
Supplementary Materials to “Nonparametric Estimation
of Copula Regression Models with Discrete Outcomes”

A. Proofs

A.1 Proof of Consistency

Here are some simplified notations in the proof: F1(k1) = F1(k1|X1), F2(k2) = F (k2|X2),

H(s, t) = H(s, t; X), H(s, t; θ) = H(s, t; X, θ), and Ĉ(s, t) = Ĉ(s, t; β), where β is the

underlying parameter.

Proof of Lemma 2.1. Recall that εn → 0. For vk1 , k = 1, 2, . . . as in Section 2.3, taking

minimum for the first n elements, un = mink=1,...,n v
k
1 is a nonzero decreasing sequence.

Therefore, an appropriate order of an(s) can be chosen such that uan(s) > εn, i.e., vk1 > εn

for k ≤ an(s).

To show the asymptotic properties of Ĉ(s, t) defined in (6), we analyze it by pieces.

We first show the denominator is a consistent estimator of fH(s,t)(s, t). Then, we show the

consistency of the numerator.

Denote the denominator as

f̂H(s,t)(s, t) =
1

nε2n

n∑
i=1

K
[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
.

Lemma A.1 shows the consistency of the denominator.
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Lemma A.1. Under Assumptions 2.2 and 2.1,

f̂H(s,t)(s, t)→p fH(s,t)(s, t). (A.1)

Proof. Recall that K is a bounded on compact support. Without loss of generality, in the

proof we assume K(u, v) ≤ 1 with support |(u, v)| ≤ 1.

Let f̂H(s,t)(s, t) = 1
n

∑n
i=1 Tni, where Tni = 1/ε2nK [εn

−1(Hi1(s)− s), εn−1(Hi2(t)− t)].

That is, f̂H(s,t)(s, t) is the summation of a triangular array. We demonstrate the consis-

tency of f̂H(s,t)(s, t) using the weak law of large numbers (WLLN) for triangular arrays. It

is sufficient to show

1

n

n∑
i=1

ETni → fH(s,t)(s, t), (A.2)

1

n
ET 2

ni → 0. (A.3)

First, to show (A.2), we divide the range of µ1 and µ2 into four pieces, i.e.

ETni =E
[
Tni1

(
µ1 ≤M

an(s)
1 , µ2 ≤M

bn(t)
2

)]
+ E

[
Tni1

(
µ1 ≤M

an(s)
1 , µ2 > M

bn(t)
2

)]
+ E

[
Tni1

(
µ1 > M

an(s)
1 , µ2 ≤M

bn(t)
2

)]
+ E

[
Tni1

(
µ1 > M

an(s)
1 , µ2 > M

bn(t)
2

)]
:=T1 + T2 + T3 + T4.

(A.4)

We analyze the four pieces one by one.

Let fµ1,µ2 denote the joint density of (µ1, µ2). The first term of (A.4) equals

T1 =

an(s)∑
k1=0

bn(t)∑
k2=0

T1(k1, k2),

2



where

T1(k1, k2) =
1

ε2n

∫ M
k1+1
1

M
k1
1

∫ M
k2+1
2

M
k2
2

K
[
εn
−1(F1(k1)− s), εn−1(F2(k2)− t)

]
fµ1,µ2(µ1, µ2)dµ1dµ2.

(A.5)

Recall that K takes nonzero values only when

|(F1(k1)− s, F2(k2)− t)| ≤ εn. (A.6)

For k1 ≤ an(s), k2 ≤ bn(t), a necessary condition for (A.6) to hold is that Mk1
1 ≤ µ1 <

Mk1+1
1 ,Mk2

2 ≤ µ2 < Mk2+1
2 . Therefore, we can write the limits in (A.5) as (−∞,∞). That

is,

T1(k1, k2) =
1

ε2n

∫ ∞
−∞

∫ ∞
−∞

K
[
εn
−1(F1(k1)− s), εn−1(F2(k2)− t)

]
fµ1,µ2(µ1, µ2)dµ1dµ2

=
1

ε2n

∫
K

(
a− s
εn

,
b− t
εn

)
fF1(k1),F2(k2)(a, b)dadb

=

∫
K(u, v)fF1(k1),F2(k2)(s+ uεn, t+ vεn)dudv,

where the last equation is derived by substitution. A Taylor series expansion up to first

order for fF1(k1),F2(k2) yields

fF1(k1),F2(k2)(s+ uεn, t+ vεn)

=fF1(k1),F2(k2)(s, t) + fF1(k1),F2(k2),1(s, t)uεn + fF1(k1),F2(k2),2(s, t)vεn+

1

2
fF1(k1),F2(k2),11(s, t)u

2ε2n +
1

2
fF1(k1),F2(k2),22(s, t)v

2ε2n + fF1(k1),F2(k2),12(s, t)uvε
2
n + o(ε2n).

SinceK is symmetric,
∫
K(u, v)ududv = 0, and

∫
K(u, v)uvdudv = 0. Moreover,

∫
K(u, v)dudv =

1. Denote fH(s,t),n(s, t) =
∑an(s)

k1=0

∑bn(t)
k2=0 fF1(k1),F2(k2)(s, t), then we have

T1 = fH(s,t),n(s, t) + o(εn),
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where the residual term is o(εn) since
∑an(s)

k1=0

∑bn(t)
k2=0 fF1(k1),F2(k2),jj(s, t) < ∞, j = 1, 2, where

fF1(k1),F2(k2),jj is the second order derivatives of fF1(k1),F2(k2) with respect to jth component,

by Assumption 2.2. As an(s) and bn(t) go to infinity with n,

T1 → fH(s,t)(s, t).

Then, we consider the second term T2. As |K(u, v)| ≤ 1,

T2 ≤
1

ε2n

∫ ∞
−∞

∫ ∞
M
bn(t)
2

fµ1,µ2(µ1, µ2)dµ1dµ2 =
1

ε2n
P
(
µ2 > M

bn(t)
2

)
. (A.7)

By Assumption 2.1, T2 → 0. Similar arguments can be used to show that

T3 ≤
1

ε2n
P
(
µ1 > M

an(s)
1

)
→ 0,

T4 ≤
1

ε2n
P
(
µ1 > M

an(s)
1 , µ2 > M

bn(s)
2

)
→ 0.

So (A.2) follows immediately.

Finally, we show (A.3). Since K is bounded by 1,

T 2
ni ≤

1

ε2n
Tni.

As Tni is positive, combining with (A.2) and that nε2n →∞, we have

1

n
ET 2

ni ≤
1

nε2n
ETni → 0.

The lemma follows the WLLN for triangular arrays.

Proof of Theorem 2.1. Given Lemma A.1, it is sufficient to show that the numerator of (6)

is a consistent estimator of fH(s,t)(s, t)C(s, t). Similar to the denominator, the numerator of
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(6), denoted as

N̂(s, t) =
1

nε2n

n∑
i=1

K
[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
Yi(β) (A.8)

is the summation of a triangular array, i.e.,

N̂(s, t) =
1

n

n∑
i=1

Vni,

where Vni = 1/ε2nK [εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)]Yi(β). It is sufficient to show

1

n

n∑
i=1

EVni → fH(s,t)(s, t)C(s, t), (A.9)

1

n
EV 2

ni → 0. (A.10)

We first show (A.9). Note that

E [Vni|Hi1(s), Hi2(t)] = K
[
εn
−1(Hi1(s)− s), εn−1(Hi2(t)− t)

]
C [Hi1(s), Hi2(t)] .

Similar ideas used to show (A.2) lead to the approximation

E (Vni) ≈
an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v)fF1(k1),F2(k2)(s+ uεn, t+ vεn)C(s+ uεn, t+ vεn)dudv.

Taking the product of Taylor expansions of fF1(k1),F2(k2) and C at (s, t) yields

E (Vni) ≈
an(s)∑
k1=0

bn(t)∑
k2=0

C(s, t)fF1(k1),F2(k2)(s, t) + o(εn).

Note that some terms are eliminated due to the symmetry of K. When n approaches infinity,
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(A.9) follows immediately. In addition, since K and Yi(β) are bounded by 1,

1

n
E
(
V 2
ni

)
≤ 1

nε2n
E (Vni)→ 0.

So (A.10) holds and the stated result follows WLLN for triangular arrays.

A.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Given consistency of the denominator in Section A.1, now we are in

a position to show the weak convergence of the numerator. We check the bias and variance

of the numerator and show they both converge to 0 at the appropriate rate.

Comparing Ĉ(s, t) and C(s, t) yields

Ĉ(s, t) = C(s, t) +
m̂1(s, t)

f̂H(s,t)(s, t)
+

m̂2(s, t)

f̂H(s,t)(s, t)
,

where

m̂1(s, t) =
1

nε2n

n∑
i=1

K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)] ,

m̂2(s, t) =
1

nε2n

n∑
i=1

K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
{Yi(β)− C [Hi1(s), Hi2(t)]} .

Among them, m̂1(s, t) contributes to the bias while m̂2(s, t) contributes the variance of

Ĉ(s, t).

Variance. Since E (Yi(β)|µi1, µi2) = C [Hi1(s), Hi2(t)], one has E(m̂2(s, t)|µi1, µi2) = 0,

which leads to that E [m̂2(s, t)] = 0. Thus, we focus on the variance of m̂2(s, t). Note that

Var [m̂2(s, t)] =
1

nε4n
E
[
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
{Yi(β)− C [Hi1(s), Hi2(t)]}

]2
(A.11)
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To compute the variance of m̂2(s, t), we condition on Hi(s, t)

E
(
{Yi(β)− C [Hi1(s), Hi2(t)]}2 |Hi1(s) = a,Hi2(t) = b

)
= C(a, b) [1− C(a, b)] := σ2(a, b).

Since K and σ are bounded, arguments analogous to those use to prove (A.2) lead to the

approximation

Var [m̂2(s, t)]

≈ 1

nε4n

an(s)∑
k1=0

bn(t)∑
k2=0

∫ M
k1+1
1

M
k1
1

∫ M
k2+1
2

M
k2
2

K
[
εn
−1(F1(k1)− s), εn−1(F2(k2)− t)

]2
σ2 [F1(k1), F2(k2)] ·

fµ1,µ2(µ1, µ2)dµ1dµ2 + o

(
1

nε2n

)
=

1

nε4n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K

(
a− s
εn

,
b− t
εn

)2

σ2(a, b)fF1(k1),F2(k2)(a, b)dadb+ o

(
1

nε2n

)

=
1

nε2n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v)2σ2(s+ uεn, t+ vεn)fF1(k1),F2(k2)(s+ uεn, t+ vεn)dudv + o

(
1

nε2n

)
.

As C and fF1(k1),F2(k2) are twice continuously differentiable over V , σ2fF1(k1),F2(k2) carries over

the differentiability as a function of them. Denote α21(s, t) = R2(K)σ2(s, t)fH(s,t),n(s, t). The

Taylor series expansion of σ2fF1(k1),F2(k2) yields

Var [m̂2(s, t)] =
1

nε2n
α21(s, t) + o

(
1

nε2n

)
.

Note that the term m̂2(s, t) is the summation of a triangular array. To establish the

asymptotic distribution of m̂2(s, t), we now verify that Lyapunov’s central limit theorem

holds. Denote

wni(s, t) =
1

nε2n
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
{Yi(β)− C [Hi1(s), Hi2(t)]} ,
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then m̂2(s, t) =
∑n

i=1wni. It is sufficient to show

∑n
i=1 E |wni(s, t)|3

(
∑n

i=1 Var [wni(s, t)])
3/2
→ 0. (A.12)

Note that

Var [wni(s, t)] =
1

n2ε2n
α21(s, t) + o

(
1

n2ε2n

)
,

E |wni(s, t)|3 ≤
fH(s,t),n(s, t)

n3ε4n

∫
K(u, v)3dudv + o

(
1

n3ε4n

)
= O

(
1

n3ε4n

)
.

Hence, (A.12) follows immediately, and the Lyapunov condition is satisfied. Therefore,

√
nε2n

m̂2(s, t)√
α21(s, t)

→d N(0, 1).

Since fH(s,t),n(s, t)→ fH(s,t)(s, t),

√
nε2nm̂2(s, t)→d N

(
0, R2(K)C(s, t) [1− C(s, t)] fH(s,t)(s, t)

)
.

By Slutsky’s theorem, substitution of f̂H(s,t)(s, t) by fH(s,t)(s, t) yields

√
nε2n

m̂2(s, t)

f̂H(s,t)(s, t)
→d N

(
0,
C(s, t) [1− C(s, t)]R2(K)

fH(s,t)(s, t)

)
. (A.13)

Bias. The mean of m̂1(s, t) is

E [m̂1(s, t)] =
1

ε2n
E
{
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}
.

Since C satisfies Lipschitz condition as in Assumption 2.4, given |(Hi1(s)− s,Hi2(t)− t)| <

εn, under which K [ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)] is nonzero,

|C [Hi1(s), Hi2(t)]− C(s, t)| ≤ α1ε
2
n.
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Similar arguments used to show (A.2) lead to the approximation

E [m̂1(s, t)] ≈
1

ε2n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K

(
a− s
εn

,
b− t
εn

)
[C(a, b)− C(s, t)] fF1(k1),F2(k2)(a, b)dadb+ o(ε2n)

=

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v) [C(s+ uεn, t+ vεn)− C(s, t)] ·

fF1(k1),F2(k2)(s, t)(s+ uεn, t+ vεn)dudv + o(ε2n).

Taking the product of the Taylor series expansions for C up to second order and first order

for fF1(k1),F2(k2) at (s, t), one gets

E [m̂1(s, t)] =

an(s)∑
k1=0

bn(t)∑
k2=0

∫ {
K(u, v)ε2n

[
1

2
C11(s, t)fF1(k1),F2(k2)(s, t)u

2+

1

2
C22(s, t)fF1(k1),F2(k2)(s, t)v

2 + C1(s, t)fF1(k1),F2(k2),1(s, t)u
2+

C2(s, t)fF1(k1),F2(k2),2(s, t)v
2
]}

dudv + o(ε2n).

Let fH(s,t),n,j(s, t), j = 1, 2 denote the partial derivatives of fH(s,t),n(s, t) and define

ζn(s, t) =
1

2
C11(s, t) +

1

2
C22(s, t) +

C1(s, t)fH(s,t),n,1(s, t)

fH(s,t),n(s, t)
+
C2(s, t)fH(s,t),n,2(s, t)

fH(s,t),n(s, t)
.

Recall the notation κ2 =
∫
u2K(u, v)du, hence we obtain

E [m̂1(s, t)] = κ2ζn(s, t)fH(s,t),n(s, t)ε2n + o(ε2n). (A.14)
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We now compute the variance of m̂1(s, t)

Var [m̂1(s, t)]

=
1

nε4n
Var

{
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}
=

1

nε4n

(
E
{
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}2
−
{

E
(
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

)}2)
.

(A.15)

The first term of (A.15) is

1

nε4n
E
{
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

}2
=

1

nε4n
E

an(s)∑
k1=0

bn(t)∑
k2=0

K

(
Fi1(k1)− s

εn
,
Fi2(k2)− t

εn

)
[C [Fi1(k1), Fi2(k2)]− C(s, t)]

2

+ o

(
1

n

)

=
1

nε2n

an(s)∑
k1=0

bn(t)∑
k2=0

∫
K(u, v)2 [C(s+ uεn, t+ vεn)− C(s, t)]2 fF1(k1),F2(k2)(s+ uεn, t+ vεn)dudv

+ o

(
1

n

)
,

where the residuals are obtained by similar techniques used to compute E [m̂1(s, t)]. By

Taylor expansions, we have [C(s+ uεn, t+ vεn)− C(s, t)]2 fF1(k1),F2(k2)(s + uεn, t + vεn) =

O(ε2n). Thus, the first term of (A.15) is of order O(1/n).

Then, we check the second term of (A.15) . From Equation (A.14),

1

nε4n

{
E
(
K
[
ε−1n (Hi1(s)− s) , εn−1(Hi2(t)− t)

]
[C [Hi1(s), Hi2(t)]− C(s, t)]

)}2
= O

(
1

n

)
.

(A.16)

Therefore,

Var
(√

nε2nm̂1(s, t)
)

= O(ε2n)→ 0. (A.17)
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Equations (A.14) and (A.17) entail that

√
nε2n

(
m̂1(s, t)− κ2ζn(s, t)fH(s,t),n(s, t)ε2n

)
→p 0.

Recall ζ(s, t) defined in (10), it can be easily seen that ζn(s, t) → ζ(s, t). As an(s) and

bn(t) go to infinity, we have

√
nε2n

(
m̂1(s, t)− κ2ζ(s, t)fH(s,t)(s, t)ε

2
n

)
→p 0.

Together with (A.1), it follows

√
nε2n

(
m̂1(s, t)

f̂H(s,t)(s, t)
− κ2

fH(s,t)(s, t)

f̂H(s,t)(s, t)
ζ(s, t)ε2n

)
→p 0.

Recall nε6n = O(1), hence we also have

√
nε2n

(
κ2
fH(s,t)(s, t)

f̂H(s,t)(s, t)
ζ(s, t)ε2n − κ2ζ(s, t)ε2n

)
→p 0. (A.18)

Therefore,

√
nε2n

(
m̂1(s, t)

f̂H(s,t)(s, t)
− κ2ζ(s, t)ε2n

)
→p 0. (A.19)

Summing up (A.13) and (A.19) finishes the proof.

Hence the AMSE of Ĉ(s, t) is (C(s, t) [1− C(s, t)]R2(K))/(nε2nfH(s,t)(s, t))+κ22ζ(s, t)2ε4n.

The above theorems guarantee the identifiability of underlying copula. With Assumptions

2.2, 2.1, 2.3, and 2.4, if there exists another copula C̃ compatible with data, the pointwise
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difference between C and C̃ at (s, t) ∈ V is

∣∣∣C(s, t)− C̃(s, t)
∣∣∣2 ≤ E

∣∣∣Ĉ(s, t)− C(s, t)
∣∣∣2 + E

∣∣∣Ĉ(s, t)− C̃(s, t)
∣∣∣2 → 0.

Since C̃(s, t)−C(s, t) does not change with n, it has to be that C̃(s, t)−C(s, t) = 0 for any

(s, t) ∈ V . That is, the copula is identifiable at V .

A.3 Proof of Theorem 2.3

We now demonstrate the asymptotic properties of the copula estimator defined in (6) when

the marginal parameters are unknown and the estimates are plugged in. We first analyze the

numerator and denominator of the estimator separately in Lemmas A.2 and A.4. Finally,

the distribution of the copula estimator follows as stated in Theorem 2.3.

For the following results Lemmas A.2, A.3, and A.4, we prove them with uniform kernel.

The proof for other compacted supported kernels is a trivial extension from the uniform kernel

with Lipschitz conditions of the kernel function. Let An(s, t) denote the neighborhood of

(s, t) with radius εn.

Assumption 2.6 indicates that for any ξ > 0 there exists γξ > 0 such that for n big

enough,

P (β̂ /∈ B(β, n−1/2γξ)) < ξ

where B(β, d) is a neighborhood of β with radius d.

Lemma A.2 (Consistency of Denominator). Under Assumptions 2.1, 2.2, 2.5, and 2.6,

1

nε2n

n∑
i=1

{
1
(
Hi(s, t; β̂) ∈ An(s, t)

)
− 1 [Hi(s, t) ∈ An(s, t)]

}
→p 0. (A.20)

Therefore,

1

nε2n

n∑
i=1

K
[
εn
−1(Hi1(s; β̂)− s), εn−1(Hi2(s; β̂)− t)

]
→p fH(s,t)(s, t). (A.21)
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Proof. Different aspects of the method of proof can be found in Sukhatme (1958), Randles

(1984), and Frees (1995b). Denote

lni(s, t; θ) = 1 (Hi(s, t; θ) ∈ An(s, t))

and

Sn(θ; s, t) =
1

nε2n

n∑
i=1

[lni(s, t; β)− lni(s, t; θ)] .

For arbitrary ε > 0, for any ξ > 0, let γξ be the constant in Assumption 2.6. To show (A.20),

we calculate the probability

P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε
)

= P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε, β̂ ∈ B(β, n−1/2γξ)
)

+ P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε, β̂ /∈ B(β, n−1/2γξ)
)

≤ P

(
sup

θ∈B(β,n−1/2γξ)

|Sn(θ; s, t)| > ε

)
+ P

(
β̂ /∈ B(β, n−1/2γξ)

)
:= M1 +M2.

By Assumption 2.6,

M2 < ξ/2.

We now check M1. Since |lni(s, t; β)− lni(s, t; θ)| ≤ 1, using a similar method as in Frees

(1995a), we can see there are two cases |lni(s, t; β)− lni(s, t; θ)| can be 1, i.e.,

|lni(s, t; β)− lni(s, t; θ)| ≤


1(|Hi(s, t; θ)− (s, t)| > εn, |Hi(s, t)− (s, t)| ≤ εn) := J1,

1(|Hi(s, t; θ)− (s, t)| ≤ εn, |Hi(s, t)− (s, t)| > εn) := J2.

For the first case J1,

J1 ≤ 1(εn < |Hi(s, t; θ)− (s, t)|).

13



Further, subtracting |Hi(s, t)− (s, t)| from both sides yields

J1 ≤ 1 (εn − |Hi(s, t)− (s, t)| < |Hi(s, t; θ)− (s, t)| − |Hi(s, t)− (s, t)|) .

Similarly, for the second case J2

J2 ≤1 (εn ≥ |Hi(s, t; θ)− (s, t)|) .

So we have

J2 ≤ 1 (|Hi(s, t)− (s, t)| − εn ≤ |Hi(s, t)− (s, t)| − |Hi(s, t; θ)− (s, t)|) .

Since if J1 = 1, |Hi(s, t) − (s, t)| ≤ εn, and when J2 = 1, |Hi(s, t) − (s, t)| > εn, we can

summarize these two cases obtaining

|lni(s, t; β)− lni(s, t; θ)| ≤ 1 (||Hi(s, t)− (s, t)| − εn| ≤ ||Hi(s, t)− (s, t)| − |Hi(s, t; θ)− (s, t)||)

≤ 1 (||Hi(s, t)− (s, t)| − εn| ≤ α2 |β − θ|) ,

(A.22)

where the second inequality is due to Assumption 2.5.

Now we take supremum with respect to θ over B(β, n−1/2γξ), defining

ηn(s, t;Xi) = sup
θ∈B(β,n−1/2γξ)

|lni(s, t; θ)− lni(s, t; β)| .

From (A.22), there exists a constant α2 such that

ηn(s, t;Xi) ≤ 1
(
||Hi(s, t)− (s, t)| − εn| ≤ α2n

−1/2γξ
)
.

By Assumption 2.2, the density of Hi(s, t) is bounded. Thus |Hi(s, t)− (s, t)| − εn which is

14



the linear transformation result from Hi(s, t) also has a bounded density. For all n, i, and

(s, t), there exists a constant α3 such that

Eηn(s, t;Xi) ≤ α3γ
2
ξn
−1. (A.23)

Note that supθ∈B(β,n−1/2γξ)
|Sn(θ; s, t)| ≤ 1/(nε2n)

∑n
i=1 ηn(s, t;Xi). Therefore,

M1 ≤ P

(
1

nε2n

n∑
i=1

ηn(s, t;Xi) > ε

)

≤ P

((
1

nε2n

n∑
i=1

[ηn(s, t;Xi)− Eηn(s, t;Xi)] +
1

nεn2

n∑
i=1

Eηn(s, t;Xi)

)
> ε

)

From (A.23),

1

nε2n

n∑
i=1

Eηn(s, t;Xi) ≤
α3γ

2
ξ

nε2n
→ 0.

Hence, when n gets large,

1

nε2n

n∑
i=1

Eηn(s, t;Xi) < ε/2.

By applying the Chebyshev’s inequality,

M1 ≤ P

(
1

nε2n

n∑
i=1

[ηn(s, t;Xi)− Eηn(s, t;Xi)] > ε/2

)

≤ 1

(ε/2)2
Var

(
1

nε2n

n∑
i=1

[ηn(s, t;Xi)− Eηn(s, t;Xi)]

)
.

Note that ηn(s, t;Xi)
2 = ηn(s, t;Xi). By applying (A.23) we have

M1 ≤
1

(ε/2)2
1

(nε2n)2

n∑
i=1

[
Eηn(s, t;Xi)

2 − [Eηn(s, t;Xi)]
2] ≤ 1

(ε/2)2(nε2n)2
α3γ

2
ξ .

Therefore, when n is large enough M1 < ξ/2. Now (A.20) follows from the fact that for

arbitrary ε and ξ > 0,

P
(∣∣∣Sn(β̂; s, t)

∣∣∣ > ε
)
< ξ.
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Finally, note that (A.21) follows from (A.1) and (A.20), and the proof is finished.

Define

hni(s, t; θ) = 1 (Hi(s, t; θ) ∈ An(s, t))Yi(θ),

where Yi(θ) is defined in (5).

Lemma A.3. Under Assumption 2.5, there exists a constant α4 such that for all n and i,

E sup
θ∈B(β,d)

|hni(s, t; θ)− hni(s, t; β)| ≤ α4d
2.

Proof. We first note that

|hni(s, t; θ)− hni(s, t; β)| ≤ |lni(s, t; β)− lni(s, t; θ)|+ |Yi(θ)− Yi(β)| .

From (5),

Yi(θ) = 1
(
Yi1 ≤ F

(−1)
1 (H1(s; θ1); θ1) , Yi2 ≤ F

(−1)
2 (H2(t; θ2); θ2)

)
.

As in Figure 1, when θ approaches β with distance d small enough, there exists integer k

such that

Mk
1 ≤ X ′1β1 < Mk+1

1

Mk
1 ≤ X ′1θ1 < Mk

1 ,

with probability 1. Hence, almost surely,

F
(−1)
1 (H1(s; β1); β1) = F

(−1)
1 (H1(s; θ1); θ1) = k.

By a similar argument, with small d, F
(−1)
2 (H2(t; β2); β2) = F

(−1)
2 (H2(t; θ2); θ2). Hence,

Yi(θ) = Yi(β) almost surely when d is small enough. Thus |hni(s, t; θ)− hni(s, t; β)| ≤
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|lni(s, t; β)− lni(s, t; θ)|. Recall (A.23) in the proof of Lemma A.2, one obtains when d is

small enough, there exists constant α4 such that for all n, i and (s, t),

E sup
θ∈B(β,d)

|hni(s, t; θ)− hni(s, t; β)| ≤ α4d
2,

as required.

Lemma A.4. With Assumptions 2.5 and 2.6,

1√
nε2n

n∑
i=1

[
hni(s, t; β̂)− hni(s, t; β)

]
→p 0 (A.24)

Proof. Denote

Rni(θ; s, t) = hni(s, t; θ)− hni(s, t; β)

= 1 (Hi(s, t; θ) ∈ An(s, t))Yi(θ)− 1 (Hi(s, t) ∈ An(s, t))Yi(β),

and

Qn(θ; s, t) =
1√
nε2n

n∑
i=1

Rni(θ; s, t).

For any ε > 0, for any ξ > 0, let γξ be the constant in Assumption 2.6. To show (A.24), we

check the probability

P
(∣∣∣Qn(β̂; s, t)

∣∣∣ > ε
)

= P
(∣∣∣Qn(β̂; s, t)

∣∣∣ > ε, β̂ ∈ B(β, n−1/2γξ)
)

+ P
(∣∣∣Qn(β̂; s, t)

∣∣∣ > ε, β̂ /∈ B(β, n−1/2γξ)
)

≤ P

(
sup

θ∈B(β,n−1/2γξ)

|Qn(θ; s, t)| > ε

)
+ P

(
β̂ /∈ B(β, n−1/2γξ)

)
:= I1 + I2

By Assumption 2.6, I2 < ξ/2.
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Now define Lni(s, t) = supθ∈B(β,n−1/2γξ)
|Rni(θ; s, t)|. By Lemma A.3,

ELni(s, t) ≤ E

(
sup

θ∈B(β,n−1/2γξ)

|hni(s, t; θ)− hni(s, t; θ)|

)

≤ α4(γξ/
√
n)2.

(A.25)

At the same time,

sup
θ∈B(β,n−1/2γξ)

|Qn(θ; s, t)| ≤ 1√
nε2n

n∑
i=1

Lni(s, t),

hence we have

P

(
sup

θ∈B(β,n−1/2γξ)

|Qn(θ; s, t)| > ε

)

≤P

(
1√
nε2n

n∑
i=1

Lni(s, t) > ε

)

≤P

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)] +
1√
nε2n

n∑
i=1

ELni(s, t) > ε

)
.

It follows (A.25) that

1√
nε2n

n∑
i=1

ELni(s, t) ≤ α4γ
2
ξ

1√
nε2n

.

Therefore, when n is large enough,

1√
nε2n

n∑
i=1

ELni(s, t) < ε/2.

Noting that

Var

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)]

)
=

1

nε2n

n∑
i=1

(
ELni(s, t)

2 − [ELni(s, t)]
2) .

18



Since |Rni(θ; s, t)| ≤ 1, one obtains Lni(s, t)
2 ≤ Lni(s, t). From (A.25),

Var

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)]

)
≤ 1

nε2n
α4γ

2
ξ .

By Chebyshev’s inequality

P

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)] > ε/2

)

≤ 1

(ε/2)2
Var

(
1√
nε2n

n∑
i=1

[Lni(s, t)− ELni(s, t)]

)
→ 0.

The theorem now follows Qn(β̂; s, t)→p 0.

Proof of Theorem 2.3

Proof. Recall from Lemma A.2, we have (nπε2n)
−1∑n

i=1 lni(s, t; β̂) is also a consistent estima-

tor of fH(s,t)(s, t). Following the proof of Theorem 2.2, replacing f̂H(s,t) by its approximation

(nπε2n)
−1∑n

i=1 lni(s, t; β̂) in (A.13) and (A.19), from Slutsky’s theorem, we have

√
nε2n

m̂2(s, t)

(nπε2n)−1
∑n

i=1 lni(s, t; β̂)
→d N

(
0,

R2(K)

fH(s,t)(s, t)
C(s, t) [1− C(s, t)]

)
, (A.26)

and

√
nε2n

(
m̂1(s, t)

(nπε2n)−1
∑n

i=1 lni(s, t; β̂)
−κ2ζ(s, t)ε2n

fH(s,t)(s, t)

(nπε2n)−1
∑n

i=1 lni(s, t; β̂)

)
→p 0.

Using Lemma A.2 together with the fact that nε6n = Op(1), we have

√
nε2n

(
κ2ζ(s, t)ε2n

fH(s,t)(s, t)

(nπε2n)−1
∑n

i=1 lni(s, t; β̂)
− κ2ζ(s, t)ε2n

)
→p 0.
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This leads to

√
nε2n

(
m̂1(s, t)

(nπε2n)−1
∑n

i=1 lni(s, t; β̂)
− κ2ζ(s, t)ε2n

)
→p 0. (A.27)

Summing up (A.26) and (A.27), we have

√
nε2n

(∑n
i=1 hni(s, t; β)∑n
i=1 lni(s, t; β̂)

− C(s, t)− κ2ζ(s, t)ε2n

)
→d N

(
0,
C(s, t) [1− C(s, t)]R2(K)

fH(s,t)(s, t)

)
.

(A.28)

It follows Lemmas A.2 and A.4 that

√
nε2n

(∑n
i=1 hni(s, t; β̂)∑n
i=1 lni(s, t; β̂)

−
∑n

i=1 hni(s, t; β)∑n
i=1 lni(s, t; β̂)

)
→p 0. (A.29)

Summing up (A.28) and (A.29) yields

√
nε2n

(
Ĉ(s, t; β̂)− C(s, t)− κ2ζ(s, t)ε2n

)
→d N

(
0,
C(s, t) [1− C(s, t)]R2(K)

fH(s,t)(s, t)

)
,

as required.

B. Additional Simulations

B.1 Finite Sample Performance under Other Marginal Settings

Here we include additional simulations to evaluate the finite sample performance of the

proposed estimator under other marginal settings. As mentioned in Section 3.2, the estimator

performs comparably across different levels of dependence. Hence here we only employ the

Gaussian copula with high dependence as the underlying model.

Negative binomial. We use the same mean structure as the Poisson outcomes in Section

3.1, and dispersion parameters as 0.7 and 1.3 respectively for j = 1, 2. Figure B.1 includes
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the contour plots of the estimator, and it follows the same pattern that the estimator is

more accurate when the data are less discrete. Though by comparing each plot in Figure

B.1 with the corresponding plot of Poisson variables with same marginal mean level in Figure

5, we see that it is more difficult to identify copulas for negative binomial variables when

overdispersion is pronounced.

Figure B.1: Contour plots of the nonparametric estimator for negative binomial outcomes
with sample size 5000. The average of the estimator over 500 replications is given by the
solid lines, while the dash-dot symbols give the corresponding 95% confidence interval for
every other copula value, and the dashed lines give the underlying copulas.

Mixed outcomes. So far, the simulations we have done are for the cases in which both

margins have same mean level. It is of interest to see the combination of variables with

different levels of discreteness. Figure B.2 includes two examples. The left panel displays

the case when Y1 is a binary and Y2 is a Poisson variable with medium marginal mean.

Compared with Figures 5 and 6, we can see the variance and bias are smaller than these

of two binary variables but bigger than two Poisson variables with medium means. This

phenomenon is also reflected in the ISE values summarized in Table B.1 that the ISE value

of the mixed case 0.481× 10−3 is smaller than the ISE of two binary outcomes 2.098× 10−3

and bigger than the value of two Poisson variables at medium mean level 0.103 × 10−3 in

Table 1. The difference between the two margins becomes significant at boundaries. The

right panel includes the results of two Poisson variables at different marginal mean levels,

and we can draw the same conclusion.
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Figure B.2: Contour plots of the nonparametric estimator for mixed outcomes with sample
size 5000.

Table B.1: ISE of additional simulations (multiplied by 1000).

Margins Binary Binary and Medium Poisson Small and Medium Poisson

Average sd Average sd Average sd

ISE 2.098 0.524 0.481 0.117 0.271 0.098

B.2 Copula Identification Using Probability of Zeros

In principle, the copula can be identified using only the probability of (0, 0) due to the fact

FY|X (0, 0|X1, X2) = C (F1(0|X1), F2(0|X2)). Assuming that the explanatory variables have

sufficient range so that the probabilities of zeros span the interval (0, 1), the corresponding

estimator is of the form

Ĉ0(s, t; β) =

∑n
i=1K [(F1(0|Xi1)− s) /εn, (F2(0|Xi2)− t) /εn] 1(Yi1 = 0, Yi2 = 0)∑n

i=1K [(F1(0|Xi1)− s) /εn, (F2(0|Xi2)− t) /εn]
, (B.1)

which is an application of the Nadaraya-Watson estimator. From its established asymptotic

results (Hansen 2009), the variance of Ĉ0(s, t; β) is of the form

C(s, t) [1− C(s, t)]R2(K)

nε2nfF1(0|X1),F2(0|X2)(s, t)
.

Theorem 2.2 underscores the benefit of employing our nonstandard estimator. From the form

of fH(s,t;X)(s, t) in (9), we can see fH(s,t;X)(s, t) > fF1(0|X1),F2(0|X2)(s, t). Thus, we have smaller
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variance by applying the proposed estimator. Intuitively, instead of applying a variable

(F1(0|X1), F2(0|X2)), we use many variables (F1(k1|X1), F2(k2|X2)), k1 = 0, . . . , k2 = 0, . . .

for copula estimation, which increases the efficiency.

Now we illustrate this point through a simulation study. Figure B.3 displays the results

for copula identification using only zeros under the medium marginal mean level with high

dependence. Compared with the middle columns in Figures 3 and 5, it is clear that the

proposed nonstandard nonparametric estimator has smaller bias and variance.

Figure B.3: Contour plots of the estimator (B.1) using the probability of (0, 0). The average
of the estimator over 500 replications is given by the solid lines, while the dash-dot symbols
give the corresponding 95% confidence interval, and the dashed lines give the underlying
copulas.

B.3 Copula Specification and Diagnosis

We now explore the usage of the nonparametric estimator as a diagnostic tool under different

scenarios. For each of the simulations, given the generated data, we first fit the marginal

models. Then, we plug the marginal estimates in (6) to obtain our nonparametric estima-

tor. Meanwhile, different parametric copulas are fit through MLE. Finally, we compare the

parametric copulas with our nonparametric estimator. We generate the data using Gaussian

(no tail dependencies), Clayton (lower tail dependence), and Joe (upper tail dependence)

copulas to explore the impact of tail dependence, and here we only present results for Poisson

variables.
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Case 1. Gaussian copulas. We first analyze the generated data from Gaussian copulas,

the most commonly used copulas without tail dependence. We include a representative

graphical summary of the results under medium means in Figures B.4 and B.5. Due to

space limitations, the results of other scenarios are summarized numerically in Table B.2.

Under low dependence, the dashed lines (corresponding to the fitted parametric copulas)

across plots in Figure B.4 are hardly distinguishable due to the fact that they are all similar

to the independence copula. As a result, their distances with the nonparametric estimator are

comparable. Therefore, the choice of parametric copulas is not essential when the dependence

is very weak.

In contrast, under high dependence as in Figure B.5, we can exclude the Gumbel and

Joe copulas due to the large discrepancy with the nonparametric estimator in the center of

the graphs, and the Clayton copula is wide apart towards right upper corner. Recall that

Gaussian and Frank copulas do not have tail dependence. Gumbel and Joe copulas have

upper tail dependence, while a Clayton copula has lower tail dependence. Hence, when the

dependence is strong, we can rule out copulas with wrong types of tail dependencies, and

the graphical comparison with our nonparametric estimator suggests improvement. Due to

the similarity in the Gaussian and Frank copulas, the choice between these two copulas is

difficult and probably not that important. It is also noticeable that among copulas with

upper tail dependence, the Joe copula has more significant distance than the Gumbel copula

with the nonparametric estimator, which can be explained by the stronger tail dependence

of the Joe copula.

Figure B.6 displays the graphical results under small marginal means and high depen-

dence. Due to large bias and variance in the nonparametric estimator, as demonstrated

in Section 3.2, all the copulas are inside the confidence intervals. Hence, the wrong models

cannot be rejected statistically, and it is hard to make conclusions about copula specification.

Table B.2 summarizes the results numerically. As an example, when the sample size is

24



Figure B.4: Contour plots of the nonparametric estimator compared with several parametric
copulas under medium means and low dependence. The estimator is given by the solid lines,
and the dash-dot symbols give the corresponding confidence intervals. The fitted parametric
copulas are given by a dashed line. These plots are based on a sample size of 1000.

n = 1000, under small marginal means and low dependence, the average distance of the fitted

Gaussian copula with our nonparametric estimator is 2.865× 10−3 with standard deviation

2.081× 10−3 over the 500 replications, while the fitted Frank copula has an average distance

2.834×10−3 with standard deviance 2.095×10−3. Consistent with Figure B.6, with high level

of discreteness, the distances between different parametric copulas with the nonparametric

estimator are high and comparable (first three rows of each block). Thus, it is difficult to

pick up a copula. When the marginal means are at medium and large levels, the strength

of dependence plays an important role in the model specification. Under low dependence,

we are unable to distinguish most of the copulas in terms of the distance, except the Joe

copula shows worse fitting at large mean level. With stronger dependence, we can rule out
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Figure B.5: Contour plots of the nonparametric estimator compared with several parametric
copulas under medium means and high dependence. These plots are based on a sample size
of 1000.

the Gumbel, Joe, and Clayton copulas, especially under high dependence, where the true

model outperforms alternative models clearly. Again, the Gaussian and Frank copulas are

generally indistinguishable, except that the difference is more noticeable with large marginal

means and high dependence.

Case 2. Clayton copulas. To further explore the impact of tail dependence, we next

consider copulas with lower tail dependence. Table B.3 portrays the results of the Clayton

copulas. As we concluded the choice of copulas is not essential under low dependence or

small marginal means, we omit the corresponding results here. In all the scenarios, the true

model has smallest distance with the nonparametric estimator. Meanwhile, we can rule out

the Gumbel and Joe copulas easily as they have opposite tail dependence structures of the
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Figure B.6: Contour plots of the nonparametric estimator compared with several parametric
copulas under small means and high dependence. These plots are based on a sample size of
5000.

Clayton copulas. The Frank copulas are far apart when the dependence is high.

Case 3. Joe copulas. Now we use copulas with upper tail dependence as the underlying

models. Table B.4 shows the results when the Joe copula is the data generating mechanism.

The true model has smallest distance. Meanwhile, the Gumbel copulas are better than the

Frank and Clayton copulas due to the fact that both Gumbel and Joe copulas have upper

tail dependencies.

To summarize, first, the selection of copula is more important with large marginal means

and high dependence. Second, overall, our nonparametric estimator is likely to exclude
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copulas with wrong tail behaviors, especially those with opposite tail dependence structures

of the underlying model. In the situations where it seems ambiguous among copulas, we

suggest expanding the candidate pool.

B.4 Selection of Bandwidth

First, to demonstrate sensitivity of the proposed estimator to different bandwidths under

different scenarios, Figure B.7 portrays the contour plots of the nonparametric estimator with

different bandwidths under different marginal mean levels. It appears that the bandwidth

plays a more important role in the small and medium marginal mean settings than in the

large mean cases where the estimator is not as sensitive to the selection of bandwidth.

Therefore, we do not emphasize bandwidth selection for large mean cases in this section.

Figure B.7: Contour plots of the nonparametric estimator with different bandwidths at
moderate dependence. Sample size: 1000.
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We conduct a simulation study to assess the proposed bandwidth selector (Section 2.4)

by comparing it with the benchmark selector minimizing the ISE values. In addition, we

include the results using the independence copula as the working copula in our procedure.

Tables B.5, B.6, and B.7 report the numerical results. We compare the selected bandwidths

from different selectors and the resulted ISE values. We do not concern the low dependence

scenarios here, since the independence copula is close to the truth in these cases and can be

used as the working copula without doubt.

Table B.5 shows the results with Gaussian copulas as the underlying dependence struc-

tures. For example, when the data are generated with small marginal means and a Gaussian

copula at moderate dependence level, the minimizer of the ISE values gives a bandwidth

90.653 × 10−3 on average with standard deviation 12.440 × 10−3. With the selected band-

widths, the ISE value of our nonparametric estimator are 2.703 × 10−3 on average with

standard deviation 1.202 × 10−3. We see that the proposed procedure returns bandwidths

close to the results of the benchmark selector across different marginal means, dependence

levels, and sample sizes, while using the independence copula tends to undersmooth signif-

icantly, especially when there is high dependence. Intuitively, the discrepancy between the

underlying copula and independence is large under high dependence. Therefore, we sug-

gest not using the independence copula alternative for bandwidth selection when significant

dependence is detected.

While Gaussian and Frank copulas have same tail dependence properties, to evaluate

the proposed bandwidth selector when the underlying copula has different tail dependencies,

we conduct the simulation using Gumbel and Clayton copulas to generate the data. As

portrayed in Tables B.6 and B.7, it is not surprising that the proposed selector performs

not as good as when Gaussian copulas are the underlying models (Table B.5). For Gumbel

copulas, the selector using a Frank copula gives larger bandwidths while for Clayton copulas

the bandwidths are smaller than the benchmark values. However, we think the selector

performs satisfactorily even with misspecification of tail dependence, which is reflected in
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the ISE values of the resulted copulas.
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