Supplementary Material ## On the antioxidant activity of eumelanin biopigments: a quantitative comparison between free radical scavenging and redox properties Teresa Cecchi^{a/*}, Alessandro Pezzella^b, Eduardo Di Mauro^c, Samuel Cestola^a, David Ginsburg^a, and Mattia Luzi^a, Alessandro Rigucci^a Clara Santato^{c/*} ^a ITT Montani, Via Montani 7, 63900 Fermo, FM, Italy. ^b Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy ^c Department of Engineering Physics, Polytechnique Montreal, C.P. 6079, Succ. Centre-ville, Montreal, Quebec H3C 3A7, Canada. [†]clara.santato@polymtl.ca, teresa.cecchi@istruzione.it ## Explanation of the chemistry involved in the Briggs Rauscher (BR) reaction (Eq.(1)): $$IO_3^- + 2H_2O_2 + CH_2(COOH)_2 + H^+ \rightarrow ICH(COOH)_2 + 2O_2 + 3H_2O$$ (1) The BR reaction is accomplished through two reactions: $$IO_3^- + 2H_2O_2 + H^+ \rightarrow HIO + 2O_2 + 2H_2O$$ (2) $$HIO + CH2(COOH)2 \rightarrow ICH(COOH)2 + H2O$$ (3) Eq.(2) follows a fast radical path, involving HOO· and the redox chemistry of the catalyst (Mn⁺⁺), when $[\Gamma]$ is low, or a non-radical path, when the $[\Gamma]$ is high. Eq.(3) is a two-step reaction: $$\Gamma + \text{HIO} + \text{H}^+ \rightarrow \text{I}_2 + \text{H}_2\text{O} \tag{4}$$ $$I_2 + CH_2(COOH)_2 \rightarrow ICH(COOH)_2 + H^+ + I^-$$ (5) BR mixtures were prepared by mixing the appropriate amounts of stock solutions of hydrogen peroxide, iodate, perchloric acid, malonic acid and manganese sulphate using burettes in a 100-ml beaker to a total volume of 30 ml. One milliliter of starch solution was then added to the mixture. The final composition of the BR mixture was: [malonic acid]=0.0500 M, [Mn²⁺]=0.0067 M, [HClO₄]=0.03121 M, [IO₃ $^-$]=0.0667 M, and [H₂O₂]=0.8162 M. Upon initial mixing of the solutions, IO_3^- reacts with H_2O_2 to produce, via a **fast**, **radical** path, a rapidly increasing $[IO^-]$. IO^- is partly reduced to I^- by H_2O_2 and partly reacts with I^- , producing I_2 according to Eq. (4) (AMBER SOLUTION, RADICAL PATH). I_2 reacts slowly with malonic acid, thereby causing an increase in $[I^-]$ according to Eq. (5). Its high concentration triggers its reaction with IO_3^- and hence a **slow non-radical** production of IO^- (BLUE SOLUTION, NON RADICAL PATH). IO^- and I^- are consumed in the iodination of malonic acid at a faster rate compared to that of their slower production. Eventually $[I^-]$ is reduced to such a low value that the radical process takes over again. This oscillating sequence repeats until the malonic acid or IO_3^- is depleted. The oscillations can be observed in Fig.S1 below. The video represents the sonification of the potentiometer output (mV). The sound pitch is proportional to the potential. The video originally stimulates a visual-auditory synesthesia. It elicits concomitant different percepts and a crossing of sensory wiring. Fig. S1 Molecular structure of the melanins building blocks, namely 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Fig. S2 Potential of a Pt electrode vs time for the active BR mixture without addition of antioxidants. Fig. S3. Linear relationship between inhibition time (t_{in}) and mass of eumelanin added to the oscillating BR mixture. Standard deviations are obtained from *triplicata* measurements. Fig. S4. Linear relationship between inhibition time t_{in}) and mass of ink added to the oscillating BR mixture. Standard deviations are obtained from *triplicata* measurements. Fig. S5. Linear relationship between inhibition time (t_{in}) and mass of DHI added to the oscillating BR mixture. Standard deviations are obtained from *triplicata* measurements. Fig. S6. Linear relationship between inhibition time (t_{in}) and mass of DHICA added to the oscillating BR mixture. Standard deviations are obtained from *triplicata* measurements.