
 

 

1 

 

Supplementary Information for 

“Optimal Joint Deployment of Flow and Pressure Sensors for Leak Identification in 

Water Distribution Networks” 

Ehsan Raei, Mohammad Reza Nikoo, Shokoufeh Pourshahabi, Mojtaba Sadegh 

 

 

 
Fig. S1 A Sub-algorithm which should be performed in step 12 of the flowchart of the 

proposed methodology to specify the value of identification 
  



 

 

2 

 

1: Input: Flow divergence matrix for each leakage scenario (M) 

2: Output: bestthreshold 

3: 𝑖𝑛𝑑𝑒𝑥𝑡 = 0 

4: For  threshold =  1 To max (𝑀)  do 

5:         𝑖𝑛𝑑𝑒𝑥𝑡  =  𝑖𝑛𝑑𝑒𝑥𝑡  + 1 

6:         𝑀 (abs (𝑀)  <  threshold)  =  0 

7:         𝑢 =  cell of 𝑀 is bigger than zero;  specify row of cell; return the smallest row 

8:         𝑖𝑛𝑑𝑒𝑥𝑠 = 0 

9:         For  𝑖 =  𝑢  to  𝑢 + 4  do 

10:                 𝑖𝑛𝑑𝑒𝑥𝑠  =  𝑖𝑛𝑑𝑒𝑥𝑠  + 1 

11:                 similaritynode (𝑖𝑛𝑑𝑒𝑥𝑠) = Similarity between nodes (column(s) of M which 

is/are bigger 

                                                                  than zero ) of row i and row i+1                    

12:                 numnode (𝑖𝑛𝑑𝑒𝑥𝑠) = number of node(s) in row i (column bigger than zero) 

13:         end For 

14:         datasimilaritynode (𝑖𝑛𝑑𝑒𝑥𝑡) =  mean (similaritynode ) 

15:         datanumnode(𝑖𝑛𝑑𝑒𝑥𝑡) = mean  (numnode )  

16: end For 

17: bestthreshold = find(datasimilaritynode  >  0.7 and 15 ≥  datanumnode  

≥  5);  return threshold(s) 

  
Fig. S2 Pseudo code for specifying the tolerance threshold for flow divergence matrices. 

 

Using Pseudo code presented in Fig. S2, the tolerance threshold is specified so that 

a limited number of pipes (between 5 to 15 pipes) show flow changes in a number of 

successive time steps when the leakage occurs in the node 𝑛𝑖. This process is performed 

for all leakage scenarios and the tolerance threshold that has been repeated the most among 

all leakage scenarios is selected. 
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(a) Mesopolis Network equipment 

 

(b) Land use map of Mesopolis (Johnston and Brumbelow 2008) 

Fig. S3 Mesopolis water distribution network  
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Fig. S4 The elevation of the nodes in Mesopolis water distribution network 
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a) 1 hour after starting the leakage  

 

b) 1 day after starting the leakage 

  

c) 4 days after starting the leakage d) 8 days starting the leakage 

 

Fig. S5 The pipes* in the WDN of Mesopolis that show the flow divergence from the 

control state of more than 0.1 gpm due to the leakage at node 1** at four different times 
*Black pipes show flow divergence from the control state that are more than 0.1 gpm due to the leakage at 

node 1  
**The node 1 is presented with a big black circle  
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a) 1 hour after starting the leakage  

 

b) 1 day after starting the leakage 

  

c) 4 days after starting the leakage d) 8 days starting the leakage 

Fig. S6 The pipes* in the WDN of Mesopolis that show the flow divergence from the 

control state of more than 5 gpm due to the leakage at node 1** at four different times 
*Black pipes show flow divergence from the control state that are more than 5 gpm due to the leakage at 

node 1  
**The node 1 is presented with a big black circle  
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Fig. S7 Division of the study area into 5 zones using k-means clustering algorithm 

 

 

Fig. S8 Locations of potential flow and pressure sensors which are considered as decision 

variables in the NSGA-II multi-objective optimization algorithm 
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Fig. S9 Division of the study area into 10 zones using 𝑘-means clustering algorithm 

 
 

 
Fig. S10 Locations of potential flow and pressure sensors which are considered as 

decision variables in the NSGA-II optimization algorithm after dividing the study area 

into 10 zones 
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Fig. S11 Locations of optimized flow and pressure sensors in 10 zones in the WDN of 

Mesopolis 

 

Fig. S12 Locations of the nodes where the leakage cannot be detected or the correct 

leakage zone cannot be identified by dividing the study area into 10 zones  
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K-means clustering 

K-means clustering is an approach for clustering a number of observations into “k” zones, 

in which each observation is placed in the zone with the nearest mean. The k-means 

clustering algorithm consists of the following steps (Sharma et al. 2012): 

1. Define k centroids in the data space, each centroid representing one cluster. 

2. Place each observation in the zone with the nearest centroid according to Euclidean 

distance. 

3. Recalculate k new centroids based on the points in each cluster. 

4. Repeat Steps 2 and 3 until the locations of the centroids do not change any more.  

 

K-means clustering algorithm has the following advantages over hierarchical clustering 

method (Sharma et al. 2012): 

1. K-means clustering method may be faster than hierarchical clustering method in 

problems with a large number of variables. 

2. K-means clustering method may result in tighter zones than hierarchical clustering 

method, especially when the zones are globular. 

   

In this research, the following settings (as detailed in Table S1) are used: 

 

Table S1. List of parameters and methods that are used in k-means clustering 

Distance Measure Sqeuclidean; d(x,c)=(x−c)(x−c)′  

MaxIter 100 

Replicates 5 

Method for choosing initial 

cluster centroid positions 

Plus; Select k seeds by implementing the k-means++ 

algorithm for cluster center initialization. 

 

The main idea is to divide the space into a number of zones in which the nodes have at least 

a common feature and, most importantly, are close to each other (not scattered) in order to 

identify the leakage zone correctly. In Table S2 (Supplementary Information), total 

summation of distances among nodes of each zone are presented based on different 

combinations of feathers (latitude, longitude, elevation, and pressure) for dividing the WDN 

into different zones. As shown in Table S2 and Fig. S13-S16, using pressure or elevation in 

the combinations of features for clustering has no effect on the best value of total summation 

of distances among nodes. In other words, latitude and longitude are the two main features 

for clustering. 
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Table S2. Comparison of different combinations of feathers for k-means clustering 

Features considered 

for k-means 

clustering 

Replicate 

No. 

Number of 

iterations 

Total summation of 

distances among nodes 

Best value of total 

summation of distances  

Latitude and 

longitude, (Fig. S13) 

1 21 1.85338e+11 

1.85338e+11 

2 16 1.85338e+11 

3 20 1.85338e+11 

4 15 1.85338e+11 

5 20 1.85338e+11 

Latitude, longitude, 

and elevation 

(Fig. S14) 

1 14 1.85338e+11 

1.85338e+11 

2 35 1.85338e+11 

3 19 1.85338e+11 

4 11 1.85338e+11 

5 19 1.85338e+11 

Latitude, longitude, 

and pressure* 

(Fig. S15) 

1 24 1.85333e+11 

1.85338e+11 

2 12 2.24165e+11 

3 15 1.85333e+11 

4 14 2.19915e+11 

5 19 2.24165e+11 

Latitude, longitude, 

elevation, and 

pressure*, (Fig. S16) 

1 9 1.85338e+11 

1.85338e+11 

2 13 2.28641e+11 

3 41 1.85338e+11 

4 13 1.85338e+11 

5 7 1.85338e+11 

*Pressure at start time (t=0) 
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Fig. S13 Division of the study area into 5 zones using k-means clustering algorithm based on 

latitude and longitude 

 

 

 
Fig. S14 Division of the study area into 5 zones using k-means clustering algorithm based on 

latitude, longitude, and elevation 
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Fig. S15 Division of the study area into 5 zones using k-means clustering algorithm based on 

latitude, longitude, and pressure 

 

 

 
Fig. S16 Division of the study area into 5 zones using k-means clustering algorithm based on  

latitude, longitude, elevation, and pressure 
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Hierarchical clustering  

The results of hierarchical clustering method based on the above features (latitude, longitude, 

elevation, and pressure) are shown in Table S3 (Supplementary Information). Solutions with 

closer value of Cophenetic correlation coefficient, “c”, to 1, have better ranks. As presented 

in Table S3, latitude and longitude are two main features that lead to the highest quality 

solution for clustering. 

 

Table S3. Comparison of different combinations of feathers for hierarchical clustering 

Features considered for hierarchical clustering Cophenetic correlation coefficient 

(c) 

Latitude and longitude (Fig. S17) 0.7801 

Latitude, longitude, and elevation (Fig. S18) 0.7802 

Latitude, longitude, and pressure (Fig. S19) 0.7708 

Latitude, longitude, elevation, and pressure* (Fig. S20) 0.7707 

*Pressure at start time (t=0) 

 

 

 
Fig. S17 Division of the study area into 5 zones using hierarchical clustering algorithm 

based on latitude and longitude 
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Fig. S18 Division of the study area into 5 zones using hierarchical clustering algorithm 

latitude, longitude, and elevation based on 

 

 

 
Fig. S19 Division of the study area into 5 zones using hierarchical clustering algorithm 

based on latitude, longitude, and pressure 
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Fig. S20 Division of the study area into 5 zones using hierarchical clustering algorithm 

based on latitude, longitude, elevation, and pressure 

  



 

 

17 

 

Multi-objective optimization algorithm for C-town WDN 

Here, we describe the multi-objective optimization used in this paper with a smaller network 

for simplicity. The step-by-step description of this algorithm can then be used for the much 

larger networks, as that of the main paper. Water distribution network of C-town includes 

388 nodes, 444 pipes, 8 tanks, and 24 control valves. The duration of simulation is 96 hours. 

The WDN is divided into 5 zones. A set of potential pressure and flow sensors, as described 

in sections 2.3 and 2.4, are considered as decision variables in the NSGA-II multi-objective 

optimization algorithm. Fig. S21 shows the location of all potential flow and pressure 

sensors.  

 

 

 

Fig. S21 C-town water distribution network and locations of potential flow and pressure 

sensors  

 

The proposed multi-objective optimization algorithm is applied in order to select the optimal 

combination of pressure and flow sensors considering two objective functions: 

1. Maximizing accuracy of identified leakage zone; 

2. Minimizing number of sensors 

 

At the first stage, the NSGA-II multi-objective optimization algorithm selects a number of 

flow sensors (𝐾𝑓) among potential flow sensors (𝑛𝑠𝑓) for each chromosome. Initially, only 

flow sensors are optimized, while all potential pressure sensors are incorporated in the 

network.  

Assume that a leakage has occurred in a single node (blue arrow in Fig. S22) and the multi-

objective optimization algorithm has selected 26 flow sensors (𝐾𝑓) among potential flow 
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sensors (𝑛𝑠𝑓) for one chromosome, while all of 10 potential pressure sensors are 

incorporated in the network. 

 

 

Fig. S22 Locations of selected flow sensors at the first stage for the above assumed 

chromosome, while all potential pressure sensors are incorporated in the network 

 

 

There are 388 leakage scenarios corresponding to 388 nodes. As a result, there are 388 

divergence matrices for flow and 388 divergence matrices for pressure sensors according to 

the 388 leakage models. For each leakage scenario, a matrix of size 
𝑇

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝
× 𝐾 is 

constructed for the selected sensors, where 
𝑇 97=96 hours+1, considering (𝑡 = 0) 

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 1 hour 

𝐾 Number of sensors 

 

As shown in Fig. S22, there are 10 pressure sensors and the NSGA-II multi-objective 

optimization algorithm selected 26 flow sensors among potential flow sensors. The flow and 

pressure divergence matrices are as follows (Table S4): 

 

Table S4. Flow and pressure divergence matrices  

Leakage scenario 1 2 3 … 388 

Flow divergence 

matrices 
97 × 26 97 × 26 97 × 26 … 97 × 26 

Pressure divergence 

matrices 
97 × 10 97 × 10 97 × 10 … 97 × 10 

 

The optimization algorithm searches for flow divergence from the control state to be greater 

than the tolerance threshold in six successive time steps. Each flow sensor that satisfies this 
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condition is selected as an optimal one. In this stage, all potential pressure sensors with 

pressure divergence from the control state exceeding the tolerance threshold are also 

selected. This process is performed for all 388 leakage scenarios and as a result a matrix of 

size 388 × 5 is created. For the assumed leakage (blue arrow in Fig. S22) only 6 flow sensors 

out of 26 have responded to this leakage. These flow sensors and the corresponding zones 

are presented in Table S5. 

 

Table S5. Flow sensors and the corresponding zones that have responded to the 

leakage shown by blue arrow in Fig. S22 

Sensor 78 98 278 317 353 421 

Zone 3 [1,5] [1,3] [1,3] 3 [1,3] 

 

By dividing the total number of times that each leakage zone is identified to sum of the 

elements in each row, the probability of identification of each zone is determined for each 

leakage scenario (Table S6). Then, in each row, the zone(s) with identification probability 

greater than 80% of the maximum probability in the same row is/are selected.  

 

Table S6. Probability of identification of each zone  

Zone 1 2 3 4 5 

probability 4/10 0/10 5/10 0/10 1/10 

 

0.8 × 0.5 = 0.4 ⇒ zone 1 and zone 3 are selected 

 

This can potentially select more than one zone for each node (each leakage scenario). In this 

case, pressure sensors are optimized to decrease the number of identified zones for each 

leaking node and increase accuracy of leakage zone identification. Therefore, the above 

optimization process of flow sensors is done for pressure sensors. Assume that two pressure 

sensors out of 10 have responded to the leakage in the above assumption. These pressure 

sensors and the corresponding zones are presented in Table S7. 

 

Table S7. Two sensors out of 10 pressure sensors and the corresponding zones 

Pressure sensor 158 282 

Zone 3 5 

 

Then identified leakage zone(s) by the flow sensors that is/are common with the identified 

leakage zone(s) by the pressure sensors is/are selected. If there is no common zone, the 

identified leakage zone(s) by flow sensors is/are chosen. 
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[1,3] ∩ [3,5] = [3] ⇒ zone 3 is selected 

 

After determining the common identified zones by the combination of flow and pressure 

sensors for 𝑁 nodes (𝑁 leakage models), each identified zone is compared with the 

corresponding actual defined zone for each node. If the identified zone and the actual defined 

zone for a node are identical, then the value of identification is assigned as “𝑑𝑛 = 1”, 

otherwise “𝑑𝑛 = −1” (Eqs. 4 to 7). If two zones are identified for a node and one of them is 

correct, then the value of identification is “𝑑𝑛 = 0.5”, otherwise “𝑑𝑛 = −1”. If more than 

two zones are identified for a node, the value of identification is “𝑑𝑛 = −1”. Finally, sum of 

all values of identification greater than zero is divided by 𝑁. The optimized flow and pressure 

sensors C-town WDN with identification probability greater than 80% for 5 zones are 

presented in Fig. S23. 

 

 

Fig. S23 Locations of optimized flow and pressure sensors for C-town WDN 
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Mesopolis WDN 

The water distribution network of Mesopolis is a widely-used virtual WDN that is 

developed for research projects. Since real-world networks are not readily available due to 

security issues, a large number of studies have been conducted on this virtual network 

including Drake and Zechman (2012), Shafiee and Zechman (2013), and Rasekh and 

Brumbelow (2014 and 2015). We have modeled the Mesopolis WDN using the EPANET 

software that performs extended period simulation within pressurized pipe networks. 

Demand Patterns 

It is assumed that all nodes of the Mesopolis WDN follow 7 patterns of daily consumption 

and each pattern is the same for different days/seasons. As an example, two patterns are 

shown in Fig. S24. 
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Fig. S24 Two patterns of daily consumption for nodes of the Mesopolis WDN 
*The multipliers are used to modify the demand from its base level in each time period.  
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The pumps of Mesopolis WDN work based on 11 specified curves. As an example, two 

curves are shown in Fig. S25. 

 

 

 

 

Fig. S25 Two samples of 11 pump curves of the Mesopolis WDN 

 

Forty “If-Then” rules have been defined for the Mesopolis WDN to coordinate pumps, 

tanks, etc. with each other considering hours/days. As an example, the rule 2 is as follows 

(Fig. S26): 
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RULE 2 

IF TANK wtpe-tank LEVEL BELOW 6 

AND SYSTEM CLOCKTIME <= 8 AM 

OR SYSTEM CLOCKTIME >= 8 PM 

THEN PUMP intake1 STATUS IS OPEN 

AND PUMP intake2 STATUS IS OPEN 

AND PUMP intake3 STATUS IS OPEN 

AND PUMP intake4 STATUS IS OPEN 

AND PUMP intake5 STATUS IS OPEN 

AND PUMP intake6 STATUS IS OPEN 

AND PUMP intake7 STATUS IS OPEN 

AND PUMP intake-B1 STATUS IS OPEN 

AND PUMP intake-B2 STATUS IS OPEN 

AND PUMP intake-B3 STATUS IS OPEN 

AND PUMP intake-B4 STATUS IS OPEN 

AND PUMP intake-B5 STATUS IS OPEN 

ELSE PUMP intake1 STATUS IS CLOSED 

AND PUMP intake2 STATUS IS CLOSED 

AND PUMP intake3 STATUS IS CLOSED 

AND PUMP intake4 STATUS IS CLOSED 

AND PUMP intake5 STATUS IS CLOSED 

AND PUMP intake6 STATUS IS CLOSED 

AND PUMP intake7 STATUS IS CLOSED 

AND PUMP intake-B1 STATUS IS CLOSED 

AND PUMP intake-B2 STATUS IS CLOSED 

AND PUMP intake-B3 STATUS IS CLOSED 

AND PUMP intake-B4 STATUS IS CLOSED 

AND  PUMP intake-B5 STATUS IS CLOSED 

Fig. S26 One of the “If-Then” rules for controlling the Mesopolis WDN 

 

According to this rule, if the water level in the tank “wtpe” is less than 6 units and the time 

of simulation is between 8 pm and 8 am then the above mentioned pumps would be opened 

or closed. 

 


