SUPPLEMENTARY INFORMATION

Table 1 provides Euler angles of all β grains and TJ α for each of the 5 triple junctions that have been analyzed. Table 2-6 contains the deviation from BOR of all 36 possible TJ α variants at each triple junction from each of the 2 adjacent grains to which they are nonburgers oriented. The methods used in these calculations are similar to those used in [1] and are not repeated here. Finally, Table 8 provides all combinations of 3 β grains at a triple junction related by a special misorientations given in Table 7 [2] that will allow TJ α to be BOR related to all 3 grains

TI 1	Euler Angles (Φ_1, Φ, Φ_2) [°]			Disorientation [°]	
111	Φ_1	Φ	Φ_2	Angle/ Axis	
β_1	95.1	25.8	224.4	β_1/β_2 29.6°/ $[\overline{21}\ \overline{3}\ \overline{5}]$	
β_2	24.2	25.0	296.7	β_2/β_3 46.5° [4 17 11]	
β3	195.6	30.7	203.8	β_3/β_1 46.0°/ [$\overline{26}\ \overline{3}\ \overline{10}$]	
α	43.4	67.6	306.3		
TIO	Euler Angles (Φ_1, Φ, Φ_2) [°]			Disorientation [°]	
IJ 2	Φ_1	Φ	Φ_2	Angle/ Axis	
β_1	286.9	26.9	33.8	β_1/β_2 19.4°/ [138 $\overline{22}$]	
β_2	262.1	25.9	72.1	β_2/β_3 32.5°/ [2 5 23]	
β3	266.6	18.6	126.2	β_{3}/β_{1} 19.9°/ [$\overline{2}$ 13 $\overline{19}$]	
α	296.1	59.3	77.3		
TI 3	Eule	r Angles (Φ_1, Φ, Φ	92) [°]	Disorientation [°]	
IJ 3	Φ_1	Φ	Φ_2	Angle/ Axis	
β_1	169.2	35.7	195.9	β_1/β_2 51.3°/ [18 16 $\overline{13}$]	
β2	56.3	27.5	342.6	β_2/β_3 49.1°/ [11 $\overline{10}$ $\overline{6}$]	
β3	155.0	33.4	181.5	β_{3}/β_{1} 27.4°/ [3 7 $\overline{24}$]	
α	109.7	58.3	265.2		
TT 4	Euler Angles (Φ_1, Φ, Φ_2) [°]			Disorientation [°]	
1J 4	Φ_1	Φ	Φ_2	Angle/ Axis	
β_1	283.0	26.6	114.4	β_1/β_2 25.9°/ [12 4 17]	
β2	250.7	29.5	122.5	β_2/β_3 57.9°/[16 5 16]	
β3	68.2	36.6	326.8	β_3/β_1 59.8°/ [13 16 9]	
α	169.9	83.0	192.1		
TJ 5	Eule	Euler Angles (Φ_1, Φ, Φ_2) [°]		Disorientation [°]	
	Φ_1	Φ	Φ_2	Angle/ Axis	
β_1	338.4	33.6	343.4	β_1/β_2 53.8°/ [23 3 17]	
β2	68.3	36.7	326.7	β_2/β_3 49.3°/ [23 16 2]	
\Re_3	313.3	43.1	7.6	β_3/β_1 18.6°/ [5 7 2]	
α	264.9	53.0	74.8		

Table 1: The Euler angles (Bunge notation) for the three β grains constituting all TJ examined in this study. The disorientations between the 3 grains are also provided.

	Var	iants are in E	SOR with β_1	
variant	ΔBOR_{th} with respect to β_2	variant	ΔBOR_{th} with respect to β_3	$\Delta \text{BOR}_{\text{th-av}}$
1	29.6°	1	23.7°	26.7°
2	22.4°	2	27.9°	25.1°
3	29.6°	3	33.9°	31.8°
4	25.0°	4	38.3°	31.6°
5	29.0°	5	34.8°	31.9°
6	21.5°	6	33.9°	27.7°
7	29.6°	7	43.1°	36.4°
8	25.7°	8	43.6°	34.7°
9	28.7°	9	20.2°	24.4°
10	29.6°	10	25.9°	27.7°
11	29.6°	11	32.1°	30.8°
12	29.6°	12	36.6°	33.1°
	Var	iants are in E	BOR with β ₂	
variant	ΔBOR_{th} with respect to β_1	variant	ΔBOR_{th} with respect to β_3	$\Delta \text{BOR}_{\text{th-av}}$
1	22.4°	1	22.1°	22.2°
2	29.6°	2	21.3°	25.5°
3	25.0°	3	32.2°	28.6°
4	29.6°	4	28.5°	29.1°
5	21 .5°	5	42 .0°	31.8°
6	29.0°	6	42.6°	35.8°
7	25.7°	7	28.5°	27.1°
8	29.6°	8	27.2°	28.4°
9	29.6°	9	27.2°	28.4°
10	28.7°	10	28.7°	28.7°
11	29.6°	11	13.4°	21.5°
12	29.6°	12	19.6°	24.6°
	Var	iants are in E	OR with β ₃	
variant	ΔBOR_{th} with respect to β_1	variant	ΔBOR_{th} with respect to β_2	∆BOR _{th-av}
1	34.2°	1	19.6°	26.9°
2	32.1°	2	13.4°	22.7°
3	33.9°	3	21.3°	27.6°
4	34.8°	4	22.10	28.4°
5	20.2°	5	35.8°	28.0°
6	25.9°	6	35.4°	30.6°
7	23.7	7	27 2°	27 5°
/ &	27.5	2 2	27.2	27.5
0	20.7	0	20.3	20.1
9 10	22.00	9	20.J	22.4 22.00
10	33.9	10	32.2°	33.U ²
11	38.U°	11	20./°	33.4°
12	34.8 [°]	12	∠/.∠~	31.U°

Table 2: Analysis of TJ 1. The deviation from the BOR with adjacent grains for 3 three sets of 12 α variants that are oriented in the Burgers relationship with grains β_1 , β_2 and β_2 respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_1					
variant	ΔBOR_{th} with respect to β_2	variant	ΔBOR_{th} with respect to β_3	$\Delta \text{BOR}_{\text{th-av}}$	
1	16.2°	1	17.7°	16.9°	
2	19.4°	2	19.9°	19.6°	
3	19.4°	3	19.1°	19.2°	
4	19.4°	4	19.9°	19.6°	
5	19.4°	5	9.8°	14.6°	
6	19.4°	6	19.9°	19.6°	
7	10.5°	7	19.9°	15.2°	
8	19.4°	8	19.9°	19.6°	
9	18.3°	9	19.9°	19.1°	
10	19.4°	10	15.4°	17.4°	
11	12.8°	11	19.9°	16.3°	
12	19.4°	12	17°	18.2°	
1	Var	iants are in B	OR with β_2		
variant	ΔBOR_{th} with respect to β_1	variant	ΔBOR_{th} with respect to β_3	∆BOR _{th-av}	
1	19.4°	1	32.6°	26°	
2	16.2°	2	32.6°	24.4°	
3	19.4°	3	31.9°	25.7°	
4	19.4°	4	32.6°	26°	
5	19.4°	5	25.6°	22.5°	
6	19.4°	6	32.6°	26°	
7	19.4°	7	32.6°	26°	
8	10.5°	8	27.2°	18.8°	
9	19.4°	9	32.6°	26°	
10	<u>18.3°</u>	10	<u>28.3°</u>	23.3°	
11	<u>19.4°</u>	11	288	23.7	
12	12.8	12	24.4°	18.0°	
· ,	Var	iants are in B	OR with β_3		
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	∆BORth-av	
1	μ ₁ 10.1°	1	μ ₂ 21.0°	25 50	
1	19.1	2	22.60	25.5	
2	19.9	2	32.0	20.2	
3	19.9	3	32.0	20.2	
5	1/./	5	32.0	23.1	
5	19.9	5	32.0	20.2	
7	13.4	7	20.3 24 40	21.0	
0	10.09	0	24.4	20.7	
8	19.9	<u> </u>	20-	24-	
<u> </u>	19.9~	9 10	21.2°	25.3	
10	19.9	10	32.0	20.2	
	9.80	11	25.6°	17.7	
12	19.9°	12	32.6°	26.2	

Table 3: Analysis of TJ 2. The deviation from the BOR with adjacent grains for 3 three sets of 12 α variants that are oriented in the Burgers relationship with grains β_1 , β_2 and β_2 respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_1					
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	ΔBOR_{th-av}	
	β2		β3		
1	27.8°	1	27.4°	27.6°	
2	24.2°	2	26.3°	25.3°	
3	11.1°	3	27.4°	19.2°	
4	14.7°	4	27.4°	21.0°	
5	11.3°	5	22.9°	17.1°	
6	11.1°	6	27.4°	19.2°	
7	33.3°	7	27.4°	30.3°	
8	31.0°	8	20.5°	25.7°	
9	18.9°	9	27.4°	23.1°	
10	11.1°	10	24.2°	17.6°	
11	38.8°	11	27.4°	33.1°	
12	34.6°	12	18.9°	26.7°	
	Va	riants are in B	OR with β_2		
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	$\Delta \mathrm{BOR}_{\mathrm{th-av}}$	
	β ₁		β3		
1	18.9°	1	15.1°	17.0°	
2	11.1°	2	15.1°	13.1°	
3	31.0°	3	22.7°	26.8°	
4	34.9°	4	18.2°	26.6°	
5	11.1°	5	16.6 °	13.8 °	
6	11.3°	6	24.9°	18.1°	
7	24.2°	7	38.7°	31.5°	
8	27.8°	8	33.9°	30.9°	
9	33.3°	9	31.0°	32.1°	
10	33.3°	10	30.3°	31.8°	
11	11.1°	11	16.6°	13.8°	
12	14.7°	12	17.7°	16.2°	
12	Var	iants are in R(\mathbf{OR} with \mathbf{B}_2	10.2	
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	ABOR _{th-av}	
	β ₁		β ₂	u/	
1	26.3°	1	18.2°	22.2°	
2	20.3 27.4°	2	22.7°	25.0°	
3	27.4	3	16.6°	22.0°	
3	27.4	3	17.7°	22.0	
- +	27.4		1/./	22.3	
<u> </u>	27.4	<u> </u>	24.9°	20.2	
0	22.9~	0	10.6°	19.8°	
/	20.5°	/	3/.1°	28.8°	
8	27.4°	8	42.0°	34.7°	
9	24.2°	9	15.1°	19.6°	
10	27.4°	10	15.1°	21.2°	
11	18.9°	11	30.3°	24.6°	
12	27.4°	12	31.0°	29.2°	

Table 4: Analysis of TJ 3. The deviation from the BOR with adjacent grains for 3 three sets of 12 α variants that are oriented in the Burgers relationship with grains β_1 , β_2 and β_3 respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_1						
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	ΔBOR _{av}		
	β2		β3			
1	25.1°	1	7.2	16.2		
2	25.9°	2	7.2	16.5		
3	22.1°	3	25.2	23.7		
4	25.9°	4	25.2	25.6		
5	15.9°	5	12.7	14.3		
6	25.2°	6	22.6	23.9		
7	25.9°	7	38.2	32.0		
8	25.9°	8	37.2	31.6		
9	25.9°	9	24.2	25.1		
10	23.3°	10	24.2	23.8		
11	25.9°	11	12.7	19.3		
12	20.0°	12	15.9	17.9		
		riants are in B	OR with β_2	ADOD		
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	ΔBOKtav		
1	p1 (in degrees)	1	p3	22.59		
1	25.9°	1	19.2°	22.5°		
2	25.1°	2	18.2°	21.7°		
3	25.9°	3	19.5°	22.7°		
4	22.10	4	19.5°	20.8		
5	25.2°	5	12.4°	18.85		
6	15.9°	6	12.4°	14.1°		
7	25.9°	7	19.8°	22.8°		
8	25.9°	8	19.8°	22.8°		
9	23.3°	9	42.2°	32.7°		
10	25.9°	10	40.7°	33.3°		
11	20.0°	11	18.2°	19.1°		
12	25.9°	12	22.5°	24.2°°		
	Var	riants are in B	OR with β ₃			
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	ΔBOR_{th-av}		
	β1		β2			
1	7.2°	1	18.2°	12.7°		
2	7.2°	2	19.2 °	13.2°		
3	24.2°	3	19.8°	22.0°		
4	24.2°	4	19.8°	22.0°		
5	25.2°	5	42.1°	33.7°°		
6	25.2°	6	40.5°	32.9°		
7	15.9°	7	22.5°	19.2°		
8	12.7°	8	18.2°	15.4°		
9	12.7°	9	12.4°	12.5°		
10	22.6°	10	12.4°	17.5°		
11	35.8°	11	19.5°	27.7°		
12	37.5°	12	19.5°	28.5°		

Table 5: Analysis of TJ 4. The deviation from the BOR with adjacent grains for 3 three sets of 12 α variants that are oriented in the Burgers relationship with grains β_1 , β_2 and β_3 respectively. The experimentally observed variant is in bold lettering.

Variants are in BOR with β_1					
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	ΔBOR_{th-av}	
1	β_2		β ₃	10.1	
1	19.7°	1	18.6	19.1	
2	27.9°	2	18.6	23.2	
3	34.3°	3	18.6	26.5	
4	31.0°	4	9.0	20.3	
5	23.7	5	18.0	<u> </u>	
0	0.0°	0	13.4	16.7	
/	9.9 11.5°	/ 8	18.0	14.2	
<u>8</u>	10.7°	0	18.0	10.1	
10	19.7 24.2°	<u> </u>	17.3	20.7	
10	24.2	10	13.2	20.7	
12	28.9	12	19.2	21.1	
12	20.7	12	10.0 OD'4- 0	23.0	
variant	$ABOR_{4}$ with respect to	variant	$ABOR_{\pm}$ with respect to		
variant		variant	Bortin with respect to		
1	28.0°	1	20.6°	20.70	
2	20.7	1	21.10	29.7	
2	20.9	2	51.1	30.0	
3	11.3	3	14.0	13.0	
4	9.9°	4	9.0°	9.4°	
5	27.9	5	29.0°	28.4	
6	19.7°	6	23.8°	21.7*	
7	38.2°	7	24.3°	31.2°	
8	38.2°	8	25.9°	32.0°	
9	24.2°	9	31.1°	27.6°	
10	19.7°	10	23.8°	21.7°	
11	23.7°	11	37.2°	30.5°	
12	22.0°	12	37.2°	29.6°	
	Var	riants are in B	OR with β ₃		
variant	ΔBOR_{th} with respect to	variant	ΔBOR_{th} with respect to	ΔBOR_{th-av}	
	β_1		β_2		
1	18.6°	1	23.8°	21.2°	
2	18.6°	2	29.0°	23.8°	
3	9.0°	3	31.1°	20.0°	
4	18.6°	4	31.1°	24.9°	
5	15.4°	5	24.3°	19.8°	
6	18.6°	6	25.9°	22.2°	
7	18.6°	7	9.0°	13.8°	
8	18.6°	8	14.6°	16.6°	
9	17.3°	9	23.8°	20.5°	
10	18.6°	10	31.1°	24.9°	
11	18.6°	11	37.9°	25.7°	
12	13.2°	12	30.6°	21.9°	

Table 6: Analysis of TJ 5. The deviation from the BOR with adjacent grains for 3 three sets of 12 α variants that are oriented in the Burgers relationship with grains β_1 , β_2 and β_3 respectively. The experimentally observed variant is in bold lettering.

The 4 special misorientations between β grains that allow GB α to be BOR related to both pairs of grains are given in Table 7 [2]

1.	<mark>[011]/60⁰</mark>
2.	<mark>[011]/49.47⁰</mark>
<mark>3.</mark>	<mark>[011]/10.52⁰</mark>
<mark>4.</mark>	<mark>[111]/60⁰</mark>

Table 7: Special misorientations between β grains [2]

A brute force method has been used to examine the misorientations between 3 β grains at a triple junction that will allow an α variant at the triple junction to be Burgers related to all 3 grains. The method consists of selecting a given [110] axis in grain 1 and establishing the orientation of grain 2 when rotated by a Type 1 misorientation as in Table 7 above. Then the orientation of grain 3 is established from grain 2 by rotation about all possible <110> and <111> axes of grain 2 (including positive and negative rotations) by the angles associated with Type 1-4 misorientations of Table 7. Finally, the disorientation between grain 1 and grain 3 is then examined for all these possibilities. The combinations that lead to special orientations between grain 1 and grain 3 as well are highlighted in bold in Table 8. These again reduce to 4 distinct cases of special misorientations at triple junctions that will allow TJ α to be BOR related to all 3 grains of triple junction.

<mark>Sl. No</mark>	<mark>β₁₂ axis</mark>	β ₁₂ (°)	<mark>β₂₃ axis</mark>	<mark>β₂₃ (°)</mark>	β ₁₃ axis	β ₁₃ (°)
<mark>1</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[-1-10]</mark>	<mark>60</mark>	<mark>[110]</mark>	<mark>60</mark>
2	[110]	<mark>60</mark>	[1-10]	<mark>60</mark>	[-0.7 0.4 0.7]	<mark>31.1</mark>
<mark>3</mark>	[110]	<mark>60</mark>	[-110]	<mark>60</mark>	[0.4-0.7-0.7]	<mark>31.1</mark>
<mark>4</mark>	[110]	<mark>60</mark>	[101]	<mark>60</mark>	[0.1-0.6-0.8]	<mark>45.1</mark>
<mark>5</mark>	[110]	<mark>60</mark>	[-10-1]	<mark>60</mark>	[0.4 0.8 0.4]	<mark>18.2</mark>
<mark>6</mark>	[110]	<mark>60</mark>	[10-1]	<mark>60</mark>	[0.6 0.8-0.1]	<mark>45.1</mark>
<mark>7</mark>	<mark>[110]</mark>	<mark>60</mark>	[-101]	<mark>60</mark>	[-0.3-0.0 1.0]	<mark>31.1</mark>
<mark>8</mark>	<mark>[110]</mark>	<mark>60</mark>	[011]	<mark>60</mark>	[0.8 0.6 0.1]	<mark>45.1</mark>
<mark>9</mark>	<mark>[110]</mark>	<mark>60</mark>	[0-1-1]	<mark>60</mark>	[-0.0-0.3-1.0]	<mark>31.1</mark>
<mark>10</mark>	<mark>[110]</mark>	<mark>60</mark>	[01-1]	<mark>60</mark>	[-0.6 0.1 0.8]	<mark>45.1</mark>
<mark>11</mark>	<mark>[110]</mark>	<mark>60</mark>	[0-11]	<mark>60</mark>	[0.8 0.4-0.4]	<mark>18.2</mark>
<mark>12</mark>	<mark>[110]</mark>	<mark>-60</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[-1-10]</mark>	<mark>60</mark>
<mark>1</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[110]</mark>	<mark>49.5</mark>	<mark>[-1-10]</mark>	<mark>10.5</mark>
2	<mark>[110]</mark>	<mark>60</mark>	<mark>[-1-10]</mark>	<mark>49.5</mark>	<mark>[-111]</mark>	<mark>60</mark>
<mark>3</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[1-10]</mark>	<mark>49.5</mark>	<mark>[-0.7 0.6 0.4]</mark>	<mark>30.6</mark>
<mark>4</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[-110]</mark>	<mark>49.5</mark>	[0.6-0.7-0.4]	<mark>30.6</mark>
<mark>5</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[101]</mark>	<mark>49.5</mark>	[-0.4-0.5 0.8]	<mark>54</mark>
<mark>6</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[-10-1]</mark>	<mark>49.5</mark>	[0.3 0.8 0.6]	<mark>27.8</mark>
<mark>7</mark>	<mark>[110]</mark>	<mark>60</mark>	[10-1]	<mark>49.5</mark>	[0.4 0.9-0.2]	<mark>42.8</mark>
<mark>8</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[-101]</mark>	<mark>49.5</mark>	[-0.0-0.2 1.0]	<mark>30.6</mark>
<mark>9</mark>	<mark>[110]</mark>	<mark>60</mark>	[011]	<mark>49.5</mark>	[0.9 0.4 0.2]	<mark>42.8</mark>
<mark>10</mark>	<mark>[110]</mark>	<mark>60</mark>	[0-1-1]	<mark>49.5</mark>	[-0.2-0.0-1.0]	<mark>30.6</mark>
<u>11</u>	<mark>[110]</mark>	<mark>60</mark>	[01-1]	<mark>49.5</mark>	[-0.5-0.4-0.8]	<mark>54</mark>
<mark>12</mark>	<mark>[110]</mark>	<mark>60</mark>	[0-11]	<mark>49.5</mark>	[0.8 0.3-0.6]	<mark>27.8</mark>
<mark>1</mark>	<mark>[110]</mark>	<mark>60</mark>	[<u>110]</u>	<u>10.5</u>	<mark>[-1-10]</mark>	<mark>49.5</mark>
<mark>2</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[-1-10]</mark>	10.5	[-11-1]	<mark>60</mark>
3	[110]	<mark>60</mark>	[1-10]	<u>10.5</u>	[-0.6 0.7-0.4]	<u>52.1</u>
<mark>4</mark>	[110]	<mark>60</mark>	<mark>[-110]</mark>	<mark>10.5</mark>	[0.7-0.6 0.4]	52.1

<mark>5</mark>	[110]	<mark>60</mark>	[101]	<mark>10.5</mark>	[-0.7-0.7 0.2]	<mark>55.4</mark>
<mark>6</mark>	[110]	<mark>60</mark>	[-10-1]	<mark>10.5</mark>	[0.6-0.6 0.4]	<mark>60</mark>
<mark>7</mark>	[110]	<mark>60</mark>	[10-1]	<mark>10.5</mark>	[-0.4 0.8-0.5]	<mark>54</mark>
<mark>8</mark>	[110]	<mark>60</mark>	<mark>[-101]</mark>	<mark>10.5</mark>	[0.7-0.5 0.6]	<mark>52.1</mark>
<mark>9</mark>	[110]	<mark>60</mark>	[011]	<mark>10.5</mark>	[0.8-0.4 0.5]	<mark>54</mark>
<mark>10</mark>	[110]	<mark>60</mark>	[0-1-1]	<mark>10.5</mark>	[-0.5 0.7-0.6]	<mark>52.1</mark>
11	[110]	<mark>60</mark>	[01-1]	<mark>10.5</mark>	[-0.7-0.7-0.2]	<mark>55.4</mark>
<mark>12</mark>	[110]	<mark>60</mark>	[0-11]	<mark>10.5</mark>	[-0.6 0.6-0.4]	<mark>60</mark>
1	[110]	<mark>60</mark>	[111]	<mark>60</mark>	[-0.5 0.2 0.8]	<mark>34.8</mark>
<mark>2</mark>	[110]	<mark>60</mark>	<mark>[-1-1-1]</mark>	<mark>60</mark>	[-0.5 0.2 0.8]	<mark>34.8</mark>
<mark>3</mark>	[110]	<mark>60</mark>	[11-1]	<mark>60</mark>	[0.2-0.5-0.8]	<mark>34.8</mark>
<mark>4</mark>	[110]	<mark>60</mark>	<mark>[-1-11]</mark>	<mark>60</mark>	[0.2-0.5-0.8]	<mark>34.8</mark>
<mark>5</mark>	<mark>[110]</mark>	<mark>60</mark>	<mark>[-111]</mark>	<mark>60</mark>	<mark>[110]</mark>	<mark>10.5</mark>
<mark>6</mark>	[110]	<mark>60</mark>	[1-1-1]	<mark>60</mark>	<mark>[110]</mark>	10.5
<mark>7</mark>	[110]	<mark>60</mark>	[<mark>1-11]</mark>	<mark>60</mark>	[110]	<mark>49.5</mark>
8	[110]	<mark>60</mark>	[-11-1]	<mark>60</mark>	[110]	<mark>49.5</mark>

Table 8: The table lists all possible combinations of special misorientation relationships (see Table 1 of the main paper) between adjacent grains β_1/β_2 and β_2/β_3 at a triple junction. Those in bold lettering also allow a special misorientation relationship between β_2/β_3

[1] R. Shi, V. Dixit, G.B. Viswanathan, H.L. Fraser and Y. Wang, *Experimental assessment* of variant selection rules for grain boundary α in titanium alloys, Acta Mater. 102 (2016), pp. 197–211.

[2] C. Cayron, Importance of the $\alpha \rightarrow \beta$ transformation in the variant selection mechanisms of thermomechanically processed titanium alloys, Scr. Mater. 59 (2008), pp. 570–573.