Parameter	Value	Units	Description
L	860	km	Modelled reach length
B_{bf}	500	m	Reach-representative bankfull channel width
Ω	1.3	-	Channel sinuosity
λ_p	0.3	-	Bed porosity
Cz	30	-	Dimensionless Chezy resistance coefficient
ζ	4	-	Coefficient in dune height relation (Eq. (21))
$lpha_{al}$	2	-	Ratio of active layer thickness to dune height
$lpha_{trans}$	0.5	-	Partitioning coefficient for active layer-substrate interface GSD
L_S	1	m	Thickness of the substrate storage layer
S_I	0.00005	-	Initial channel slope
Λ	1	-	Ratio of wash load deposition to bed material deposition
Q_{bf}	4500	m^3s^{-1}	Representative bankfull flow discharge
$Q_{\it Tfeed,pre}$	385	Mt yr ⁻¹	Bed material feed rate of "pre-Xiaolangdi" condition
$Q_{\mathit{Tfeed},\mathit{post}}$	38.5	Mt yr ⁻¹	Bed material feed rate of "post-Xiaolangdi" condition
$B_{f,pre}$	13000	m	Active floodplain width of "pre-Xiaolangdi" condition
$B_{f,post}$	2500	m	Active floodplain width of "post-Xiaolangdi" condition

Table S1. List of model input parameters

Figure S1 Comparison of the proposed relation $(C_f q_T^*_{prediction})$ against the observed data $(C_f q_T^*_{field})$ at Gaocun (GC) and Sunkou (SK) stations.

Figure S2 Illustration of (a) planform view and (b) cross-sectional view of the modelled reach.

Figure S3 Illustration of the modelled water column, active layer and substrate.

Figure S4 Plot of the dimensionless Chezy friction coefficient (*Cz*) and the Shileds number (τ_g^*) for Lijin (LJ), Sunkou (SK) and Gaocun (GC) stations. Characteristic value is found to be approximately *Cz* = 30.