A. External result for XRD

Figure S1. Powder x-ray diffraction pattern (Cu Kα radiation) of EuBiSe₃ fiber

The dates of diffraction angle of peaks measured and simulated from the reported

single c	rvstal	structure	of E	uBiSe ₃	[1]	are	listed	as	follows:
			·	•••••	L * J				10110.000

peak code	(h k l)	2θ(measured)	20(simulated)
a	(8 1 0)	22.06	22.06
b	(2 21)	24.68	24.54
c	(7 3 0)	25.20	25.34
d	(5 4 0)	26.44	26.46
e	(6 1 1)	27.12	27.11
f	(6 3 1)	31.62	31.66
g	(8 2 1)	32.24	32.26
h	(6 5 0)	32.90	32.90
i	(9 2 1)	34.44	34.15
j	(9 3 1)	36.56	36.57
k	(14 2 0)	39.52	39.54
l	(5 6 1)	42.24	43.02
m	(11 4 1)	42.94	43.43
n	(4 7 1)	47.30	47.35
0	(16 0 1)	48.68	48.69
р	(3 4 2)	49.64	49.74
q	(3 5 2)	52.56	52.96
r	(4 5 2)	54.48	53.50

S	(13 7 0)	55.40	54.52
t	(690)	56.40	56.44

B. The temperature-dependent experimental data of two samples

Figure S3. Temperature dependence of electrical conductivity of two EuBiSe₃ fiber

samples

Figure S4. Temperature dependence of Seebeck coefficient of two EuBiSe₃ fiber

samples

Figure S5. Temperature dependence of figure of merit of two EuBiSe₃ fiber samples

C. The calculation for the carrier concentration, mobility and effective mass

We calculated the carrier concentration, mobility and effective mass using a single parabolic band (SPB) approximation and the formula of Fermi energy[2]. In this model, the equations are expressed as follows:

$$S = \frac{k_B}{q} \left[\left(\frac{5}{2} + \gamma \right) + \ln \frac{2(2\pi m^* k_B T)^{\frac{3}{2}}}{nh^3} \right]$$
(1)

$$m^* = \frac{h^2}{2k_B T} \left(\frac{n}{4\pi F_1(\zeta_F)}\right)^{\frac{2}{3}}$$
(2)

With Fermi integral

$$F_{i}(\xi_{F}) = \int_{0}^{\infty} \frac{x^{i}}{1 + e^{(x - \xi_{F})}} dx$$
(3)

Reduced Fermi level

$$\xi_F = \frac{E_F}{k_B T} \tag{4}$$

Fermi energy

$$E_F = \frac{h^2}{2m_e} (\frac{3n}{8\pi})^{\frac{2}{3}}$$
(5)

Electrical conductivity

$$\sigma = nq\mu \tag{6}$$

Where *h* is the Plank constant (6.626×10⁻³⁴ J/s), k_B is the Boltaman constant (1.38×10⁻²³ J/K), m^* is the carrier effective mass, m_e is the electron rest mass (9.109×10⁻³¹ kg), *q* is the quantity of electric charge(1.6×10⁻¹⁹ C), *n* is the carrier concentration, γ is scattering factor and E_F is the Fermi energy. In our calculations, the carrier scattering factor γ =3/2. The temperature dependences of carrier mobility, concentration and effective mass of EuBiSe₃ fiber are shown as follows:

Figure S7. Temperature dependences of carrier concentration and effective mass of

EuBiSe₃ fiber

References

- S. Forbes, Y. C. Tseng, and Y. Mozharivskyj, "Crystal cluster growth and physical properties of the EuSbSe₃ and EuBiSe₃ phases," *Inorg. Chem.*, vol. 54, pp 815-820, 2015.
- [2] S. Johnsen, et al., "Nanostructures boost the thermoelectric performance of PbS,"
 J. Am. Chem. Soc., vol. 133, pp 3460-3470, 2011.