
Supplemental Material On

“Common Threshold in Quantile Regressions With An Application to Pricing for

Reputation”

Liangjun Su and Pai Xu

 Singapore Management University, Singapore

 University of Hong Kong, Hong Kong
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C Proof of Proposition 4.1

First, taking the first-order derivative of Π with respect to  yields the first-order condition (FOC):

Π


(; ) = (1− 2)− (1− − ̄ + ) = 0 (C.1)

It is worth noting that equation (C.1) implies, for any given , that Π
 (; )  0 if  ≥ 1

2 ≡  Therefore,

the optimal price in the model must entail a price cut from  if the concerns of goodwill matter.

Assumptions M1 and M2 together imply that there must exist two points 1 2 ∈ (0 ̂) such that
 0(1) =  0(2) = 2(). Without loss of generality, we assume that 1  2, which in turn implies

that (1)  (2) by M1. Define 1 and 2 such that

1− 21 − (1) = 0 and 1− 22 − (2) = 0 (C.2)

Then, we must have 1  2. Further, we define 1 and 2 such that

1− 1 − ̄ + 1 = 1 and 1− 2 − ̄ + 2 = 2 (C.3)

Note that

1 = ̄ − 1 + 1 +1

= ̄ − 1 + 
1− (1)

2
+1

= ̄ − 1
2
− (1)

2
+1

Analogously, 2 = ̄ − 1
2 − (2)

2 + 2. Therefore, by the mean value theorem there exists ̈ ∈ (1 2)
such that

1 − 2 = −
2
[(1)− (2)] + (1 − 2)

= (1 −2)

∙
1− 

2
 0(̈)

¸
 0
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where the last inequality follows from the fact that  0()  2() for any  ∈ (1 2) by M2. Conse-
quently we have shown that 1  2. To understand the optimal pricing strategy in the model, we consider

three cases: (1)  ≤ 2 (2)  ≥ 1 and (3) 2    1

Case 1:  ≤ 2

At 2, the point  = 2 makes the FOC in (C.1) hold by construction. Further, 2Π
2 (2; 2) = −2 +

2 0 (2) = 0 and  = 2 is an inflexion point on the graph Π (·; 2). Define 1(2) = 2 +
2−1

 .

Using (C.2), (C.3), and the fact that  0 (1) = 2 ()  we can readily verify that Π
 (1(2); 2) =

1− 21(2)− (1) = 2(1 − 2)  0 and
2Π
2 (1(2); 2) = −2+ 2 0 (1) = 0. Therefore, 1(2)

corresponds to a local maximum on the graph of Π (·; 2) and an inflexion point on the Π (·; 2) graph by
M2. As Π

 (
; 2)  0, there must exist: 

∗
1 ∈ (1(2) ) such that Π

 (
∗
1; 2) = 0. Moreover, 

∗
1 is the

unique maximum. (Refer to Figure 2.) Extending to the case of   2, define two local extremes, 2()

and 1() on the function
Π
 (·; ) with 2()  1(). By definition,

2Π
2 (2(); ) =

2Π
2 (1(); ) = 0 It

is easily verified that Π
 (2; )  0

Π
 (1(2); ) 

Π
 (1(2); 2)  0

2Π
2 (1(2); )  0

Π
 (

∗
1; )  0

and Π
 (2 () ; ) 

Π
 (2 () ; 2)  0 ∀   2. The first three inequalities imply that ∀   2 the graph

of Π
 (·; ) can be obtained by shifting that of Π

 (·; 2) to the upper left, and the last two, in conjunction
with the fact that Π (

; )  0 imply the existence of a unique local maximum ∗1() ∈ (∗1 ) ∀  ≤ 2.

By the FOC Π
 (

∗
1(); ) = 0 and the implicit function theorem, we have

∗1()


= −
2Π
 (

∗
1(); )

2Π
2 (

∗
1(); )

=
 0(1− ∗1()− ̄ + )

2Π
2 (

∗
1(); )

 0

because  0()  0 for any   ̂ 1−∗1()− ̄+   1−∗1 − ̄+ 2  ̂ and 2Π
2 (

∗
1(); )  0 That is,

∗1() is decreasing in .

Case 2:  ≥ 1.

Note again that at 1, the point  = 1 is an inflexion point on the graph of Π (·; 1). Similar to the
arguments in Case (1), define 2(1) = 1 − 2−1

 . Because Π
 (2(1); 1)  0 and lim→0 Π

 (; 1)  0

by M1, there exists a ∗2 ∈ (0 2(1)) such that Π(; 1) achieves a local maximum. (Refer to Figure 1.)
To extend to the case of   1, let 2() denote the local minimum point on the function

Π
 (·; ) We

can apply arguments analogous to the case of   2 to show that the graph of
Π
 (·; ) can be obtained

by shifting that of Π
 (·; 2) down and right, and there exists a unique ∗2 () ∈ (0 2 ()) ∀   1

that maximizes profits. However, noting that 1 − ∗2() − ̄ +  can be either larger or smaller than ̂

 0 (1− ∗2()− ̄ + ) can take positive, negative, or zero values, which implies that ∗2() may be either

increasing or decreasing when   1.[Note that 1 − ∗2() − ̄ +   1 − ∗ − ̄ + 1, and nothing

ensures that 1− ∗2()− ̄ +   ̂ as   1]

Case 3: 2    1.
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There exist two local maxima, ∗1() ∈ (1() ) and ∗2() ∈ (0 2()). (Refer to Figure 3.) Let
4() = Π(∗1(); )−Π(∗2(); ). By the envelope theorem and FOC,

 4 ()


= (1− ∗1()− ̄ + )− (1− ∗2()− ̄ + )

=
1− 2∗1()


− 1− 2

∗
2()



= 2 [∗2()− ∗1()]  0

Moreover, noting that 4(2)  0 and 4(1)  0 there must exist a unique point 0 ∈ (2 1) such that
4(0) = 0. It follows that the seller should adopt ∗1() if  ≤ 0 and ∗2() otherwise, and the desired

optimal pricing strategy holds. ¥

Remark on the intuition.

Intuitively, the discontinuous pricing strategy occurs as follows. The restrictions in Assumptions M1

and M2 produce a peculiar shape of Π0 (·; ). Along with the increase in , Π0 (·; ) is initially downward
sloping and convex, then becomes positive sloping and concave, and then eventually slopes downwards

again. Thus, in order for the FOC in (C.1) to hold, there are three possible ways that Π0 (·; ) intersects
the horizontal -axis:

Case 1: the intersection occurs in the concave region alone (refer to Figure 2);

Case 2: the intersection occurs in the convex region alone (refer to Figure 1); and

Case 3: the intersection occurs in both regions (refer to Figure 3).

In the proof, we show that the pricing scheme in Cases 1 and 2 are associated with small and large

values of , respectively, in Case 3 there exists a threshold value 0 such that the seller will switch between

the two pricing schemes when  increases from a number below 0 to one above 0. It is the presence of a

positively sloped segment of Π0 (·; ) that makes the profit function Π(·; ) exhibit a bimodal shape, which
in turn induces discontinuity in the optimal pricing. If it were not the case, the profit function would be

globally concave and a change in pricing scheme may not occur.

We first take a close look at Case 1 by considering a slight change in . When  is small, the marginal

profit in the current monopoly pricing always dominates the marginal cost of losing the potential benefit

of goodwill. Therefore, the unique maximum of Π occurs in the concave region of Π0 (·; ) in this case.
Parallel to the first case, we next consider a change in  in Case 2. The loss of marginal profit in the current

monopoly pricing may now be compensated for by the potential gain from future goodwill. Therefore, the

unique maximum in this case occurs in the convex region of Π0 (·; ).
In the pricing situation in Case 3, the seller needs to choose between two local maxima, ∗1() and ∗2(),

as illustrated in Figure 3. Switching from ∗1() to ∗2() induces a trade-off between the two areas in the

region, (∗2() 
∗
1()). The size of the gain is represented by the area below the horizontal axis, whereas

the magnitude of loss is shown by the area above the horizontal axis. Consider a seller with an  close to

2. As the gain from changing is not significant enough to compensate for the loss, the seller will continue
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Figure 1: Pricing strategy when  ≥ 1
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Figure 2: Pricing strategy when  ≤ 2
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Figure 3: Pricing strategy when  ∈ (2 1)

to charge ∗1(). However, along with the increase in , there must exist a 0 that makes it worthwhile for

the seller to switch to the pricing regime ∗2().

In Case 1 where the value of  is small, the tail of  , the distribution of not recruiting good reviews, is

relevant. As a matter of fact, being to the left of the mode implies that the optimal prices will decrease

with . Such a decreasing pricing pattern simply reflects the fact that the potential benefit of goodwill

becomes more significant as  increases. However, in Case 2, as  is sufficiently close to ̄, the pricing

decision may face  on either side of ̂. Therefore, the pricing pattern in  results in an ambiguous sign.

D Robustness check

In our sample, we observe posting prices (price), the reputation score and category of the seller at the time

of posting (reputation score), whether postage is included in the posted prices (postage), the total number

of items sold by the seller (total items), the sales volume last recorded per posting item (sales volume),

the rate of good reviews obtained by the seller (rate of good reviews), and the seller’s location (area code).

We also observe the actual transaction prices. However, these prices have a great deal of noise, due to the

options of an additional set menu at each seller’s store. We therefore decide to focus on the posting price

in our empirical analysis.

Table A.1 lists the basic summary statistics for our data. We observe a substantial amount of variation

in prices, which touches on the core of our study, that is, whether reputation contributes to providing a

causal term for such rich variation in price. We observe only limited information on sellers in the dataset,

among which “total items” is the most important. It represents the total number of items for sale in

a particular online store. We view this variable as a proxy for a seller’s scale and specialization. The
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significant variation observed in total items may reflect the fact that sellers’ heterogeneity is at work.

The sales volume variable exhibits much less variation. Lastly, the variation in the rate of good reviews

indicates that it is less likely for sellers to get a bad or neutral review than a good one. This is consistent

with other empirical findings that only reviewers who provide good reviews tend to break the silence.

See, e.g., Dellarocas and Wood (2008). This pattern partially validates our theoretical model, in which a

distribution that does not elicit good reviews plays a central role in equilibrium pricing. Our focus on the

left tail of the distribution becomes more relevant.

Although the reputation pricing pattern is found in the data, there remain critical issues in the foregoing

empirical analysis. For example, we did not consider the possible impact of the observed covariates on the

posting prices. As a robustness check, we repeat the previous empirical exercises by including all observed

variables. We thus augment our TQR model in Section 4 only by the covariates listed in Table A.1.

Following the testing approach suggested in Section 2.2, we detect the existence of change points in the

data for all of the quantiles between 0.1 and 0.9. We then estimate the model for quantiles  = 01  09.

The estimation and inference results for the threshold parameters are reported in Table A.2. From these

estimates, we suspect quantiles 04 − 07 may share a common threshold. Therefore, we did the test for
common threshold among these quantiles, whose results strongly supports the null of common threshold.

Then, the estimated common threshold parameter is 3252, with a confidence interval of [3246 3260].

The jump sizes are evaluated at the mean values of each covariate in the quantile regressions. It is

observed that the price-cut pattern occurs for all  ∈ [02 09], and the jump sizes are much smaller
than those unconditional on the covariates. Moreover, roughly speaking, the larger the  , the higher

the reputation level at which the jump occurs (that is the closer to the exogenous cutoff of reputation).

Although jumps are identified in the quantiles of  = 08 09, they are smaller in magnitude, relative to

other quantiles. What can be concluded is that for the sellers in most of the quantiles, a price-cut strategy

may be useful when their reputation scores are in the range of 3200 to 3400.

A jump-up occurs at the quantile regression of  = 01. Recall that the slope estimate before the jump

for  = 01 is statistically significant and positive in Table 6. These inconsistent findings may indicate

that sellers posting extremely low prices may possibly have objectives other than an enhanced reputation.

If this is indeed the case, then our model cannot, in general, explain the pricing behavior of these sellers.

Our choice of the iPod Nano for this study stemmed from our concern with product homogeneity. An

additional concern is whether a seller would choose this product to accrue good reviews to obtain the

goodwill benefit. To address this issue, we repeat the testing and estimation procedure with a much more

restrictive sample, that is, the sellers with fewer than 100 items in total to sell. These sellers are smaller in

scale and possibly more specialized in selling electronic items. Our major findings on the pricing patterns

remain valid with this restrictive sample. However, we also acknowledge that this issue may be significantly

more complicated. In particular, consumers’ willingness to provide positive reviews in exchange for lower

prices may be dependent on product-specific characteristics. The issue of consumer responsiveness to this

type of product is beyond the scope of this project and is therefore left for future research.
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Table A.1: Summary statistics
Variables Min Max Mean Median Std dev

price 508 1400 995.10 1050 171.43
reputation score 501 4995 1875.48 1392 1225.58
total items 7 36811 645.30 288 1787.90
postage 0 100 11.40 10 10.42
sales volume 0 300 3.84 1 12.86
rate of good reviews 0 100 89.06 99.83 30.79
NOTE: The sample includes only sellers that belong to Categories 7 to 9. The total

number of observations is 1903.

Table A.2: Estimation and inference on the threshold parameter
 Jump Size  95% lower bound 95% upper bound
0.1 277.68 1984 1975 2018
0.2 -77.83 3264 3231 3271
0.3 -125.60 2979 2975 3002
0.4 -101.01 3252 3232 3272
0.5 -52.38 3252 3247 3261
0.6 -87.07 3252 3232 3272
0.7 -64.23 3252 3247 3261
0.8 -28.00 3364 3355 3367
0.9 -27.64 3849 3750 3947

0.4-0.7 — 3252 3246 3260
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