SUPPLEMENTARY INFORMATION

Table 1 provides Euler angles of all β grains and $\mathrm{TJ} \alpha$ for each of the 5 triple junctions that have been analyzed. Table 2-6 contains the deviation from BOR of all 36 possible TJ α variants at each triple junction from each of the 2 adjacent grains to which they are nonburgers oriented. The methods used in these calculations are similar to those used in [1] and are not repeated here. Finally, Table 8 provides all combinations of 3β grains at a triple junction related by a special misorientations given in Table 7 [2] that will allow TJ α to be BOR related to all 3 grains

Table 1: The Euler angles (Bunge notation) for the three β grains constituting all TJ examined in this study. The disorientations between the 3 grains are also provided.

Variants are in BOR with β_{1}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{3}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	$29.6{ }^{\circ}$	1	23.7°	26.7°
2	$22.4{ }^{\circ}$	2	27.9°	25.1°
3	$29.6{ }^{\circ}$	3	$33.9{ }^{\circ}$	$31.8{ }^{\circ}$
4	25.0°	4	38.3°	31.6°
5	29.0°	5	$34.8{ }^{\circ}$	31.9°
6	21.5°	6	$33.9{ }^{\circ}$	27.7°
7	$29.6{ }^{\circ}$	7	43.1°	$36.4{ }^{\circ}$
8	25.7°	8	$43.6{ }^{\circ}$	34.7°
9	28.7°	9	20.2°	$24.4{ }^{\circ}$
10	$29.6{ }^{\circ}$	10	$25.9{ }^{\circ}$	27.7°
11	$29.6{ }^{\circ}$	11	32.1°	$30.8{ }^{\circ}$
12	$29.6{ }^{\circ}$	12	$36.6{ }^{\circ}$	33.1°
Variants are in BOR with β_{2}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{3}	$\triangle \mathrm{BOR}_{\text {th-av }}$
1	$22.4{ }^{\circ}$	1	22.1°	22.2°
2	$29.6{ }^{\circ}$	2	21.3°	25.5°
3	25.0°	3	$32.2{ }^{\circ}$	$28.6{ }^{\circ}$
4	$29.6{ }^{\circ}$	4	28.5°	29.1°
5	21.5 ${ }^{\circ}$	5	$42.0{ }^{\circ}$	$31.8{ }^{\circ}$
6	29.0°	6	$42.6{ }^{\circ}$	$35.8{ }^{\circ}$
7	25.7°	7	28.5°	27.1°
8	$29.6{ }^{\circ}$	8	27.2°	$28.4{ }^{\circ}$
9	$29.6{ }^{\circ}$	9	27.2°	$28.4{ }^{\circ}$
10	28.7°	10	28.7°	28.7°
11	$29.6{ }^{\circ}$	11	$13.4{ }^{\circ}$	21.5°
12	$29.6{ }^{\circ}$	12	$19.6{ }^{\circ}$	$24.6{ }^{\circ}$
Variants are in BOR with β_{3}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	$\triangle \mathrm{BOR}_{\text {th-av }}$
1	$34.2{ }^{\circ}$	1	$19.6{ }^{\circ}$	$26.9{ }^{\circ}$
2	32.1°	2	$13.4{ }^{\circ}$	22.7°
3	$33.9{ }^{\circ}$	3	21.3°	27.6°
4	$34.8{ }^{\circ}$	4	22.1°	$28.4{ }^{\circ}$
5	20.2°	5	$35.8{ }^{\circ}$	28.0°
6	$25.9{ }^{\circ}$	6	$35.4{ }^{\circ}$	$30.6{ }^{\circ}$
7	27.9°	7	27.2°	27.5°
8	23.7°	8	$28.5{ }^{\circ}$	26.1°
9	38.3	9	$28.5{ }^{\circ}$	$33.4{ }^{\circ}$
10	$33.9{ }^{\circ}$	10	32.2°	$33.0{ }^{\circ}$
11	38.0°	11	28.7°	$33.4{ }^{\circ}$
12	$34.8{ }^{\circ}$	12	27.2°	31.0°

Table 2: Analysis of TJ 1. The deviation from the BOR with adjacent grains for 3 three sets of 12α variants that are oriented in the Burgers relationship with grains β_{1}, β_{2} and β_{2} respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_{1}				
variant	$\triangle \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	variant	$\triangle \mathrm{BOR}_{\text {th }}$ with respect to β_{3}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	16.2°	1	17.7°	16.9°
2	$19.4{ }^{\circ}$	2	$19.9{ }^{\circ}$	$19.6{ }^{\circ}$
3	$19.4{ }^{\circ}$	3	19.1°	19.2°
4	$19.4{ }^{\circ}$	4	19.9°	$19.6{ }^{\circ}$
5	$19.4{ }^{\circ}$	5	$9.8{ }^{\circ}$	$14.6{ }^{\circ}$
6	$19.4{ }^{\circ}$	6	$19.9{ }^{\circ}$	$19.6{ }^{\circ}$
7	10.5°	7	$19.9{ }^{\circ}$	15.2°
8	$19.4{ }^{\circ}$	8	$19.9{ }^{\circ}$	$19.6{ }^{\circ}$
9	$18.3{ }^{\circ}$	9	$19.9{ }^{\circ}$	19.1°
10	$19.4{ }^{\circ}$	10	$15.4{ }^{\circ}$	$17.4{ }^{\circ}$
11	$12.8{ }^{\circ}$	11	$19.9{ }^{\circ}$	16.3°
12	$19.4{ }^{\circ}$	12	17°	18.2°
Variants are in BOR with β_{2}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{3}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	$19.4{ }^{\circ}$	1	$32.6{ }^{\circ}$	26°
2	16.2°	2	32.6°	$24.4{ }^{\circ}$
3	$19.4{ }^{\circ}$	3	31.9°	25.7°
4	$19.4{ }^{\circ}$	4	$32.6{ }^{\circ}$	26°
5	$19.4{ }^{\circ}$	5	25.6°	$22.5{ }^{\circ}$
6	$19.4{ }^{\circ}$	6	32.6°	26°
7	$19.4{ }^{\circ}$	7	32.6°	26°
8	10.5°	8	27.2°	$18.8{ }^{\circ}$
9	$19.4{ }^{\circ}$	9	$32.6{ }^{\circ}$	26°
10	18.3°	10	28.3°	23.3°
11	$19.4{ }^{\circ}$	11	28°	23.7°
12	$12.8{ }^{\circ}$	12	$24.4{ }^{\circ}$	18.6°
Variants are in BOR with β_{3}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	$19.1{ }^{\circ}$	1	31.9°	25.5°
2	$19.9{ }^{\circ}$	2	$32.6{ }^{\circ}$	26.2°
3	$19.9{ }^{\circ}$	3	$32.6{ }^{\circ}$	26.2°
4	17.7°	4	32.6°	25.1°
5	$19.9{ }^{\circ}$	5	32.6°	26.2°
6	$15.4{ }^{\circ}$	6	28.3°	$21.8{ }^{\circ}$
7	17°	7	$24.4{ }^{\circ}$	20.7°
8	$19.9{ }^{\circ}$	8	28°	24°
9	$19.9{ }^{\circ}$	9	27.2°	23.5°
10	$19.9{ }^{\circ}$	10	$32.6{ }^{\circ}$	26.2°
11	$9.8{ }^{\circ}$	11	$25.6{ }^{\circ}$	17.7°
12	$19.9{ }^{\circ}$	12	32.6°	26.2°

Table 3: Analysis of TJ 2. The deviation from the BOR with adjacent grains for 3 three sets of 12α variants that are oriented in the Burgers relationship with grains β_{1}, β_{2} and β_{2} respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_{1}				
variant	$\triangle \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	variant	$\triangle \mathrm{BOR}_{\text {th }}$ with respect to \qquad	$\Delta \mathrm{BOR}_{\text {thav }}$
1	27.8°	1	27.4°	27.6°
2	24.2°	2	26.3°	25.3°
3	11.1°		27.4°	19.2°
4	14.7°	4	27.4°	21.0°
5	11.3°	5	22.9°	17.1°
6	11.1°	6	27.4°	19.2°
7	33.3°	7	27.4°	30.3°
8	31.0°	8	20.5°	25.7°
9	18.9°	9	27.4°	23.1°
10	11.1°	10	24.2°	17.6°
11	$38.8{ }^{\circ}$	11	27.4°	33.1°
12	34.6°	12	18.9°	26.7°
Variants are in BOR with β_{2}				
variant	$\triangle \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\triangle \mathrm{BOR}_{\mathrm{th}}$ with respect to β_{3}	$\Delta \mathrm{BOR}_{\text {thav }}$
1	18.9°	1	15.1°	17.0°
2	11.1°	2	15.1°	13.1°
3	31.0°	3	22.7°	26.8°
4	$34.9{ }^{\circ}$	4	18.2°	26.6°
5	$11.1{ }^{\circ}$	5	16.6°	$13.8{ }^{\circ}$
6	11.3°	6	24.9°	18.1°
7	24.2°	7	38.7°	31.5°
8	27.8°	8	33.9°	30.9°
9	33.3°	9	31.0°	32.1°
10	33.3°	10	30.3°	31.8°
11	11.1°	11	16.6°	$13.8{ }^{\circ}$
12	14.7°	12	17.7°	16.2°
Variants are in BOR with β_{3}				
variant	$\Delta \mathrm{BOR}_{\mathrm{th}}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\mathrm{th}}$ with respect to β_{2}	$\triangle \mathrm{BOR}_{\text {thav }}$
1	26.3°	1	18.2°	22.2°
2	27.4°	2	22.7°	25.0°
3	27.4°	3	16.6°	22.0°
4	27.4°	4	17.7°	$22.5{ }^{\circ}$
5	27.4°	5	24.9°	26.2°
6	22.9°	6	16.6°	$19.8{ }^{\circ}$
7	20.5°	7	37.1°	$28.8{ }^{\circ}$
8	27.4°	8	42.0°	34.7°
9	24.2°	9	15.1°	$19.6{ }^{\circ}$
10	$27.4{ }^{\circ}$	10	15.1°	21.2°
11	18.9°	11	30.3°	$24.6{ }^{\circ}$
12	27.4°	12	31.0°	29.2°

Table 4: Analysis of TJ 3. The deviation from the BOR with adjacent grains for 3 three sets of 12α variants that are oriented in the Burgers relationship with grains β_{1}, β_{2} and β_{3} respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_{1}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{3}	$\triangle \mathrm{BOR}^{\text {av }}$
1	25.1°	1	7.2	16.2
2	25.9°	2	7.2	16.5
3	$22.1{ }^{\circ}$	3	25.2	23.7
4	$25.9{ }^{\circ}$	4	25.2	25.6
5	15.9°	5	12.7	14.3
6	25.2°	6	22.6	23.9
7	$25.9{ }^{\circ}$	7	38.2	32.0
8	$25.9{ }^{\circ}$	8	37.2	31.6
9	$25.9{ }^{\circ}$	9	24.2	25.1
10	23.3°	10	24.2	23.8
11	25.9°	11	12.7	19.3
12	20.0°	12	15.9	17.9
Variants are in BOR with β_{2}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1} (in degrees)	variant	$\Delta \mathrm{BOR}_{\mathrm{th}}$ with respect to β_{3}	$\Delta \mathrm{BOR}_{\text {tav }}$
1	25.9°	1	19.2°	22.5°
2	25.1°	2	18.2°	21.7°
3	25.9°	3	$19.5{ }^{\circ}$	$22.7{ }^{\circ}$
4	$22.1{ }^{\circ}$	4	$19.5{ }^{\circ}$	20.8°
5	25.2°	5	$12.4{ }^{\circ}$	$18.8{ }^{\circ}$
6	15.9°	6	$12.4{ }^{\circ}$	14.1°
7	$25.9{ }^{\circ}$	7	$19.8{ }^{\circ}$	$22.8{ }^{\circ}$
8	25.9°	8	$19.8{ }^{\circ}$	$22.8{ }^{\circ}$
9	23.3°	9	42.2°	32.7°
10	25.9°	10	40.7°	33.3°
11	20.0°	11	18.2°	$19.1{ }^{\circ}$
12	25.9°	12	$22.5{ }^{\circ}$	$24.2{ }^{\circ}$
Variants are in BOR with β_{3}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\mathrm{th}}$ with respect to β_{2}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	7.2°	1	18.2°	12.7°
2	7.2°	2	$19.2{ }^{\circ}$	$13.2{ }^{\circ}$
3	24.2°	3	$19.8{ }^{\circ}$	22.0°
4	24.2°	4	$19.8{ }^{\circ}$	$22.0{ }^{\circ}$
5	25.2°	5	$42.1{ }^{\circ}$	$33.7{ }^{\circ 0}$
6	25.2°	6	40.5°	$32.9{ }^{\circ}$
7	$15.9{ }^{\circ}$	7	22.5°	19.2°
8	12.7°	8	18.2°	$15.4{ }^{\circ}$
9	12.7°	9	$12.4{ }^{\circ}$	12.5°
10	22.6°	10	$12.4{ }^{\circ}$	17.5°
11	$35.8{ }^{\circ}$	11	$19.5{ }^{\circ}$	27.7°
12	37.5°	12	$19.5{ }^{\circ}$	28.5°

Table 5: Analysis of TJ 4. The deviation from the BOR with adjacent grains for 3 three sets of 12α variants that are oriented in the Burgers relationship with grains β_{1}, β_{2} and β_{3} respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_{1}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	variant	$\Delta \mathrm{BOR}_{\mathrm{th}}$ with respect to β_{3}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	19.7°	1	18.6	19.1
2	27.9°	2	18.6	23.2
3	$34.3{ }^{\circ}$	3	18.6	26.5
4	31.6°	4	9.0	20.3
5	23.7°	5	18.6	21.2
6	22.0°	6	15.4	18.7
7	9.9°	7	18.6	14.2
8	11.5°	8	18.6	15.0
9	19.7°	9	18.6	19.1
10	24.2°	10	17.3	20.7
11	28.9°	11	13.2	21.1
12	28.9°	12	18.6	23.8
Variants are in BOR with β_{2}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{3}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	28.9°	1	30.6°	29.7°
2	$28.9{ }^{\circ}$	2	31.1°	30.0°
3	11.5°	3	$14.6{ }^{\circ}$	$13.0{ }^{\circ}$
4	$9.9{ }^{\circ}$	4	$9.0{ }^{\circ}$	$9.4{ }^{\circ}$
5	27.9	5	29.0°	28.4
6	19.7°	6	$23.8{ }^{\circ}$	21.7°
7	38.2°	7	24.3°	31.2°
8	38.2°	8	25.9°	$32.0{ }^{\circ}$
9	24.2°	9	31.1°	27.6°
10	$19.7{ }^{\circ}$	10	$23.8{ }^{\circ}$	21.7°
11	23.7°	11	37.2°	30.5°
12	22.0°	12	37.2°	$29.6{ }^{\circ}$
Variants are in BOR with β_{3}				
variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{1}	variant	$\Delta \mathrm{BOR}_{\text {th }}$ with respect to β_{2}	$\Delta \mathrm{BOR}_{\text {th-av }}$
1	18.6°	1	$23.8{ }^{\circ}$	21.2°
2	18.6°	2	29.0°	$23.8{ }^{\circ}$
3	9.0°	3	31.1°	20.0°
4	18.6°	4	31.1°	24.9°
5	$15.4{ }^{\circ}$	5	$24.3{ }^{\circ}$	$19.8{ }^{\circ}$
6	18.6°	6	25.9°	22.2°
7	18.6°	7	9.0°	$13.8{ }^{\circ}$
8	18.6°	8	$14.6{ }^{\circ}$	16.6°
9	17.3°	9	$23.8{ }^{\circ}$	20.5°
10	18.6°	10	31.1°	$24.9{ }^{\circ}$
11	18.6°	11	$32.9{ }^{\circ}$	25.7°
12	13.2°	12	30.6°	21.9°

Table 6: Analysis of TJ 5. The deviation from the BOR with adjacent grains for 3 three sets of 12α variants that are oriented in the Burgers relationship with grains β_{1}, β_{2} and β_{3} respectively. The experimentally observed variant is in bold lettering.

The 4 special misorientations between β grains that allow $\mathrm{GB} \alpha$ to be BOR related to both pairs of grains are given in Table 7 [2]

1.	$[011] / 60^{0}$
2.	$[011] / 49.47^{0}$
3.	$[011] / 10.52^{0}$
4.	$[111] / 60^{\circ}$

Table 7: Special misorientations between β grains [2]

A brute force method has been used to examine the misorientations between 3β grains at a triple junction that will allow an α variant at the triple junction to be Burgers related to all 3 grains. The method consists of selecting a given [110] axis in grain 1 and establishing the orientation of grain 2 when rotated by a Type 1 misorientation as in Table 7 above. Then the orientation of grain 3 is established from grain 2 by rotation about all possible $\langle 110\rangle$ and $<111>$ axes of grain 2 (including positive and negative rotations) by the angles associated with Type 1-4 misorientations of Table 7. Finally, the disorientation between grain 1 and grain 3 is then examined for all these possibilities. The combinations that lead to special orientations between grain 1 and grain 3 as well are highlighted in bold in Table 8. These again reduce to 4 distinct cases of special misorientations at triple junctions that will allow TJ α to be BOR related to all 3 grains of triple junction.

Sl. No	β_{12} axis	$\beta_{12}\left(^{\circ}\right)$	β_{23} axis	$\beta_{23}\left({ }^{\circ}\right)$	β_{13} axis	$\boldsymbol{\beta}_{13}\left({ }^{\circ}\right)$
1	[110]	60	[-1-10]	60	[110]	60
2	[110]	60	[1-10]	60	[-0.7 0.40 .7 0.7]	31.1
3	[110]	60	[-110]	60	[0.4-0.7-0.7]	31.1
4	[110]	60	[101]	60	[0.1-0.6-0.8]	45.1
5	[110]	60	[-10-1]	60	[0.40 .80 .80 .4]	18.2
6	[110]	60	[10-1]	60	[0.6 0.8-0.1]	45.1
7	[110]	60	[-101]	60	[-0.3-0.0 1.0]	31.1
8	[110]	60	[011]	60	[0.80 .60 .1]	45.1
9	[110]	60	[0-1-1]	60	[-0.0-0.3-1.0]	31.1
10	[110]	60	[01-1]	60	[-0.6 0.1 0.8]	45.1
11	[110]	60	[0-11]	60	[0.8 0.4-0.4]	18.2
12	[110]	-60	[110]	60	[-1-10]	60
1	[110]	60	[110]	49.5	[-1-10]	10.5
2	[110]	60	[-1-10]	49.5	[-111]	60
3	[110]	60	[1-10]	49.5	[-0.7 0.6 0.4]	30.6
4	[110]	60	[-110]	49.5	[0.6-0.7-0.4]	30.6
5	[110]	60	[101]	49.5	[-0.4-0.5 0.8]	54
6	[110]	60	[-10-1]	49.5	[0.30 .80 .6 0.6]	27.8
7	[110]	60	[10-1]	49.5	[0.40 .9 0.0.2]	42.8
8	[110]	60	[-101]	49.5	[-0.0-0.2 1.0]	30.6
9	[110]	60	[011]	49.5	[0.90 .40 .2]	42.8
10	[110]	60	[0-1-1]	49.5	[-0.2-0.0-1.0]	30.6
11	[110]	60	[01-1]	49.5	[-0.5-0.4-0.8]	54
12	[110]	60	[0-11]	49.5	[0.8 0.3-0.6]	27.8
1	[110]	60	[110]	10.5	[-1-10]	49.5
2	[110]	60	[-1-10]	10.5	[-11-1]	60
3	[110]	60	[1-10]	10.5	[-0.6 0.7-0.4]	52.1
4	[110]	60	[-110]	10.5	[0.7-0.6 0.4]	52.1

5	$[110]$	60	$[101]$	10.5	$[-0.7-0.70 .2]$	55.4
6	$[110]$	60	$[-10-1]$	10.5	$[0.6-0.60 .4]$	60
7	$[110]$	60	$[10-1]$	10.5	$[-0.40 .8-0.5]$	54
8	$[110]$	60	$[-101]$	10.5	$[0.7-0.50 .6]$	52.1
9	$[110]$	60	$[011]$	10.5	$[0.8-0.40 .5]$	54
10	$[110]$	60	$[0-1-1]$	10.5	$[-0.50 .7-0.6]$	52.1
11	$[110]$	60	$[01-1]$	10.5	$[-0.7-0.7-0.2]$	55.4
12	$[110]$	60	$[0-11]$	10.5	$[-0.60 .6-0.4]$	60
			$[111]$	60	$[-0.50 .20 .8]$	34.8
1	$[110]$	60	$[-1-1-1]$	60	$[-0.50 .20 .8]$	34.8
2	$[110]$	60	$[11-1]$	60	$[0.2-0.5-0.8]$	34.8
3	$[110]$	60	$[-1-11]$	60	$[0.2-0.5-0.8]$	34.8
4	$[110]$	60	$[-11]$	$\mathbf{6 0}$	$[\mathbf{1 1 0}]$	$\mathbf{1 0 . 5}$
$\mathbf{5}$	$[\mathbf{1 1 0}]$	$\mathbf{6 0}$	$[\mathbf{1 - 1} \mathbf{- 1}]$	$\mathbf{6 0}$	$[\mathbf{1 1 0}]$	$\mathbf{1 0 . 5}$
$\mathbf{6}$	$[\mathbf{1 1 0}]$	$\mathbf{6 0}$	$[\mathbf{1 - 1 1}]$	$\mathbf{6 0}$	$[\mathbf{1 1 0}]$	$\mathbf{4 9 . 5}$
$\mathbf{7}$	$[\mathbf{1 1 0}]$	$\mathbf{6 0}$	$[\mathbf{- 1 1 - 1]}$	$\mathbf{6 0}$	$[\mathbf{1 1 0}]$	$\mathbf{4 9 . 5}$
$\mathbf{8}$	$[\mathbf{1 1 0}]$	$\mathbf{6 0}$				

Table 8: The table lists all possible combinations of special misorientation relationships (see Table 1 of the main paper) between adjacent grains β_{1} / β_{2} and β_{2} / β_{3} at a triple junction. Those in bold lettering also allow a special misorientation relationship between β_{2} / β_{3}
[1] R. Shi, V. Dixit, G.B. Viswanathan, H.L. Fraser and Y. Wang, Experimental assessment of variant selection rules for grain boundary α in titanium alloys, Acta Mater. 102 (2016), pp. 197-211.
[2] C. Cayron, Importance of the $\alpha \rightarrow \beta$ transformation in the variant selection mechanisms of thermomechanically processed titanium alloys, Scr. Mater. 59 (2008), pp. 570-573.

