SUPPLEMENTARY MATERIAL

Synthesisandantitumoractivityofcamptothecin-4β-triazolopodophyllotoxin conjugates

Cheng-Ting Zi^{a,b,c,1}, Liu Yang^{b,1}, Fa-Wu, Dong^b, Qing-Hua Kong^b, Zhong-Tao Ding^c, Jun Zhou^b, Zi-Hua Jiang^{d,} *, Jiang-Miao Hu^{b,} *

- ^a Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, 650201, China
- ^b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- ^c Key Laboratory of Medicinal Chemistry for Nature Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- ^d Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- ¹ These authors contributed equally to this work
- * Authors to whom correspondence should be addressed; E-Mails: zjiang@lakeheadu.ca (Z.-H.J.); hujiangmiao@mail.kib.ac.cn (J.-M.H.); Tel.: +1-807-766-7171 (Z.-H.J.); +86-871-6522-3264 (J.-M.H.); Fax: +1-807-346-7775 (Z.-H.J.); +86-871-6522-3261 (J.-M.H.).

Abstract: Two compounds (9 and 10) having a camptothecin (CPT) analog conjugated to the 4β -azido-4-deoxypodophyllotixin analog by untilizing the copper-catalyzed azide-alkyne cycloadditon (CuAAC) reaction, and were evaluated for their cytotoxicity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549. MCF-7 and SW480) using the MTT (3-(4,5-dimethyl-thiahiazo-2-yl)-2,5-diphenyltetrazolium bromide) assay. Two novel conjugates shown weak cytotoxicity, compound 10 showed highly potent against HL-60 cell line tested, with IC₅₀ value 17.69±0.19 µM. This compound suggested its potential as anticancer agents for further development.

Keywords: antitumor activity; CuAAC reaction; camptothecin; podophyllotixin

1. Experimental

1.1. General information

Melting points were measured by an X-4 melting point apparatus and were uncorrected. MS data were obtained in the ESI mode on API Qstar Pulsar instrument; HRMS data were obtained in the ESI mode on LCMS-IT-TOF (Shimadzu, Kyoto, Japan); NMR spectra were acquired on Bruker AV-400 (Bruker BioSpin GmbH, Rheinstetten, Germany) instruments, using tetramethylsilane (TMS) as an internal standard: chemical shifts (δ) are given in ppm, coupling constants (*J*) in Hz, the solvent signals were used as references (CDCl₃: $\delta_{\rm C} = 77.2$ ppm; residual CHCl₃ in CDCl₃: $\delta_{\rm H} = 7.26$ ppm; CD₃OD: $\delta_{\rm C} = 49.0$ ppm; residual CH₃OH in CD₃OD: $\delta_{\rm H} =$ 4.78 ppm). Column chromatography (CC): silica gel (200 – 300 mesh; Qingdao Makall Group CO., LTD; Qingdao; China). All reaction was monitored using thin-layer chromatography (TLC) on silica gel plates.

1.2. General procedure for the synthesis of 4β -azido-podophyllotoxins 7 and 8

To a solution of podophyllotoxin **1** (5 mmol) in dry dichloromethane (CH_2Cl_2 , 50 mL), sodium iodide (NaI, 15 mmol) was added and stirred for 5 min. To this stirred suspension MeSO₃H (15 mmol) was added dropwise with syringe at 0 °C and the stirring was continued for another 5 h at room temperature. Nitrogen was bubbled through the solution to drive off the excess hydrogen iodide. This solution was then evaporated *in vacuo* and used for the next reaction without further purification. To the above crude product a mixture of H₂O-acetone (50 mL, 1:1) and anhydrous barium carbonate (BaCO₃, 10 mmol) were added successively. After 30 min at 40 °C, the resultant mixture was diluted with CH_2Cl_2 (100 mL), then poured into 10% Sodium thiosulfate (NaS₂O₄) solution (500 mL). The organic layer over sodium sulfate

(Na₂SO₄) and the solvent removed *in vacuo*. The residue was dried *in vacuo* (Kanal et al. 2003; Hansen et al. 1993). To a solution of residue (1.0 mmol) and sodium azide (5.0 mmol)) in trichloromethane (4 mL) was added trifluoroacetic acid (TFA, 13.2 mmol) dropwise. The reaction mixture was stirred for 1 h, but in order to avoid gel formation during the reaction it was necessary to add further TFA (52.8 mmol). The solution was neutralized with aqueous saturated sodium bicarbonate (NaHCO₃). The phases were separated. The aqueous phase was extracted twice with CHCl₃ (20 mL). The combined organic phases were washed with water and dried over Na₂SO₄. Then the solvent was evaporation and the reaction mixture was chromatographed on silica gel to afford the product (Kuhn et al. 1969; Hansen et al. 1993).

1.2.1. 4β -Azido-4-deoxypodophyllotoxin (7)

Yield 60 %. ¹H-NMR (CDCl₃, 400 MHz) δ 7.05 (s, 1H, C⁸-H), 6.63 (s, 1H, C⁵-H), 6.35 (s, 2H, C^{2'}, C^{6'}-H), 6.05 (d, 2H, J = 3.6 Hz, OCH₂O), 5.11 (d, 1H, J = 3.5 Hz, C⁴-H), 4.65 (d, 1H, J = 5.3 Hz, C¹-H), 4.36 (dd, 1H, J = 8.3 Hz, 7.4 Hz, C¹¹-CH_{β}), 4.22 (dd, 1H, J = 8.6 Hz, 10.2 Hz, C¹¹-CH_{α}), 3.67 (s, 6H, 3', 5'-OCH₃), 3.66 (s, 3H, 4'-OCH₃), 3.21 (dd, 1H, J = 5.3 Hz, 14.0 Hz, C²-H), 3.12 (m, 1H, C³-H); ¹³C-NMR (CDCl₃, 100 MHz) δ 174.5 (C-12), 153.5 (C-3'), 153.5 (C-5'), 149.6 (C-7), 148.0 (C-6), 136.6 (C-1'), 136.6 (C-4'), 133.5 (C-9), 128.5 (C-10), 111.4 (C-5), 109.7 (C-8), 109.4 (C-2'), 109.4 (C-6'), 102.7 (OCH₂O), 68.2 (C-11), 66.2 (C-4), 56.3 (3', 5'-OCH₃), 44.5 (C-1), 41.6 (C-2), 37.8 (C-3); MS-ESI m/z (%): 462 ([M+Na]⁺, 100).

1.2.2. 4β -Azido-4-deoxy-4'-demethypodophyllotoxin (8)

Yield 40%. ¹H-NMR (CDCl₃, 400MHz) δ 7.07 (s, 1H, C⁵-H), 6.60 (s, 1H, C⁸-H), 6.38

(s, 2H, C^{2'}, C^{6'}-H), 6.05 (d, 2H, J = 0.6 Hz, OCH₂O), 4.61 (q, 2H, J = 3.7 Hz, 5.3 Hz, C⁴-H, C¹-H), 4.36 (dd, 2H, J = 8.5 Hz, 10.3 Hz, C¹¹-CH₂), 3.66 (s, 6H, C^{3'}, C^{5'}-OCH₃), 3.11 (dd, 1H, J = 4.7 Hz, 14.1 Hz, C²-H), 2.96 (m, 1H, C³-H); ¹³C-NMR (CDCl₃, 100 MHz) δ 174.3 (C-12), 148.9 (C-3'), 148.6 (C-5'), 148.0 (C-7), 148.0 (C-6), 136.0 (C-1'), 133.9 (C-4'), 131.2 (C-9), 129.4 (C-10), 110.8 (C-5), 109.2 (C-2'), 109.2 (C-6'), 107.5 (C-8), 102.6 (OCH₂O), 70.9 (C-11), 63.9 (C-4), 56.4 (C^{3'}, C^{5'}-OCH₃), 45.7 (C-1), 44.4 (C-2), 38.6 (C-3); MS-ESI m/z (%): 448 ([M+Na]⁺, 100).

Figure S1. ¹H-NMR of compound 6

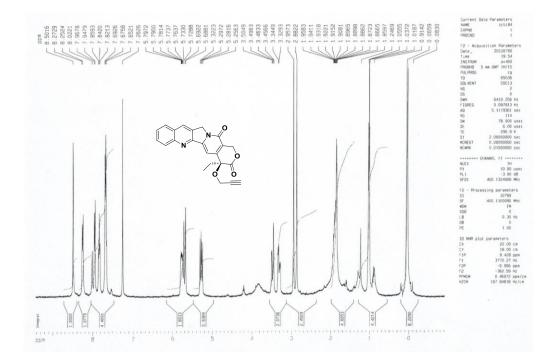


Figure S2. ¹³C-NMR of compound 6

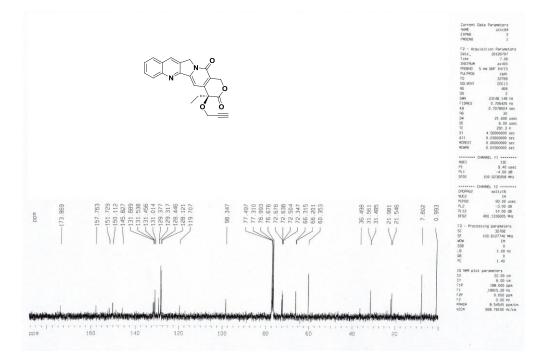


Figure S3. ¹H-NMR of compound 7

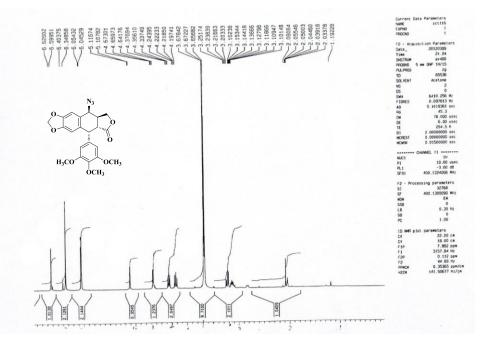


Figure S4. ¹³C-NMR of compound 7

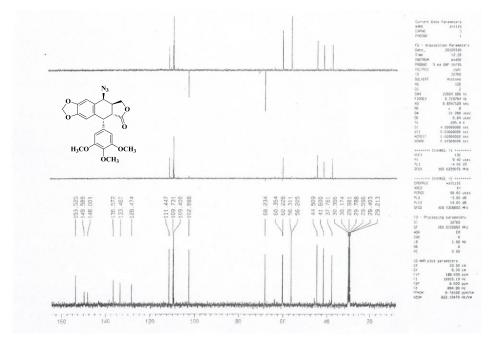


Figure S5. ¹H-NMR of compound 8

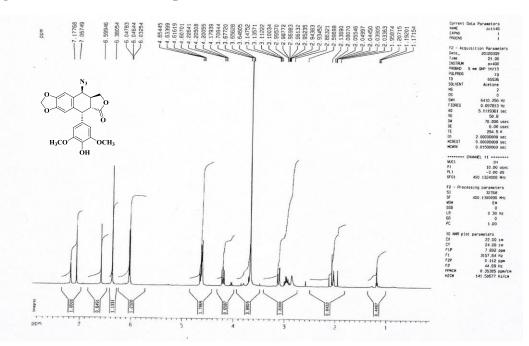
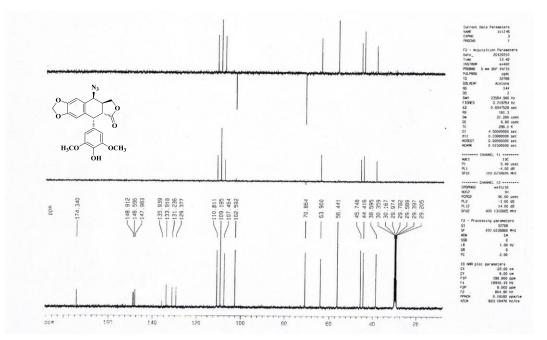
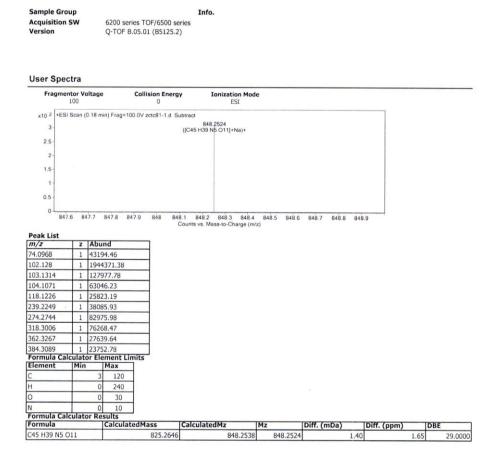




Figure S6. ¹³C-NMR of compound 8

Figure S7. HRESIMS of compound 9

--- End Of Report ---

Figure S8. ¹H-NMR of compound 9

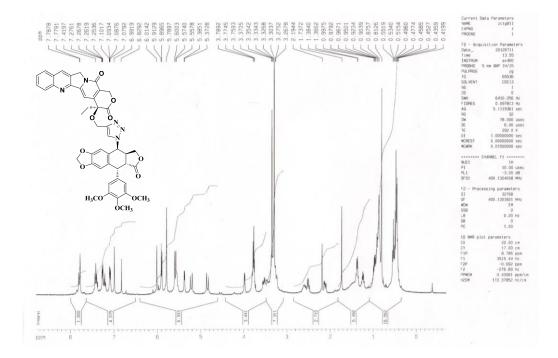
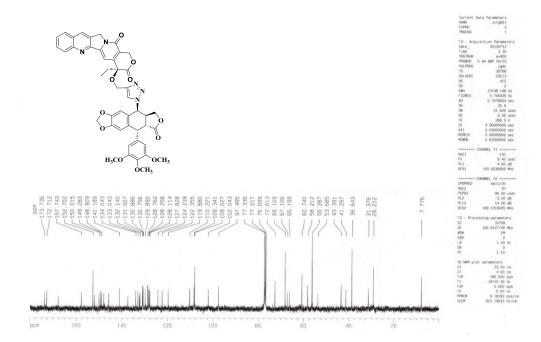



Figure S9. ¹³C-NMR of compound 9

Figure S10. HRESIMS of compound 10

	up		6200	TOF/CERR	Info.								
Acquisition SW Version			6200 series TOF/6500 series Q-TOF B.05.01 (B5125.2)										
Version			Q-IOF B	.05.01 (85125.	2)								
User Spec	ctra												
Fragme	ntor Ve	oltage		Collision Ener	gy Ioni	zation Mod ESI	e						
x10 3 +ESI	Scan (0.13-0.	22 min, 6 S	icans) Frag=100.0	V zctc82.d Subtra	ct (4)							
8 -					834.2	384							
7-					([C44 H37 N5	O11J+Na)+							
6 -													
5-													
4 -													
3-													
2 -													
1-													
0										-			
	833.4	4	833.6	833.8	834 834.2	834.4		0010					
								834.6	834.8	835			
Dook Liet					Counts vs. Mass-			834.0	834.8	835			
	z	Abu	nd	Formula]	834.8	835			
m/z	z	Abu 2818		Formula		o-Charge (m]	834.8	835			
m/z 102.128	_		88.65	Formula		o-Charge (m		834.6	834.8	835			
<i>m/z</i> 102.128 104.1071 219.6485	1	2818	88.65 52.71	Formula		o-Charge (m		834.6	834.8	835			
<i>m/z</i> 102.128 104.1071 219.6485 381.2982	1	2818 2266	88.65 52.71 5.79	Formula		o-Charge (m		834.0	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014	1 1 2	2818 2266 6946	88.65 52.71 5.79 93.08	Formula		o-Charge (m		834.0	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272	1 1 2 1	2818 2266 6946 2749 6709 2282	38.65 52.71 5.79 93.08 9.22 28.44	Formula		o-Charge (m		834.0	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752	1 1 2 1 1	2818 2266 6946 2749 6709	38.65 52.71 5.79 93.08 9.22 28.44	Formula		o-Charge (m		834.0	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752	1 1 2 1 1 1 1	2818 2266 6946 2749 6709 2282	88.65 52.71 5.79 93.08 9.22 88.44 1.45	Formula		o-Charge (m		834.0	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 812.2562	1 2 1 1 1 1 1	2818 2266 6946 2749 6709 2282 5794	88.65 52.71 5.79 93.08 9.22 28.44 1.45 9.41	Formula	Counts vs. Mass-	o-Charge (m	/z)	834.6	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 812.2562 834.2384 850.2148	1 1 2 1 1 1 1 1 1 1 1 1 1 1	2818 2266 6946 2749 6709 2282 5794 4919 7335 4312	88.65 52.71 5.79 93.08 9.22 8.44 1.45 9.41 5.27 1.62	C44 H37 N5 0	Counts vs. Mass-	Ion Ion	/z)	834.6	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 398.2752 812.2562 334.2384 350.2148 Formula Cal	1 1 2 1 1 1 1 1 1 1 1 1 culate	2818 2266 6946 2749 6709 2282 5794 4919 7335 4312 or Electron	88.65 5.79 13.08 0.22 18.44 1.45 0.41 5.27 1.62 ment Lin	C44 H37 N5 0	Counts vs. Mass-	Ion Ion	/z)	834.6	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 398.2752 3812.2562 334.2384 350.2148 Formula Cal Element	1 1 2 1 1 1 1 1 1 1 1 1 1 1	2818 2266 6946 2749 6709 2282 5794 4919 7335 4312 or Ele	88.65 5.79 5.79 5.08 5.22 88.44 5.45 5.41 5.27 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	C44 H37 N5 0	Counts vs. Mass-	Ion Ion	/z)	834.6	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 398.2752 312.2562 334.2384 50.2148 Formula Cal Element	1 1 2 1 1 1 1 1 1 1 1 1 culate	2818 2266 6946 2749 6709 2282 5794 4919 7335 4312 or Ele	88.65 5.79 5.79 5.08 5.22 88.44 4.45 5.27 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	C44 H37 N5 0	Counts vs. Mass-	Ion Ion	/z)	834.6	834.8	835			
Peak List m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 812.2552 384.2384 350.2148 Formula Cal Element C 4 0 0	1 1 2 1 1 1 1 1 1 1 1 1 culate	2818 2266 6946 2749 6709 2282 5794 4919 7335 4312 or Ele 3 0	88.65 52.71 5.79 73.08 7.22 88.44 4.45 7.41 5.27 5.62 5.62 5.62 5.62 5.62 5.62 5.72 120 240	C44 H37 N5 0	Counts vs. Mass-	Ion Ion	/z)	834.0	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 381.2562 334.2384 50.2148 Formula Cal Element 1 2 2 3 4 0	1 1 2 1 1 1 1 1 1 1 1 1 culate	2818 2266 6946 2749 2282 5794 4919 7335 7335 4312 7335 4312 7335 7335 7335 7335 7335 7335 7335 733	88.65 52.71 5.79 13.08 0.22 88.44 4.45 4.41 5.27 662 50 62 50 62 120 240 30	C44 H37 N5 0	Counts vs. Mass-	Ion Ion	/z)	834.0	834.8	835			
m/z 102.128 104.1071 104.1071 129.6485 381.2982 382.3014 397.272 398.2752 398.2752 334.2384 350.2148 Formula Cal Element C 1 0 N	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2818 2266 6946 2749 6709 2282 5794 4919 73355794 4919 73355794 4312 73355794 4312 733507 Ele	88.65 52.71 5.79 93.08 9.22 88.44 4.45 9.41 5.27 62 ment Lin Max 120 240 30 10	C44 H37 N5 0	Counts vs. Mass-	Ion Ion	/z)	834.0	834.8	835			
m/z 102.128 104.1071 219.6485 381.2982 382.3014 397.272 398.2752 381.2562 334.2384 50.2148 Formula Cal Element 1 2 2 3 4 0	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2818 2266 6946 2749 6709 2282 5794 4919 73355794 4919 73355794 4312 73355794 4312 733507 Ele	88.65 52.71 5.79 93.08 9.22 88.44 4.45 9.41 5.27 62 ment Lin Max 120 240 30 10	C44 H37 N5 0	Counts vs. Mass-	o-Charge (m/	/z)	834.0	[Diff. (mDa		Diff. (ppm)	IDBE	

---- End Of Report ----

Figure S11. ¹H-NMR of compound 10

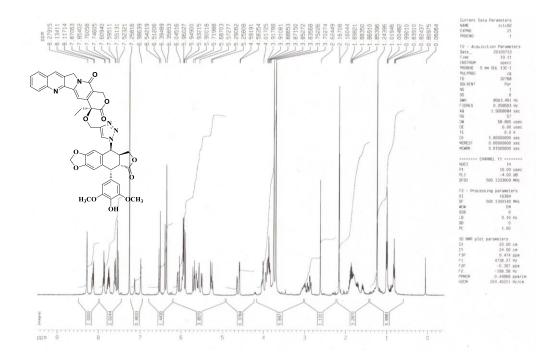
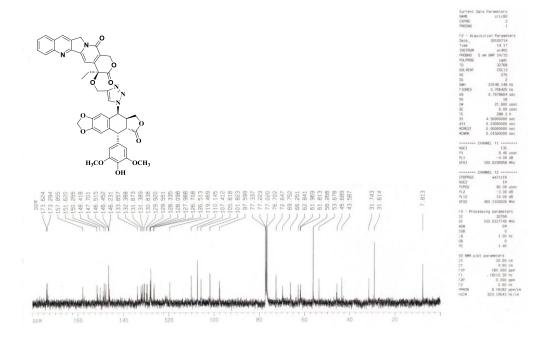



Figure S12. ¹³C-NMR of compound 10

References

- Hansen HF, Jesen RB, Willumsen AM, Norsko-Lauritsen N, Ebbesen P, Nielen PE,
 Buchardt O. 1993. New compounds related to podophyllotoxin and congeners:
 Synthesis, structure elucidation and biological testing. Acta. Chem. Scand.
 47:1190–1200.
- Kamal A, Kumar BA, Arifuddin M. 2003. A one-pot, efficient and facile synthesis of 4-arylaminopodophyllotoxins: synthesis of NPF and GL-331 as DNA topoisomerase II inhibitors. Tetrahedron Lett. 44(46):8457–8459.
- Kuhn M, Kellero-Juslén C, von Wartburg A. 1969. Partialsynthese von
 4'-Demethylepipodophyllotoxin. 22. Mitteilung über mitosehemmende
 Naturstoffe [1]. Helv. Chim. Acta 52(4):944–947.