Supplementary Materials to “Nonparametric Estimation
of Copula Regression Models with Discrete Outcomes”

A. Proofs

A.1 Proof of Consistency

Here are some simplified notations in the proof: Fj(ky) = Fi(k1|X1), Fo(ks) = F(ka|Xs),
H(s,t) = H(s,t;X), H(s,t;0) = H(s,t;X,0), and C’(s,t) = C’(s,t;ﬁ), where [ is the

underlying parameter.

Proof of Lemma 2.1. Recall that ¢, — 0. For v¥ k = 1,2,... as in Section 2.3, taking

minimum for the first n elements, u, = ming,_; nv’f is a nonzero decreasing sequence.

,,,,,

Therefore, an appropriate order of a,(s) can be chosen such that u,, ) > €, ie., oF > €,

for k < a,(s). O

To show the asymptotic properties of C’(s,t) defined in (6), we analyze it by pieces.
We first show the denominator is a consistent estimator of fy(sy)(s,t). Then, we show the
consistency of the numerator.

Denote the denominator as

n

fH(&t)(S,t) = % ZK [Gn_l(Hi (S) — 8), En_l(Hi (t) - t)} .

n =1

Lemma A.1 shows the consistency of the denominator.



Lemma A.1. Under Assumptions 2.2 and 2.1,

T (5:1) =5 frs(85,1). (A1)

Proof. Recall that K is a bounded on compact support. Without loss of generality, in the
proof we assume K (u,v) < 1 with support |(u,v)| < 1.

Let fusn(s,t) = 230 T, where Tp; = 1/ K [e,  (Hu(s) — s),ea (Hia(t) — t)].
That is, fH(S,t)(s,t) is the summation of a triangular array. We demonstrate the consis-
tency of fH(s,t)(s, t) using the weak law of large numbers (WLLN) for triangular arrays. It

is sufficient to show

1

E Z ETm, - fH(s,t)(‘S? t)a (AQ)
=1

1 2

ZETZ 5 0. (A.3)

n

First, to show (A.2), we divide the range of uy and s into four pieces, i.e.

BTy = [Tl (i < M"Y < My ©)| 4 BTt (s < M7, iy > 21370
+ E |:T1’L21 (,ul > an(S),,LLQ S Mgn(t))] + E |:Tnz]- (Ml > an(s),'l,LQ > Mgn(t))]

::Tl —+ T2 -+ T3 + T4.
(A.4)

We analyze the four pieces one by one.

Let f,, ., denote the joint density of (1, p2). The first term of (A.4) equals

an(s) by (t)

Ty=Y ) ik, k),

1=0 ko=0



where
ki+1 ko+1
Ml M2

Ti(k, k2) = e%/Mkl i K [, (Fi(k1) = 5) 60" (Fa(Ra) = 1)] fuy o (111, pr2)dpndpss.

n

(A.5)

Recall that K takes nonzero values only when
|(F1(k'1) — S,Fz(k'g) — t)’ S €n- (A6)

For ky < an(s),ky < bu(t), a necessary condition for (A.6) to hold is that M < u; <
MFFTLUMP < iy < MS2F!. Therefore, we can write the limits in (A.5) as (—o00,00). That

is,

Ti(k1, k2) :iz/ / K [e,  (Fi(ky) = 5), €07 (Fa(k2) = )] fur oo (1115 o) dpndps

1 a—Ss b —t
= K( >fp1 k1) FQ(kg)(a b)dadb

T2
€ €n €n

= / K (u,0) f7y (), Fo(ke) (8 + Uup, t + ve,)dudv,

where the last equation is derived by substitution. A Taylor series expansion up to first

order for fp k), mke) yields

TFy (), o (ko) (8 + U€n, t + vey)
:fFl(k‘l)»FQ(kQ) (37 t) + fFl(k1)7F2(k:2)71<S7 t)U,En =+ fFl(kl),FQ(k2)72(87 t)ven_lr_

1 1
§fF1(k1),F2(k2),11(3a thu’e, + §fF1(k1),F2(k2),22(Sa OV €n + fry (k) Fahe)12(s, t)uves + o(ey).

Since K is symmetric, [ K (u, v)ududv = 0, and [ K (u, v)uvdudv = 0. Moreover, [ K (u,v)dudv =

1. Denote fr(spn(s,t) = k:1 i 21@ Ofp1 k1), Fs(k2) (8, ), then we have

Ty = fresyn(s,t) +o(en),



where the residual term is o(e,) since ZZ?S& ZZ’;% TF (), Fo(ka),jj (5, 1) < 00,7 = 1,2, where

JFi(k1),Fo(ks),j; 1S the second order derivatives of fr () m k) With respect to jth component,

by Assumption 2.2. As a,(s) and b, (t) go to infinity with n,

T1 — fH(s,t) (S, t)

Then, we consider the second term Ty. As |K(u,v)| <1,

1 R e 1
T < 6_2/ / b (t) fm,uz(ﬂl,m)dﬂldm = e_ZP (M2 > Mgn(t)> . (A-7)
n J—oo JMy" n

By Assumption 2.1, T5 — 0. Similar arguments can be used to show that

1 a S
Ty < 5P (Nl > Mo >) -0,

n

]_ an (S S
Ty < =P (m > M™® g > M >> 0.
€

n

So (A.2) follows immediately.

Finally, we show (A.3). Since K is bounded by 1,

As Ty,; is positive, combining with (A.2) and that ne? — oo, we have

1 1
—ET72, < —ET,; — 0.
n ne

The lemma follows the WLLN for triangular arrays. O

Proof of Theorem 2.1. Given Lemma A.1, it is sufficient to show that the numerator of (6)

is a consistent estimator of fr (.4 (s,t)C(s,t). Similar to the denominator, the numerator of



(6), denoted as

R(s,0) = —5 3K [ (Hals) — s)oeu” (Halt) — )] Yi(5) (A8)

n =1

is the summation of a triangular array, i.e.,

where V,,; = 1/2K [e, '(Hi(s) — 5), €, H(Hia(t) — t)] Yi(B). Tt is sufficient to show

1 n
ﬁ Z EVnz — fH(s,t) (Sa t)C(Sv t)’ (Ag)

%Evni. — 0. (A.10)
We first show (A.9). Note that
E [Vm|Hzl(S), Hzg(t)] = K [En_1<Hi1(S) — S), En_1<Hi2(t) — tﬂ O [Hil(S), Hzg(t)] .

Similar ideas used to show (A.2) lead to the approximation
an(s) bn(t
E (V) Z Z /K U, V) [y (1), o (ka) (8 + U€n, T+ v€,)C (5 4 uep, t + ve,)dudo.
k1=0 k2=0
Taking the product of Taylor expansions of fr, (x,),mk,) and C at (s,t) yields
an(s) bn(t
Z Z C S, t fF1 k1),F2(k2) (S t) +0(€n)

k1=0 k2=0

Note that some terms are eliminated due to the symmetry of K. When n approaches infinity,



(A.9) follows immediately. In addition, since K and Y;(5) are bounded by 1,

%E (V2) < LE (Vi) = 0.

2
ne

So (A.10) holds and the stated result follows WLLN for triangular arrays. O

A.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Given consistency of the denominator in Section A.1, now we are in
a position to show the weak convergence of the numerator. We check the bias and variance
of the numerator and show they both converge to 0 at the appropriate rate.

Comparing C(s,t) and C(s,t) yields

Clsit) = Cs 1) + (s ma(s,t)
fH(s,t) (Sat) fH(s,t) (57t)

where
mi(s,t) = n—; ZK [, (Hir(s) = s),en (Hip(t) — t)] [C [Hia(s), Hia(t)] — C(s,1)]
ma(s,t) = % ZK lex" (Hia(s) = 5),en ' (Hia(t) — )] {Yi(B) — C [Hir(s), Hia(1)]} -

Among them, m(s,t) contributes to the bias while 7hy(s,t) contributes the variance of

A

C(s,t).
Variance. Since E (Y;(8)|wi, ptiz) = C[Hia(s), Hia(t)], one has E(ma(s, )| i1, piz) = 0,

which leads to that E [ma(s,t)] = 0. Thus, we focus on the variance of 7y(s,t). Note that

Var [ia(s, )] =— B [K [, (Hia(s) = 5) €0 (Hia(t) — )] {Yi(8) = C[Han(s), Ha(0)]}]”

4 n
ne,

(A.11)



To compute the variance of ms(s,t), we condition on H;(s,t)
E ({Y;(B) - C [Hﬂ(S), Hzg(t)]}Q |H11(8) = a, Hzg(t) = b) = C(CL, b) []_ - C’(a, b)] = O'Q(CL, b)

Since K and o are bounded, arguments analogous to those use to prove (A.2) lead to the

approximation

Var [mQ(S t)]
s) b (t) Akitt k2+1

net Z Z/kl / K [en ' (Fi(k1) — ), €n (FQ(kQ)—t)} o2 [Fy(ky), Fy(ky)] -

1
S o (1, p2)dpndps + o (@)

n

1 a—s b—t\" 9 1
= K ) o (avb)fFl(kl)sz(kﬂ(avb>dadb+0 ﬁ

€n €n

1 1
=— Z Z /K(u, 0)?02(8 + U€n, t + V€n) fr (1) Fo (ko) (S + UEn, t + vE,)dudv + 0 (W) :

n

As C and fr (k)55 (ks) are twice continuously differentiable over V', 02 fp, (k)5 (k) Carries over
the differentiability as a function of them. Denote a1 (s,t) = Ro(K)o?(s,t) fr(sn(s,t). The

Taylor series expansion of 0 fr k), k() yields

. 1 1
Var [1hy(s, t)] = Eam(s,t) +o (@) :

n

Note that the term ry(s,t) is the summation of a triangular array. To establish the
asymptotic distribution of ry(s,t), we now verify that Lyapunov’s central limit theorem

holds. Denote

1

Wi (s, t) = neZ

2 — K [ (Hil(s) —3) >€n_l<H12( ) — )} {Yi(B) — C [Hu(s), Hia(1)]},



then mo(s,t) = Y 1 wy;. It is sufficient to show

3

S B wn(s, t)
(S0, Var [wyi(s, 1))/

— 0. (A.12)

Note that

1 1
Var [wy;(s,t)] = ER> ag (s, t) +o (n%%) ,

st)nls, T 1
Elwni(sat)|3 < M/K(U,U)gdudv—i—o( )

= 3ed 3ed
nJey nJe;

1
:O(M¢)'

Hence, (A.12) follows immediately, and the Lyapunov condition is satisfied. Therefore,

7 t
el LN
\/Ozgl(S,t)
Since fr(sym(s:t) = frsn(s, 1),

ne2ms(s,t) —a N (0, Ro(K)C(s,t) [1 — C(s,t)] fru(sp(s,t)) .

By Slutsky’s theorem, substitution of fH(&t)(s,t) by fr(s(s,t) yields

Ny Amg(s,t) | N (0’ C(s,t)[1 —C(s,t)] RQ(K)> ' (A13)

" frn(s,t JH(sp)(5,1)

Bias. The mean of my(s,t) is

1

2
€n

E[iu(s,t)] = SE{K [6," (Hu(s) — s), e, ' (Hp(t) — )] [C [Hu(s), Ha(t)] — C(s,t)]} .

Since C' satisfies Lipschitz condition as in Assumption 2.4, given |(H;1(s) — s, Hia(t) — t)] <

€n, under which K[! (H;1(s) — s), €, ' (Ho(t) — t)] is nonzero,

|C [Hz (S), HQ(I&)] — C(S,t)| S &16%.



Similar arguments used to show (A.2) lead to the approximation

an(s) bn(t)
R a—s b—1t
Blints. 0]~y 3 > [ K (“28 220 (010 - €50 o a0 Didad + o)
™ k=0 ka=0 " "
an(s) bn(t)

=>"% /K(u,v) [C(s + uepn, t +ve,) — C(s,t)] -

k1=0 k2=0

TP k), o ks (85 1) (5 + uep, t + ve,)dudv + 0(6721).

Taking the product of the Taylor series expansions for C' up to second order and first order
for fr, (k). m(k) at (s,t), one gets
an(s) bn

(t)
Blin(s.0]= Y. - [ {K(w0)ed | 00060) e ro (s 00+

k1=0 k2=0

1
5022(57 t)fFl(k?l)7F2(k2) (87 t)U2 + Cl (57 t)fFl(h),Fz(kz),l(S? t)u2+

CQ(S, t)fFl(kl),F2(k2),2(3> t)’UQ] } dudv + 0(6721).
Let fr(s)nj(s,1),J = 1,2 denote the partial derivatives of fr(s4).(s,t) and define

Cl (87 t)fH(s,t),n,l(Sa t) 02(57 t)fH(s,t),n,2(57 t)
JH(s,)n(5,1) JH(s)n(5,1) '

1 1
Ca(s,t) 25011(3715) + 5022(5715) +
Recall the notation ky = [ u?K (u,v)du, hence we obtain

E[mi(s,t)] = kala(s, ) fr(spn (s, t)e2 + o(€2). (A.14)



We now compute the variance of 7 (s, t)

Var [m (s, t)]

4Var {K [ Hi1(8> - S) ,En_1<HZ‘2<t> - t)} [C [Hﬂ(S), Hﬁ(f)] - C(S, t)]}

"f (A1)
n€4 (E {K |: 71 Hﬂ(S) - S) y Enil(Hl'g(t) - t)] [C [Hﬂ(S), ng(t)] - C(S,t)]}
—{E (K [e;" (Hu(s) — ), e (Hia(t) — )] [C [Hir(5), Hia(£)] — C(s,)]) }2) :
The first term of (A.15) is
nl?E {K [ (Ha(s) = 5) . e~ (Hao(t) — 1)] [C [Hin(s), Ha(t)] — C(s, )]}
an(s) bn(t) ' _ 2
— (Z > K ( ) = Fall) =) 5, 1) ) - cmn) ro()
s) b (t)
Z Z /K w,v)? [C(s + uen, t +ve,) — C(s, 1)) TP (1), Fo (ko) (8 + u€p, t + vey)dudv

s

where the residuals are obtained by similar techniques used to compute E [ (s,t)]. By
Taylor expansions, we have [C(s + ue,,t + ve,) — C(s, 1)) TR (), Fo k) (8 4 U€n, T + vey) =
O(€%). Thus, the first term of (A.15) is of order O(1/n).

Then, we check the second term of (A.15) . From Equation (A.14),

B (K [ (Hal) ) o™ (Halt) = 0] € [Hao), Ha)] ~ Cls. )} = 0 (1),

Therefore,

n

Var ( nezm (s, t)) =0(e) — 0. (A.17)

10



Equations (A.14) and (A.17) entail that

\V/ne2 (ml(s,t) — liQCn(S,t)fH(&t)’n(S, t)ei) —p 0.

Recall ((s,t) defined in (10), it can be easily seen that (,(s,t) — ((s,t). As a,(s) and

b, (t) go to infinity, we have

Ve (1 (s,1) = raC(s,0) frgs (s, t)en) = 0.

Together with (A.1), it follows

\/n_e%( (s, 1) — mjiH(s’t)(S’t>C(s,t)ei) —, 0.

fH(s,t) (Sat) fH(s,t) (Sat)

Recall neS = O(1), hence we also have

Vnée (@M((s,t)ei _ @g(s,t)ei> —, 0. (A.18)

Hst) (S

Therefore,

Vne (% - fﬁz(@ﬁﬁi) —p 0. (A.19)
H(s,t 3

Summing up (A.13) and (A.19) finishes the proof.
[l

Hence the AMSE of C(s, t) is (C(s, 1) [1 — C(s,t)] Ra(K))/(n€? fron (s,t)) + 53¢ (s, t)%€L.
The above theorems guarantee the identifiability of underlying copula. With Assumptions

2.2, 2.1, 2.3, and 2.4, if there exists another copula C' compatible with data, the pointwise

11



difference between C and C at (s,t) € V is

2

C(s,t) — CN’(s,t)r <E|C(s,t) — C(s, t)r +E|C(s,t) — C(s,t)| — 0.

Since C'(s,t) — C(s,t) does not change with n, it has to be that C(s,t) — C(s,t) = 0 for any

(s,t) € V. That is, the copula is identifiable at V.

A.3 Proof of Theorem 2.3

We now demonstrate the asymptotic properties of the copula estimator defined in (6) when
the marginal parameters are unknown and the estimates are plugged in. We first analyze the
numerator and denominator of the estimator separately in Lemmas A.2 and A.4. Finally,
the distribution of the copula estimator follows as stated in Theorem 2.3.

For the following results Lemmas A.2, A.3, and A.4, we prove them with uniform kernel.
The proof for other compacted supported kernels is a trivial extension from the uniform kernel
with Lipschitz conditions of the kernel function. Let A, (s,t) denote the neighborhood of
(s,t) with radius €,.

Assumption 2.6 indicates that for any & > 0 there exists 7¢ > 0 such that for n big
enough,

P(5 ¢ B(B,n™ 7)) < €
where B(f,d) is a neighborhood of § with radius d.

Lemma A.2 (Consistency of Denominator). Under Assumptions 2.1, 2.2, 2.5, and 2.6,

n

1 R
et {1 (Hi(s,t:8) € Au(s.)) = 1[Hils,1) € Au(s,0)]} =, 0. (A.20)
Therefore,
% Z K [Enfl(Hil(s; B) - 5)7 Enfl(HlQ(S; B) — t)] —p fH(s,t)(Sa t) <A21)
noi=1

12



Proof. Different aspects of the method of proof can be found in Sukhatme (1958), Randles

(1984), and Frees (1995b). Denote
Lo, 1:0) = 1 (Hi(5,1;0) € A(s,1)

and
n

1
Sn(0;5,t) = et ; [lni(8,8; 8) — Lui(s, 8, 0)] .
For arbitrary € > 0, for any £ > 0, let 7¢ be the constant in Assumption 2.6. To show (A.20),
we calculate the probability

P

Sn(B;S,t)’ >¢eBe B(B,n_1/27§)>

Su(Bis,0)| > €. B ¢ B3, n™e))

SH(B;s,t)‘ > e) = P(

+P

gp( sup ﬁwwﬁhw)+P@¢BWmlmw>
e B(

B,n=1/2v¢)

= M1 + Mg.

By Assumption 2.6,
My < 5/2

We now check M. Since |l,,;(s,t; 8) — lni(s,t;0)| < 1, using a similar method as in Frees

(1995a), we can see there are two cases |l,;(s,t; 5) — lni(s,t;0)| can be 1, i.e.,

(| Hi(s,0) — (5. 8)] > e | i, 1) — (5,8)] <€) i= Ty
[lni(s,t; 8) — lui(s, t;:0)] <
L(|H;(s,80) — (s,1)] < €, |Hi(5,t) — (s,8)] > €,) == Ja.

For the first case Ji,

Jr < Uew < [Hi(s, t:0) — (s,2)]).

13



Further, subtracting |H;(s,t) — (s,t)| from both sides yields
Ju < (e — [Hils, t) = (s,1)] < [Hi(s,1;0) — (s,1)] — [Hi(s, 1) = (s,1)])
Similarly, for the second case Jy
Jo <1 (e, > |Hi(s,t;0) — (s,t)]) .
So we have
Jo ST([Hils,t) = (s,1)] — en < [Hi(s,1) = (s,8)] = [Hi(s, £:0) = (s, 1)]) -

Since if Jy; = 1, |H;(s,t) — (s,t)| < €,, and when Jy = 1, |H;(s,t) — (s,t)| > €,, we can

summarize these two cases obtaining

|lni(87t;5) - lni<s7t;0)| <1 (HHZ(Sat) - (37t)| - €n| < ||Hi(3’t) - (S7t)| - |Hi(87t; 0) - (S’t)H)
< 1(||Hi(s,t) = (5,t)] — €n] < |3 — 1)),

(A.22)

where the second inequality is due to Assumption 2.5.

Now we take supremum with respect to 6 over B(3,n~'/2v;), defining

(st X)) = sup (s, ;0) — lui(s, £ )]
0EB(B,n~1/27¢)
From (A.22), there exists a constant as such that

(s, 6 X5) < 1([[Hils,t) = (s,1)] — €] < ozzn*w%) :

By Assumption 2.2, the density of H;(s,t) is bounded. Thus |H;(s,t) — (s,t)| — €, which is

14



the linear transformation result from H;(s,t) also has a bounded density. For all n, i, and

(s,t), there exists a constant ag such that
En, (s, t; X;) < agyén". (A.23)
Note that supgep(g,n-1/2+¢) 190 (05 5,8)| < 1/(nep) 37, na(s, t; Xi). Therefore,

1 n
M, <P <n_e% ;nn(s,t;Xi) > e)
< P ([ S ot X)) — B (s X0] + S B (1) | >
5 n\S,{; i) T n\S, T; [ S, 1 7
- ne2 T g nenzizl ¢

=1

From (A.23),
as 75

ne2 ZEnn s, t; X;)

n

Hence, when n gets large,

neZZE% s, X;) < €/2.

By applying the Chebyshev’s inequality,

M, <P ( ! i (s, £ X;) — B (s, £ X,)] > e/2>

ne2 —

1 1 «
< W\/ar (@ Z [ (s,t; Xi) — Enn(s,t;Xi)]> .

n =1
Note that 7, (s, t; X;)* = n,(s, t; X;). By applying (A.23) we have

T L 2
S gy 2 [P B R B 6 X0 et

Therefore, when n is large enough M; < £/2. Now (A.20) follows from the fact that for

P

arbitrary € and £ > 0,

Sn(B;s,t)’ > e) <&

15



Finally, note that (A.21) follows from (A.1) and (A.20), and the proof is finished. O

Define

where Y;(0) is defined in (5).

Lemma A.3. Under Assumption 2.5, there exists a constant ay such that for all n and 1,
E sup ’hnl<37t7 9) - hm'(s>t; 5)‘ g CY4d2.

0€B(B,d)

Proof. We first note that
(5,83 0) = i (s, 15 B)| < |lni(s, 85 B) — lui(s, £ 0)| + [Y3(0) — Yi(B)] -
From (5),
Yi() = 1 (Yo < BT (Ha(s:00):00) Yoo < S (Ha(t:02):62))

As in Figure 1, when 6 approaches § with distance d small enough, there exists integer &

such that

My < X1B < MfH

MF < X0, < M},
with probability 1. Hence, almost surely,
FEU (. (s B — FY (H (s:0):0,) = k
1 (Hi(s:61); B1) = Fy 7 (Ha(s;601):01) = k.

By a similar argument, with small d, FQ(A) (Ho(t; Ba); Pa) = 2(71) (Hy(t;05);02). Hence,

Y:(0) = Y;(5) almost surely when d is small enough. Thus |h,;(s,t;0) — hai(s, t;8)] <

16



i (s,t; B) — Lui(s, t;0)]. Recall (A.23) in the proof of Lemma A.2, one obtains when d is

small enough, there exists constant ay such that for all n, ¢ and (s,t),

E sup ’hm,(S’tve) _hm(57t7ﬂ)‘ S Oé4d2,
PeB(5,d)

as required. O

Lemma A.4. With Assumptions 2.5 and 2.6,

n

1

/m 2
ney i—1

hai(5.85 8) = i(s, 15 8)| = 0 (A.24)
Proof. Denote

Rm(07 S,t) = hm(satvg) - hn%(satHB)

= 1(Hi(s,1;0) € An(s,1)) Yi(0) — 1 (Hi(s,1) € An(s,1)) Yi(5),

and

n

1
n(0;s,t) = R,i(0;s,1).
Qulbisnt) = =3 Rt

For any € > 0, for any £ > 0, let ¢ be the constant in Assumption 2.6. To show (A.24), we

check the probability

P (’Qn(3§ s,t)‘ > e) =P <‘Qn(3;87t)‘ >efe B(/in_m%))
P (|@u(Bis,t)| > .3 ¢ B3~ "))

+

<P ( sup [ Qu(655,1)] > ) + P (B¢ BB "))
feB(

B,n=1/2v¢)

= Il +[Q

By Assumption 2.6, I, < £/2.

17



Now define Ly;(s,t) = SuPpep(gn-1/24,) [Bni(0; 5,¢)|. By Lemma A.3,

0€B(B,n~1/2 ;)

EL,(s,t) <E ( sup |hni(s,t;0) — hyi(s, t; 9)|>
(A.25)

< aa(ve/vn)*.

At the same time,

sup |Qn(0a3at)| S ZLni(sut)7
0€B(Bn—1/2¢) ne2

n j=1

hence we have

Pl s [Qu0:s8)] > )

6 B(B.n—1/2)

<P Lm t
o \/ne% 121 & )

ni(8, 1) > )
=1 ?’Lzl

\/n_e,%z Li(s,t) — ELyi(s,t)]

It follows (A.25) that
1

. 1
ELni 7t S 2 .
N R T

Therefore, when n is large enough,

\/n_E%ZELm s,t) < €/2.

=1

Noting that

n

1 2
(@Z ni(s,1) — ELyi(s,t)] ) — Z ELpni(s,t)? — [ELui(s,t)]°) .

n
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Since |R,;(0;s,t)| < 1, one obtains L,;(s,t)? < Ly;(s,t). From (A.25),

1 2
(WZ ni S t ELm,(S,t)]> S @&4’75.

By Chebyshev’s inequality

P (mi ni(s,t) — ELy(s,t)] > 6/2)

=1
< L Z t) = ELn(s,t)] | =0
ni S nilS, .
6/2 \% n€721 =1
The theorem now follows Qn(B; s,t) =, 0. O

Proof of Theorem 2.3

Proof. Recall from Lemma A.2, we have (nme) " Yoy Loi(s, t; 3) is also a consistent estima-
tor of fr(ss(s,t). Following the proof of Theorem 2.2, replacing fH(s,t) by its approximation
(nmwe2) ™ S Lails,t; 8) in (A.13) and (A.19), from Slutsky’s theorem, we have

n62 mQ(S, t) RQ(K) s . s
\/_” %L - n, ni l; B) e N <O7 fH(S,t)(SJ t) C< ’t) [1 C< ’t)]) ’ (A26)

and

nel < (e LCULLL A ) 50
(nﬂ-en> Zz’:l lni(sa t; ﬁ) (TL?TE%) Zi:l lm(s7 t; ﬁ)

Using Lemma A.2 together with the fact that ne¢ = O,(1), we have

s,t 7t
e (“2“5’”63 A S M“’”@ ot
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This leads to

V/ne2 <(nm%)T;Z;tl)m(s’t;é) — ﬁz((s,t)ei) —, 0. (A.27)

Summing up (A.26) and (A.27), we have

N N C(s.) 1 = Cls. )] Bo(K)
\/_n (Z?:l lm(s,t;é) Cls.1) 20 1) n> —a (O’ Trsp)(s,t) > '

(A.28)

It follows Lemmas A.2 and A.4 that

i [(Ziatails,8) L haals,8)
2 7 _ i

Summing up (A.28) and (A.29) yields

2 (s t:B) — Cfs.1) — kol (5. 1) C(s,t)[l—C(s,t)]RQ(K)
Vel (Cls,t:8) = Cls ) = ral (s, 1)e2) wN(& oD )

as required. O

B. Additional Simulations

B.1 Finite Sample Performance under Other Marginal Settings

Here we include additional simulations to evaluate the finite sample performance of the
proposed estimator under other marginal settings. As mentioned in Section 3.2, the estimator
performs comparably across different levels of dependence. Hence here we only employ the
Gaussian copula with high dependence as the underlying model.

Negative binomial. We use the same mean structure as the Poisson outcomes in Section

3.1, and dispersion parameters as 0.7 and 1.3 respectively for j = 1,2. Figure B.1 includes
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the contour plots of the estimator, and it follows the same pattern that the estimator is
more accurate when the data are less discrete. Though by comparing each plot in Figure
B.1 with the corresponding plot of Poisson variables with same marginal mean level in Figure
5, we see that it is more difficult to identify copulas for negative binomial variables when

overdispersion is pronounced.

Small Mean Medium Mean Large Mean

@Q @Q @Q \\
o o o
< | < | =
o o o

:'; "\.

e T ==
Q el . 7 9 <

o T . r . oL : . . . oL : . . :
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Figure B.1: Contour plots of the nonparametric estimator for negative binomial outcomes
with sample size 5000. The average of the estimator over 500 replications is given by the
solid lines, while the dash-dot symbols give the corresponding 95% confidence interval for
every other copula value, and the dashed lines give the underlying copulas.

Mixed outcomes. So far, the simulations we have done are for the cases in which both
margins have same mean level. It is of interest to see the combination of variables with
different levels of discreteness. Figure B.2 includes two examples. The left panel displays
the case when Y] is a binary and Y5 is a Poisson variable with medium marginal mean.
Compared with Figures 5 and 6, we can see the variance and bias are smaller than these
of two binary variables but bigger than two Poisson variables with medium means. This
phenomenon is also reflected in the ISE values summarized in Table B.1 that the ISE value
of the mixed case 0.481 x 1073 is smaller than the ISE of two binary outcomes 2.098 x 1073
and bigger than the value of two Poisson variables at medium mean level 0.103 x 1072 in
Table 1. The difference between the two margins becomes significant at boundaries. The
right panel includes the results of two Poisson variables at different marginal mean levels,

and we can draw the same conclusion.
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Figure B.2: Contour plots of the nonparametric estimator for mixed outcomes with sample
size 5000.

Table B.1: ISE of additional simulations (multiplied by 1000).

Margins Binary Binary and Medium Poisson =~ Small and Medium Poisson
Average sd Average sd Average sd
ISE 2.098 0.524 0.481 0.117 0.271 0.098

B.2 Copula Identification Using Probability of Zeros

In principle, the copula can be identified using only the probability of (0,0) due to the fact
Fyix (0,01X1, X5) = C (F1(0]X1), F2(0|.X5)). Assuming that the explanatory variables have
sufficient range so that the probabilities of zeros span the interval (0, 1), the corresponding

estimator is of the form

A oy 2 K[(F1(0]X31) — 8) J€n, (F2(0]Xi2) — ) /eu] 1(Yi = 0,Yip = 0)
Cols, %) = ST R (a0 Xn) — ) fem (Fa(0]Xoa) — 1) /e - (B

which is an application of the Nadaraya-Watson estimator. From its established asymptotic

results (Hansen 2009), the variance of Cy(s, ¢; 3) is of the form

Cs,t) [ = O(s,8)] Ra(K)

€2 fr (01, Fa(01x2) (5, 1)

Theorem 2.2 underscores the benefit of employing our nonstandard estimator. From the form

of fr(sux)(s,t) in (9), we can see fr(sex)(5,1) > fr(0/x1),m(0/x2) (5, ). Thus, we have smaller
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variance by applying the proposed estimator. Intuitively, instead of applying a variable
(F1(0|X7), F2(0|X3)), we use many variables (Fy(k1|X1), Fo(ke|X2)), k1 = 0,..., ks =0, ...
for copula estimation, which increases the efficiency.

Now we illustrate this point through a simulation study. Figure B.3 displays the results
for copula identification using only zeros under the medium marginal mean level with high
dependence. Compared with the middle columns in Figures 3 and 5, it is clear that the

proposed nonstandard nonparametric estimator has smaller bias and variance.

0.8

0.4

0.0

00 02 04 06 08 10 00 02 04 06 08 10

Figure B.3: Contour plots of the estimator (B.1) using the probability of (0,0). The average
of the estimator over 500 replications is given by the solid lines, while the dash-dot symbols
give the corresponding 95% confidence interval, and the dashed lines give the underlying
copulas.

B.3 Copula Specification and Diagnosis

We now explore the usage of the nonparametric estimator as a diagnostic tool under different
scenarios. For each of the simulations, given the generated data, we first fit the marginal
models. Then, we plug the marginal estimates in (6) to obtain our nonparametric estima-
tor. Meanwhile, different parametric copulas are fit through MLE. Finally, we compare the
parametric copulas with our nonparametric estimator. We generate the data using Gaussian
(no tail dependencies), Clayton (lower tail dependence), and Joe (upper tail dependence)
copulas to explore the impact of tail dependence, and here we only present results for Poisson

variables.
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Case 1. Gaussian copulas. We first analyze the generated data from Gaussian copulas,
the most commonly used copulas without tail dependence. We include a representative
graphical summary of the results under medium means in Figures B.4 and B.5. Due to
space limitations, the results of other scenarios are summarized numerically in Table B.2.
Under low dependence, the dashed lines (corresponding to the fitted parametric copulas)
across plots in Figure B.4 are hardly distinguishable due to the fact that they are all similar
to the independence copula. As a result, their distances with the nonparametric estimator are
comparable. Therefore, the choice of parametric copulas is not essential when the dependence
is very weak.

In contrast, under high dependence as in Figure B.5, we can exclude the Gumbel and
Joe copulas due to the large discrepancy with the nonparametric estimator in the center of
the graphs, and the Clayton copula is wide apart towards right upper corner. Recall that
Gaussian and Frank copulas do not have tail dependence. Gumbel and Joe copulas have
upper tail dependence, while a Clayton copula has lower tail dependence. Hence, when the
dependence is strong, we can rule out copulas with wrong types of tail dependencies, and
the graphical comparison with our nonparametric estimator suggests improvement. Due to
the similarity in the Gaussian and Frank copulas, the choice between these two copulas is
difficult and probably not that important. It is also noticeable that among copulas with
upper tail dependence, the Joe copula has more significant distance than the Gumbel copula
with the nonparametric estimator, which can be explained by the stronger tail dependence
of the Joe copula.

Figure B.6 displays the graphical results under small marginal means and high depen-
dence. Due to large bias and variance in the nonparametric estimator, as demonstrated
in Section 3.2, all the copulas are inside the confidence intervals. Hence, the wrong models
cannot be rejected statistically, and it is hard to make conclusions about copula specification.

Table B.2 summarizes the results numerically. As an example, when the sample size is
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Figure B.4: Contour plots of the nonparametric estimator compared with several parametric
copulas under medium means and low dependence. The estimator is given by the solid lines,
and the dash-dot symbols give the corresponding confidence intervals. The fitted parametric
copulas are given by a dashed line. These plots are based on a sample size of 1000.

n = 1000, under small marginal means and low dependence, the average distance of the fitted
Gaussian copula with our nonparametric estimator is 2.865 x 10~2 with standard deviation
2.081 x 1073 over the 500 replications, while the fitted Frank copula has an average distance
2.834 x 1073 with standard deviance 2.095x 1072, Consistent with Figure B.6, with high level
of discreteness, the distances between different parametric copulas with the nonparametric
estimator are high and comparable (first three rows of each block). Thus, it is difficult to
pick up a copula. When the marginal means are at medium and large levels, the strength
of dependence plays an important role in the model specification. Under low dependence,

we are unable to distinguish most of the copulas in terms of the distance, except the Joe

copula shows worse fitting at large mean level. With stronger dependence, we can rule out
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Figure B.5: Contour plots of the nonparametric estimator compared with several parametric
copulas under medium means and high dependence. These plots are based on a sample size
of 1000.

the Gumbel, Joe, and Clayton copulas, especially under high dependence, where the true
model outperforms alternative models clearly. Again, the Gaussian and Frank copulas are
generally indistinguishable, except that the difference is more noticeable with large marginal

means and high dependence.

Case 2. Clayton copulas. To further explore the impact of tail dependence, we next
consider copulas with lower tail dependence. Table B.3 portrays the results of the Clayton
copulas. As we concluded the choice of copulas is not essential under low dependence or
small marginal means, we omit the corresponding results here. In all the scenarios, the true
model has smallest distance with the nonparametric estimator. Meanwhile, we can rule out

the Gumbel and Joe copulas easily as they have opposite tail dependence structures of the
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Figure B.6: Contour plots of the nonparametric estimator compared with several parametric
copulas under small means and high dependence. These plots are based on a sample size of
5000.

Clayton copulas. The Frank copulas are far apart when the dependence is high.

Case 3. Joe copulas. Now we use copulas with upper tail dependence as the underlying
models. Table B.4 shows the results when the Joe copula is the data generating mechanism.
The true model has smallest distance. Meanwhile, the Gumbel copulas are better than the
Frank and Clayton copulas due to the fact that both Gumbel and Joe copulas have upper
tail dependencies.

To summarize, first, the selection of copula is more important with large marginal means

and high dependence. Second, overall, our nonparametric estimator is likely to exclude
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copulas with wrong tail behaviors, especially those with opposite tail dependence structures
of the underlying model. In the situations where it seems ambiguous among copulas, we

suggest expanding the candidate pool.

B.4 Selection of Bandwidth

First, to demonstrate sensitivity of the proposed estimator to different bandwidths under
different scenarios, Figure B.7 portrays the contour plots of the nonparametric estimator with
different bandwidths under different marginal mean levels. It appears that the bandwidth
plays a more important role in the small and medium marginal mean settings than in the
large mean cases where the estimator is not as sensitive to the selection of bandwidth.

Therefore, we do not emphasize bandwidth selection for large mean cases in this section.
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Figure B.7: Contour plots of the nonparametric estimator with different bandwidths at
moderate dependence. Sample size: 1000.

31



We conduct a simulation study to assess the proposed bandwidth selector (Section 2.4)
by comparing it with the benchmark selector minimizing the ISE values. In addition, we
include the results using the independence copula as the working copula in our procedure.
Tables B.5, B.6, and B.7 report the numerical results. We compare the selected bandwidths
from different selectors and the resulted ISE values. We do not concern the low dependence
scenarios here, since the independence copula is close to the truth in these cases and can be
used as the working copula without doubt.

Table B.5 shows the results with Gaussian copulas as the underlying dependence struc-
tures. For example, when the data are generated with small marginal means and a Gaussian
copula at moderate dependence level, the minimizer of the ISE values gives a bandwidth
90.653 x 1072 on average with standard deviation 12.440 x 1073. With the selected band-
widths, the ISE value of our nonparametric estimator are 2.703 x 1072 on average with
standard deviation 1.202 x 1073. We see that the proposed procedure returns bandwidths
close to the results of the benchmark selector across different marginal means, dependence
levels, and sample sizes, while using the independence copula tends to undersmooth signif-
icantly, especially when there is high dependence. Intuitively, the discrepancy between the
underlying copula and independence is large under high dependence. Therefore, we sug-
gest not using the independence copula alternative for bandwidth selection when significant
dependence is detected.

While Gaussian and Frank copulas have same tail dependence properties, to evaluate
the proposed bandwidth selector when the underlying copula has different tail dependencies,
we conduct the simulation using Gumbel and Clayton copulas to generate the data. As
portrayed in Tables B.6 and B.7, it is not surprising that the proposed selector performs
not as good as when Gaussian copulas are the underlying models (Table B.5). For Gumbel
copulas, the selector using a Frank copula gives larger bandwidths while for Clayton copulas
the bandwidths are smaller than the benchmark values. However, we think the selector

performs satisfactorily even with misspecification of tail dependence, which is reflected in
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the ISE values of the resulted copulas.
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