egorov’s Theorem (see Stein and Shakarchi, 2009, p. 33), there exists a Borel
set E ⊂ X ◦, with m(E) > m(X ◦) − 2−(p+1) = 1 − 2−(p+1) and on which Fn converges to
F uniformly. Noticed by (5), we have F (x) ≥ c3. Thus we can choose N ∈ N+, such that
rN < 1/(4c1) and for any x ∈ E, fN(x) ≥ FN(x) ≥ c3/2. Besides, there exists a positive
integer l, such that l < 1/(4c1rN) ≤ l + 1.

We then partition X into lp cubes, each of which has the form:

p∏
i=1

[
ki
l
,
ki + 1

l
], ki ∈ Z, 0 ≤ ki < l.
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Denote these cubes by Q1, ..., Qlp , and let T (Qj) to be the cube with the same center as Qj

and half of the side length of Qj, that is,

T (

p∏
i=1

[
ki
l
,
ki + 1

l
]) =

p∏
i=1

[
ki + 1/4

l
,
ki + 3/4

l
].

Clearly T (Qj), j ∈ B are disjoint, each with Lebesgue measure (2l)−p. Thus the set
A = {1 ≤ j ≤ ldp : T (Qj) ⊂ X − E} satisfies

(2l)−pcard(A) ≤ m(X − E) < 2−(p+1),

which implies card(A) < lp/2.
Let B = {1 ≤ j ≤ ld : j /∈ A}, then card(B) > lp/2. For each j ∈ B, T (Qj) intersects E.

Pick xj ∈ E ∩ T (Qj), then fN(xj) ≥ c3/2, which, together with (7) and (8), yields

P (B(xj, c1rN)) = P (B(x0, c2rN))fN(xj) >
1

2
Mc3(c2rN)p. (9)

It can be seen that l < 1/(4c1rN) from the choice of l. Thus

B(xj, c1rN) ⊂ B(xj,
1

4l
).

Noting that the distance between T (Qj) and the complement of Q◦j is exactly 1/(4l), and
xj ∈ T (Qj), we have B(xj, 1/(4l)) ⊂ Q◦j . Hence B(xj, 1/(4l)), j ∈ B, are disjoint, and
consequently B(xj, c1rN), j ∈ B, are disjoint, which, together with (9) implies

P (X ) ≥
∑
j∈B

P (B(xj, c1rN)) >
1

2
Mc3(c2rN)pcard(B)

>
1

2

4

c3

(8c1

c2

)p
c3

( c2

4c1(l + 1)

)p1

2
lp ≥ 1.

This leads to a contradiction because P is a probability measure.

Next we compare P with m on a cube with arbitrary size. The result is given in Lemma
3, which directly leads to the absolute continuity. The proof follows by a similar argument
in that of Lemma 2. Specifically, we will partition the cubes into sufficiently small parts and
approximate them with balls. Under this consideration we may use expressions parallel to
that we have used before.

Lemma 3. Under the conditions of Theorem 3, for all cubes Q =
∏p

i=1[ai, ai + α] ⊂ X ,we

have P (Q) ≤ Km(Q), here K = 2M(2
√
d)p is a constant, M is the constant appeared in

Lemma 2.
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Proof. Fix ε > 0. It suffices to show P (Q) ≤ Km(Q) + ε.
Define auxiliary function φr : X → (0,+∞] as

ψr(x) = sup
0<R≤r

φR(x)

Rp
.

In the light of Lemma 1, ψr is the superior of a family of lower-semi continuous functions.
Hence it is lower-semi continuous as well, and thus is Borel measurable.

It is easy to see that

ψ1/n(x)→ lim sup
r↓0

φr(x)

rp
=: ψ(x),

as n → ∞, for all x ∈ Rp, and in particular for all x ∈ X ◦. Therefore ψ(x) is Borel
measurable. Note that P (X ◦) = P (X ) = 1, because P (∂X ) = 0. We apply Egorov’s
Theorem (see Stein and Shakarchi, 2009, p. 33) for the probability measure P and find that
there exists a Borel set E ⊂ X ◦, with P (E) > P (X ◦)−ε = 1−ε and on which ψ1/n converges
to ψ uniformly.

Choose N ∈ N+, such that N
√
pα ≥ 1 and for any x ∈ E, |ψ1/N−ψ|(x) ≤M . Obviously,

there exists an integer l ≥ 2, such that l − 1 ≤ N
√
pα < l.

We then partition Q into lp cubes, each of which has the form:

p∏
i=1

[ai +
ki
l
α, ai +

ki + 1

l
α], ki ∈ Z, 0 ≤ ki < l.

Denote these cubes by Q1, ..., Qlp .
Let A = {1 ≤ j ≤ lp : Qj ⊂ X − E} and B = {1 ≤ j ≤ lp : j /∈ A}. One has

Q =
⋃
j∈A

Qj ∪
⋃
j∈B

Qj ⊂ (X − E) ∪
⋃
j∈B

Qj.

Hence
P (Q) ≤ P (X − E) +

∑
j∈B

P (Qj) < ε+
∑
j∈B

P (Qj). (10)

Now we estimate P (Qj), j ∈ B. Pick xj ∈ Qj ∩ E. Then

φ1/N(xj) ≤
1

Np
ψ1/N(xj) ≤

1

Np
(ψ(xj) +M) ≤ 2M

Np
. (11)

It can be verified that the diameter of Qj is
√
pα/l < 1/N by the choice of l. Hence

Qj ⊂ B(xj,
√
pα/l) ⊂ B(xj,

1

N
),
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which, together with (11), yields

P (Qj) ≤ P (B(xj,
1

N
)) = φ1/N(xj) ≤

2M

Np
. (12)

Combining (12) with (10), we find

P (Q) ≤ 2Mlp

Np
+ ε ≤ 2Mlp

(√pα
l − 1

)p
+ ε ≤ Kαp + ε = Km(Q) + ε,

which is the desired result.

In the light of Lemma 3 we get the following Corollary 1 immediately.

Corollary 1. P (E) ≤ Km(E) holds for all Borel sets E ⊂ X .

Proof. We have proved that the desired inequality holds for all left-open right-closed cubes

p∏
i=1

(ai, ai + α] ⊂ X .

The remainder of this proof follows from a standard monotone class argument (Kallen-
berg, 2006) and the fact that P (∂X ) = 0.

Now we complete our technical preparations and are ready to prove the main theorems
in this section.

Proof of Theorem 3. By Corollary 1, P is absolutely continuous with respect to the restric-
tion of Lebesgue measure m on the Borel algebra B of X . By Radon-Nikodym’s Theorem
(see Stein and Shakarchi, 2009, p. 290), the density function f exists, and is Borel measurable
on X .

Lemma 4 below is a direct consequence of the translation and dilation invariance of
Lebesgue measure. Define Bs(x, r) := {y ∈ Rp : ds(x, y) < r} for 0 < s < +∞.

Lemma 4. Let m be the Lebesgue measure on Rp. Set vc = m(Cu(0, 1)), v = m(B(0, 1))
and vs = m(Bs(0, 1)). Then m(Cu(x, r)) = vcr

p,m(B(x, r)) = vrp,m(Bs(x, r)) = vsr
p.

We now present the proof of Theorem 2.

Proof of Theorem 2. First notice, obviously we have

Cu(x,R) ⊂ B(x,
√
pR) ⊂ Cu(x,

√
pR).

Next, because X is compact, g attains its maximum and minimum on X , denoted by C and
c respectively.
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Thus Cu(x, r
g(x)

) ⊂ B(x, r
g(x)/

√
p
) ⊂ B(x, r

c/
√
p
). Similarly, Cu(x, r

g(x)
) ⊃ B(x, r

C
).

Invoking (4), we have

1 = lim
r↓0

P (Cu(x1,
r

g(x1)
))

P (Cu(x2,
r

g(x2)
))
≤ lim inf

r↓0

P (B(x1,
r

c/
√
p
))

P (B(x2,
r
C

))
,

which is Condition 2 with c1 = (c/
√
p)−1, c2 = C−1, c3 = 1. Thus the existence of the density

function f is ensured by Theorem 3. We extend f to Rp with f = 0 outside X . Then
f ∈ L1(Rp).

Let

Lf =

{
x ∈ X : lim

r↓0

1

m(B(x, r))

∫
B(x,r)

|f − f(x)|dm = 0

}
be the Lebesgue set of f . Then m(Rp − Lf ) = 0. See Stein and Shakarchi (2009), p. 106.

Hence for all x ∈ Lf , using the fact that B(x, r) ⊃ Cu(x, r/
√
p),

0 = lim
r↓0

1

m(B(x, r))

∫
B(x,r)

|f − f(x)|dm

≥ lim sup
r↓0

vcp
−p/2/v

m(Cu(x, r/
√
d))

∫
Cu(x,r/

√
d))

|f − f(x)|dm

= lim sup
r↓0

vcp
−p/2/v

m(Cu(x, r))

∫
Cu(x,r)

|f − f(x)|dm ≥ 0,

which implies

lim
r↓0

1

m(Cu(x, r))

∫
Cu(x,r)

|f − f(x)|dm = 0.

As a consequence, for all x1, x2 ∈ Lf ∩ X ◦, we have

lim
r↓0

1

vc(
r

g(xi)
)p

∫
Cu(xi,

r
g(xi)

)

fdm = f(xi), i = 1, 2.

and

1 = lim
r↓0

P (Cu(x1,
r

g(x1)
))

P (Cu(x2,
r

g(x2)
))

= lim
r↓0

∫
Cu(x1,

r
g(x1)

)
fdm∫

Cu(x2,
r

g(x2)
)
fdm

.

An elementary calculation shows that (fg−p)(x1) = (fg−p)(x2). Thus fg−p keeps as a
constant on Lf ∩ X ◦. Hence f ∝ gp, m-almost everywhere on X .
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3 Characteristics of Minimum Energy Designs

To prove the asymptotic result given in Theorem 1, it is necessary to exploit some properties
of the minimum energy designs with finite sample size. First we introduce some necessary
notation. Fix s ∈ (0,+∞). Define the energy of two distinct points x, x′ ∈ X by

Es0(x, x′) := q(x)q(x′)/ds(x, x
′).

It is easily seen that Es(D) in (1) is the maximum energy values among all pairs of points
from the design D. For two non-empty sets of disjoint scattered points G,H, define the
energy between G,H by

e∗s(G,H) := sup{(q(x)q(x′))/ds(x, x
′) : x ∈ G, x′ ∈ H}.

Proposition 1 shows how the energy function can be calculated using the subsets of the
design. It can be proved in a straightforward manner.

Proposition 1. Let D1, D2 be two sets of disjoint design points over X , each having at least
two points. Then

Es(D1 ∪D2) = max{Es(D1), Es(D2), e∗s(D1, D2)}.

Besides, if Es(D2) < Es(D1) and e∗s(D1, D2) < Es(D1), then IN(D1 ∪D2) = IN(D1).

Given a design D, we call x ∈ D a critical point, if there exists x′ ∈ D with x′ 6= x such
that Es0(x, x′) = Es(D). Lemma 5 describes an important property of the minimum energy
designs with the smallest index.

Lemma 5. Suppose D is an n-point minimum energy design with the smallest index and
D′ is an n′-point design with n′ > n and E∗s (D

′) = E∗s (D). Then IN(D′) > IN(D) holds.

Proof. Suppose E∗s (D) = E∗s (D
′) and IN(D) ≥ IN(D′). By deleting a critical point from

D′, we obtain an (n′ − 1)-point design D′−1 with E∗s (D
′
−1) ≤ E∗s (D

′). Then we should have
E∗s (D

′
−1) = E∗s (D

′). If this is not true, we can find an n-point design D′′ with E∗s (D
′′) ≤

E∗s (D
′
−1) < E∗s (D

′) = E∗s (D) by deleting any n′ − n− 1 points from D′−1, which contradicts
the minimum energy property of D given by (2).

Now consider two cases of IN(D′). If IN(D′) = 1, there is only one pair of points having
the minimum energy. Thus E∗(D

′
−1) > E∗(D

′), which has been proved to be impossible. For
D′ with IN(D′) ≥ 2, by the definition of critical points, we have IN(D′−1) < IN(D′). By

repeating this scheme, we can obtain an n-point design D̃′ with E∗(D̃
′) = E∗(D

′) = E∗(D)
and IN(D̃′) < IN(D′) ≤ IN(D), which is a contradiction because D has the smallest index
among all minimum energy designs of n points.
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For two nonempty subset A,B ⊂ Rp, define

ds(A,B) = inf
x∈A,x′∈B

ds(x, x
′).

Denote the closure of a set A as A. Obviously ds(A,B) = ds(A,B) for any nonempty sets
A,B ⊂ Rp. Lemma 6 shows a simple but useful result.

Lemma 6. Let A = Cu(x0, l1), B = Rp \ Cu(x0, l2) with l2 > l1 and x0 ∈ Rp. Then

ds(A,B) = l2 − l1.

Proof. Note that a = (x01 + l1, x02, . . . , x0p) ∈ A, b = (x01 + l2, x02, . . . , x0p) ∈ B, where x0i

denotes the ith entry of x0. Thus

ds(A,B) ≤ ds(a, b) = l2 − l1.

On the other hand, for any x = (x1, . . . , xp) ∈ A, x′ = (x′1, . . . , x
′
p) ∈ B, it is easily seen that

there exist i0 ∈ {1, . . . , d} so that |xi0 − x′i0 | ≥ l2 − l1. This implies

ds(x, x
′) =

(
p∑
i=1

|xi − x′i|s
)1/s

≥ |xi0 − x′i0| ≥ l2 − l1,

which yields ds(A,B) ≥ l2 − l1. In summary we obtain ds(A,B) = l2 − l1.

It can be seen that a minimum energy design becomes a maximin distance design if
q(x) ≡ 1 and s = 2. This gives us an intuition that minimum energy designs are not too far
from space-filling designs (Santner et al., 2003). We account for this space-filling property
for two special regions in Theorem 4. The results are useful in a “peeling argument” in the
proof of Theorem 1.

Theorem 4. Let D = {x1, . . . , xn} be a minimum energy design over X under ds with
charge function q(x). Suppose 0 < q ≤ q < +∞ for all x ∈ X and D has the smallest index
among all such designs. Let es = Es(D). Then the following statements are true.

(i) There exists a constant C0 depending only on q, q and p, such that for all n ≥ C0,

q2(nvs)
1/p/4 < es < 2q2n1/p.

(ii) Let Cu(a, l) ⊂ X . For 0 < ε ≤ l/2, let N1 = card(D ∩ Cu(a, l) \ Cu(a, l − ε)). Then
there exists a constant C1 depending only on q, q and p, such that for all n ≥ C1 we
have

N1 ≤ p8pv−1
s q−2p(esl)

p−1 max(εes, q
2),

where vs is defined in Lemma 4.
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(iii) For any Cu(a, l) ⊂ X , let N2 = card(D ∩ Cu(a, l)). Then there exists a constant C2

depending only on q, q and p, such that for all n > C2l
−p we have

N2 ≥ (esl/q
2)p.

Proof. For any design D0 ⊂ X , define the minimum distance

ds0(D0) = min{ds(xi, xj) : xi, xj ∈ D0, xi 6= xj}.

By the definition of q and q, for any xi 6= xj we have

q2/ds(xi, xj) ≤ q(xi)q(xj)/ds(xi, xj) ≤ q2/ds(xi, xj).

This implies

max
i 6=j

q2/ds(xi, xj) ≤ max
i 6=j

q(xi)q(xj)/ds(xi, xj) ≤ max
i 6=j

q2/ds(xi, xj),

which is

q2/ds0(D0) ≤ Es(D0) ≤ q2/ds0(D0). (13)

We will repeatedly use (13) in the derivations below. We will use the notation d1 = ds0(D)
throughout the proof of this theorem.

First we find a lower bound for es. As in Lemma 4 we denote Bs(x, r) = {x′ ∈ Rp :
ds(x, x

′) < r} for x ∈ Rp, r > 0. Let Bi = Bs(xi, d0/2). The definition of d1 implies that Bi’s
are disjoint. Besides, the union of Bi’s is covered by the cube [−d0/2, 1 + d0/2]d. Therefore,
the volume (i.e., Lebesgue measure) of ∪Bi is less than the volume of the cube. Since the
Bi’s have the same volume, the volume of ∪Bi equals the volume of each Bi times n. We
Invoke Lemma 4 to obtain

nvs(d1/2)p ≤ (1 + d1)p. (14)

Thus

1/d1 ≥ (nvs)
1/p/2− 1,

which, together with (13), implies

es ≥ q2
(
(nvs)

1/p/2− 1
)
.

Choose C0 to be large enough so that nvs > 4p. Then we have

es ≥ q2(nvs)
1/p/4. (15)
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Next we prove the upper bound. Since D is a minimum energy design under ds, es = Es(D)
is no greater than Es(D

′) for any n-point design D′. Note that a lattice design over [0, 1]p

with m levels along each axis has mp design points and minimum distance 1/m. Thus n
points can form a (fractional) lattice design with minimum distance 1/dn1/pe, where dae
denotes the minimum integer which is no less than a. Let D′ be such a design. Thus
ds0(D′) ≥ 1/dn1/pe > (n1/p + 1)−1. By (13),

q2(n1/p + 1) > qs/ds0(D′) ≥ Es(D
′) ≥ Es(D) = es,

which, together with (15) implies the desired result in (i).
The proof of (ii) follows from a similar argument as that for (15). From (13) and (15),

we have

d1/l ≤ q2/(esl) < 4q2q2(vsC1)−1/p.

Thus we can choose a sufficiently large C1 so that d1/2 ≤ q2/(2es) < l/2 < l − ε. As
before, we let Bi = Bs(xi, d1/2). By the definition of d1, Bi’s are disjoint. Let Ω =
Cu(a, l) \ Cu(a, l − ε). Lemma 6 implies that ∪xi∈ΩBi is covered by

Cu(x, l + d1/2) \ Cu(x, (l − ε)− d1/2). (16)

Thus we apply an argument similar to (14) to obtain that

N1vs(d1/2)p ≤ (2l + d1)p − (2(l − ε)− d1)p,

which, together with (13), yields

N1vsq
2p ≤ N1vs(d1es)

p ≤ (4les + 2q2)p − (4(l − ε)es − 2q2)p. (17)

Note the we can bound the right hand side of (17) with

(4les + 2q2)p − (4(l − ε)es − 2q2)p ≤ d(4εes + 2q2 + 2q2)(4les + 2q2)p−1

≤ 4d(εes + q2)(4les + 2q2)p−1. (18)

where the first inequality follows by applying the mean value theorem to f(x) = xp. From
(15), for sufficiently large n,

esl ≥ (q2v1/p
s /4)(n1/pl) > q2(C1vs)

1/p/4. (19)

This implies that we can choose C1 large enough so that 2les > q2. Then by applying the
inequality |A+B| ≤ 2 max(|A|, |B|) to (18), we prove (ii).

We now prove (iii). Let d0 := d1q
2/q2. First we will prove that under the conditions of

(iii),

N2 ≥
(

2es(l − d0 − δ)
qs

− 1

)p
, (20)
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for all sufficiently small δ.
Because n1/pl > C

1/p
2 , we first force C2 to be large enough so that we can apply (15) to

obtain esl > q2(vsC2)1/p/4. Thus we can choose a sufficiently large C2 so that the following
inequality holds

2eslq
2 − 2q4 > 3q6/q2. (21)

Combining (21) and (13) we obtain

2es(l − d0) ≥ 2esl − 2q4/q2 > 3q6/q4 ≥ 3q2. (22)

From (22) it is easily seen that for sufficiently small δ,⌈
2es(l − d0 − δ)

q2

⌉
− 1 ≥ 2. (23)

Denote the lattice design over Cu(x, l − d0 − δ) with⌈
2es(l − d0 − δ)

q2

⌉
− 1

levels by D′. According to (23), D′ contains at least 2p points. Then

Es(D
′) <

q2

2(l − d0 − δ)/
{⌈

2es(l−d0−δ)
q2

⌉
− 1
} < es. (24)

Define a new design D∗ by replacing the points of D in Cu(x, l) with D′, i.e.,

D∗ = (D \ Cu(x, l)) ∪D′.

Let D1 = D \ Cu(x, l). Note that

Es(D1) ≤ Es(D) = es, (25)

e∗s(D1, D
′) ≤ q2

ds (Cu(x, l − d0 − δ),Rp \ Cu(x, l))

=
q2

d0 + δ
<
q2

d0

=
q2

d1

≤ es, (26)

where in formula (26), the first inequality follows from the definition of e∗s; the first equality
follows from Lemma 6; the last inequality follows from (13). Combining (25), (24), (26) and
apply Proposition 1, we obtain Es(D

∗) ≤ es and IN(D∗) = IN(D1) ≤ IN(D).
Besides, by the definition of D′ we have

card(D′) =

(⌈
2es(l − d0 − δ)

q2

⌉
− 1

)p
≥
(

2es(l − d0 − δ)
q2 − 1

)p
. (27)
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Now suppose (20) is false. By (27) we have card(D′) > card(D). But this contradicts Lemma
5, because D is a minimum energy design with the smallest index. Hence we have proved
(20), which, together with (13), yields

N2 ≥
(

2es(l − d0 − δ)
q2 − 1

)p
≥
(

2es(l − δ)
q2 − 2q2

q2
− 1

)p
.

By letting δ ↓ 0, we obtain

N2 ≥
(

2esl

q2 −
2q4

q2
− 1

)p
.

Applying an argument similar to (19), we can choose a large enough C2 so that esl/q
2 >

2q4/q2 + 1. The desired result of (iii) then follows.

4 Proof of Theorem 1

We are now ready to prove our main theorem.

Proof of Theorem 1. Since we have fixed s, we abbreviate Psn to Pn with no ambiguity.
By Prohorov’s Theorem (Dudley, 2002), there exists a subsequence of {Pn}, denoted as

{Pkn}, which converges weakly to a probability measure P . Thus it suffices to prove that
every convergent subsequence of {Pkn} tends to the uniform distribution. For notational
simplicity, we assume Pn

w−→ P , so that the goal is to prove that P has density f with
f ∝ q−2p. Let Dn be the design corresponding to Pn.

First we prove P(∂X ) = 0. Let a0 = (1/2, . . . , 1/2) ∈ Rp and Xε = X \ Cu(a0, 1/2− ε)
for 0 < ε < 1/4. Now apply Theorem 4 for a fixed ε to find constants c1, c2 and N depending
only on ε, q, q and p, so that for all n > N ,

Pn(Xε) =
card(Dn ∩ Xε)

n
≤ c1(n−1Ep

s (Dn)ε) ≤ c2ε,

where the first inequality follows from (ii) of Theorem 4 and the second inequality follows
from (i) of Theorem 4. Noting that Xε is an open set in X , we have

P(Xε) ≤ lim inf
n→∞

Pn(Xε) ≤ c2ε,

where the first inequality is a consequence of the weak convergence. See Klenke (2013) for
details. Hence we conclude that P(∂X ) = limε↓0P(Xε) ≤ 0.

Next we prove that

lim inf
l↓0

P
(
Cu(y, lq2(y))

)
P(Cu(x, lq2(x)))

≥ 1, (28)
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for any x, y ∈ X ◦. Otherwise, suppose

lim sup
l↓0

P
(
Cu(a2, lq2(a2))

)
P(Cu(a1, lq2(a1)))

≤ 1− δ, (29)

for some a1, a2 ∈ X ◦ and δ > 0. It follows from Pn
w−→ P that

lim inf
n→∞

Pn(Cu(a1, lq
2(a1))) ≥ P(Cu(a1, lq

2(a1))), (30)

lim sup
n→∞

Pn
(
Cu(a1, lq2(a1))

)
≤ P

(
Cu(a1, lq2(a1))

)
, (31)

for sufficiently small l. See Klenke (2013). Combining (29), (30) and (31), for any small l
and N > 0 we can find n > N such that

1− δ/2 ≥
Pn
(
Cu(a2, lq2(a2))

)
Pn(Cu(a1, lq2(a1)))

≥
Pn
(
Cu(a2, lq2(a2))

)
Pn
(
Cu(a1, lq2(a1))

) =
card (Dn2(l))

card (Dn1(l))
, (32)

where Dni(l) = Dn ∩ Cu(ai, lq2(ai)) for i = 1, 2. This suggests that Dn1(l) contains much
more points than Dn2(l). Similar with (iii) of Theorem 4, we will construct a “better” design
under the minimum energy criterion, which leads to a contradiction. The idea is to replace
the design points in Cu(a2, lq2(a2)) with these in Cu(a1, lq2(a1)) after a “peeling” operation.

Set q = infx∈X q(x) and q = supx∈X q(x). Let l and m be constants to be determined
later. We first assume that l is sufficiently small so that

Cu(ai, lq2(ai)) ⊂ X ◦, (33)

holds for i = 1, 2. Define

ε = 3
√
pLql2. (34)

We remind that L is the Lipschitz constant of q. Obviously ε < l for sufficiently small l.
Define D∗m1(l) = Dm1(l) ∩ Cu(a1, lq2(a1)− 2ε). By Theorem 4

card(Dm1(l) \D∗m1(l))

card(Dm1(l))
≤ O

(
(Es(Dm)l)−1 max(2εEs(Dm), q2)

)
= max(O(ε/l), O((Es(Dm)l)−1)) = max(O(l), O((Es(Dm)l)−1)), (35)

provided that (33) holds, ε < l and

m > Clp, (36)
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for some constant C depending on q, q and p only. According to (35) and (36), we can find
constants l0 > 0, and for each 0 < l < l0 there exists Ml > 0, such that

card(Dm1(l) \D∗m1(l))

card(Dm1(l))
≤ δ/2

1− δ/2
.

holds for all m > Ml. Now we choose l < l0 so that

√
pLql < 2, (37)

and (32) is possible to hold for a large n. Next we choose m > Ml such that (32) and

q2/(3
√
pq2(a2)Ll2) < Es(Dn) (38)

hold. Note that (32) and (35) imply that D∗1m(l) contains more points than D2m(l).
For simplicity, in the derivations below we will use the sloppy notation D∗1, D2, D instead

of the precise notation D∗1m(l), D2m(l), Dm respectively. Now define the affine transformation

T : Cu(a1, q2(a1)(l − 2ε)) → Cu(a2, q2(a2)(l − ε)),

a1 + u 7→ a2 +
q2(a2)(l − ε)
q2(a1)(l − 2ε)

u,

for u ∈ Cu(0, q2(a1)(l − 2ε)). Define a new set of design points by

D∗ = (D \D2) ∪ T (D∗1).

Because T (D∗1) maintains the same number of points as D∗1, D∗ contains fewer points than
D. Now we bound Es(D

∗) using Proposition 1. Obviously,

Es(D \D2) ≤ Es(D), (39)

e∗s(D \D2, T (D∗1)) ≤ q2

ds(Cu(a2, q2(a2)(l − ε),X \ Cu(a2, lq2(a2)))

≤ q2/(q2(a2)ε) = q2/(3
√
pLq2(a2)l2) < Es(D), (40)

where in (40), the second inequality follows from Lemma 6 and the last inequality follows
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from (38). Besides, we bound Es(T (D∗1)) by

Es(T (D∗1)) = max
xi,xj∈D∗1 ,xi 6=xj

q(T (xi))q(T (xj))

ds(T (xi), T (xj))

= max
xi,xj∈D∗1 ,xi 6=xj

{
q(xi)q(xj)

ds(xi, xj)
· q

2(a1)(l − 2ε)q(T (xi))q(T (xj))

q2(a2)(l − ε)q(xi)q(xj)

}
≤ Es(D

∗
1) max

x,y∈D∗1

q2(a1)(l − 2ε)q(T (xi))q(T (xj))

q2(a2)(l − ε)q(xi)q(xj)

≤ Es(D
∗
1)
q2(a1)(l − 2ε)(q(a2) +

√
pLq2(a2)(l − ε)/2)2

q2(a2)(l − ε)(q(a1)−√pLq2(a1)(l − 2ε)/2)2

< Es(D
∗
1)
q2(a1)(l − 2ε)(q(a2) +

√
pLq2(a2)l/2)2

q2(a2)(l − ε)(q(a1)−√pLq2(a1)l/2)2
(41)

< Es(D
∗
1) ≤ Es(D1), (42)

where the second equality follows from the dilation invariance of ds; the second inequality
follows from the Lipschitz property of q and the fact that q(a1)−√pLq2(a1)l > 0 according to
(37); the fourth inequality follows from some elementary calculations together with (34) and
(37). We verify the calculations in the fourth inequality of (42) in Appedix A. Combining
(39), (40) and (42) and invoking Proposition 1 we conclude that Es(D

∗) ≤ Es(D) and
IN(D∗) ≤ IN(D). Besides, we have shown that card(D∗) < card(D). But this contradicts
Lemma 5, because D is a minimum energy design with the smallest index. Therefore, (28)
is true.

The remainder of this proof follows from the comparison-of-measure argument introduced
in Section 2. By (28), it is easy to verify that Condition 2 in Section 2 holds for c1 =
2q
√
p, c2 = q, c3 = 1. Besides, we have proved that P(∂X ) = 0. Therefore, we can apply

Theorem 3 to conclude that P is absolutely continuous with respect to the Lebesgue measure
on X . As a consequence, we can remove the closure operation in (28) and obtain

lim inf
l↓0

P (Cu(y, lq2(y)))

P(Cu(x, lq2(x)))
≥ 1, (43)

for any x, y ∈ X ◦. By the symmetricity between x and y, (43) implies

lim
l↓0

P (Cu(y, lq2(y)))

P(Cu(x, lq2(x)))
= 1, (44)

for any x, y ∈ X ◦, which is Condition 1. Then the desired result is a consequence of Theorem
2.

Appendix
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A Verification of Energy Bound

We check here that the factor in (41) satisfies

q2(a1)(l − 2ε)(q(a2) +
√
pLq2(a2)l/2)2

q2(a2)(l − ε)(q(a1)−√pLq2(a1)l/2)2
< 1. (45)

To this end, we consider the following inequality with unknown x

q2(a1)(l − 2x)(q(a2) +
√
pLq2(a2)l/2)2

q2(a2)(l − x)(q(a1)−√pLq2(a1)l/2)2
< 1. (46)

The solution to (46) is

x >
l
{

(2 +
√
pLq(a2)l)2 − (2−√pLq(a1)l)2

}
2(2 +

√
pLq(a2)l)2 − (2−√pLq(a1)l)2

=
l2
{

4
√
pL(q(a1) + q(a2)) + pL2l(q2(a1) + q2(a2)))

}
2(2 +

√
pLq(a2)l)2 − (2−√pLq(a1)l)2

(47)

Using (38), we can bound the right hand side of (47) by

l2(12
√
pLq)

2 · 22 − 22
= 3
√
pLql2 = ε.

This implies that x = ε can ensure (46), which proves (45).

References

Dudley, R. M. (2002). Real analysis and probability, Volume 74. Cambridge University Press.

Kallenberg, O. (2006). Foundations of modern probability. Springer Science & Business
Media.

Klenke, A. (2013). Probability theory: a comprehensive course. Springer Science & Business
Media.

Santner, T., B. Williams, and W. Notz (2003). The Design and Analysis of Computer
Experiments. Springer Verlag.

Stein, E. M. and R. Shakarchi (2009). Real analysis: measure theory, integration, and Hilbert
spaces. Princeton University Press.

18


	Main Theorem
	Comparison of Measure
	Characteristics of Minimum Energy Designs
	Proof of Theorem 1
	Verification of Energy Bound

