SUPPLEMENTARY MATERIAL

Four new compounds from Neoboletus magnificus

Zhi Yang^a, Ying-tong Di^b, Yu Zhang^b, Xu-Jia Hu^a *

^aFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; ^bState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China

ABSTRACT

Four new compounds, compounds **1**, **2**, **4**, **6**, along with two compounds **3**, **5**, were isolated from the methanol extract of the fruiting body of *Neoboletus magnificus*. The structures of compounds were elucidated by HRMS and NMR spectroscopic methods. The *in vitro* anti-inflammatory activity of the isolated compounds was evaluated.

Key words: Neoboletus magnificus, Boletaceae, sphingolipid, pyrrole alkaloid

Contents

Figure S1. EIMS fragmentation, key ${}^{1}\text{H}{}^{-1}\text{H}$ COSY and HMBC correlations for 1

Figure S2. EIMS fragmentation, key ¹H-¹H COSY and HMBC correlations for 2

Figure S3. EIMS fragmentation, key ¹H-¹H COSY and HMBC correlations for 3

Figure S4. Key ¹H-¹H COSY and HMBC correlations for compounds 4-5

Figure S5. Key ¹H-¹H COSY and HMBC correlations for 6

Figure S6- S7. 1D NMR spectra of compound 1 in CD₃OD.

Figure S8- S10. 2D NMR spectra of compound 1 in CD₃OD.

Figure S11- S12. 1D NMR spectra of compound 2 in DMSO-d₆.

Figure S13- S15. 2D NMR spectra of compound 2 in DMSO-d₆.

Figure S16- S17. 1D NMR spectra of compound 3 in DMSO-*d*₆.

Figure S18- S20. 2D NMR spectra of compound 3 in DMSO-*d*₆.

Figure S21-S22. 1D NMR spectra of compound 4 in DMSO-*d*₆.

Figure S23-S25. 2D NMR spectra of compound 4 in DMSO-*d*₆.

Figure S26- S27. 1D NMR spectra of compound 5 in Acetone.

Figure S28- S30. 2D NMR spectra of compound 5 in Acetone.

Figure S31- S32. 1D NMR spectra of compound 6 in DMSO-d₆.

Figure S33- S35. 2D NMR spectra of compound 6 in DMSO-*d*₆.

Table S1. ¹H and ¹³C NMR Data (δ) of Compound 1 (δ in ppm and J in 800 Hz) in CD₃OD.

Table S2. ¹H and ¹³C NMR Data (δ) of Compound **2** (δ in ppm and *J* in 600 Hz) in DMSO-*d*₆.

Table S3. ¹H and ¹³C NMR Data (δ) of Compound **3** (δ in ppm and *J* in 600 Hz) in DMSO-*d*₆.

Table S4. ¹H and ¹³C NMR Data (δ) of Compound 4 (δ in ppm and J in 500 Hz) in DMSO- d_6 .

Table S5. ¹H and ¹³C NMR Data (δ) of Compound **5** (δ in ppm and *J* in 600 Hz) in Acetone.

Table S6. ¹H and ¹³C NMR Data (δ) of Compound **6** (δ in ppm and J in 600 Hz) in DMSO-d₆.

Figure S1. EIMS fragmentation, key ¹H-¹H COSY and HMBC correlations for 1

Figure S2. EIMS fragmentation, key ¹H-¹H COSY and HMBC correlations for 2

Figure S3. EIMS fragmentation, key ¹H-¹H COSY and HMBC correlations for 3

Figure S4. Key ¹H-¹H COSY and HMBC correlations for compounds 4-5

Figure S5. Key ¹H-¹H COSY and HMBC correlations for 6

Figure S6. ¹H NMR spectrum of compound 1 (CD₃OD).

40 30 20

Figure S8. HSQC spectrum of compound 1.

Figure S9. HMBC spectrum of compound ${\bf 1}$.

Figure S10. ¹H-¹H COSY spectrum of compound 1.

Figure S11. ¹H NMR spectrum of compound **2** (DMSO- d_6).

Figure S12. ¹³C NMR and DEPT spectrum of compound 2 (DMSO- d_6).

Figure S13. HSQC spectrum of compound $\mathbf{2}$.

Figure S15. $^{1}\text{H}^{-1}\text{H}$ COSY spectrum of compound 2 .

Figure S16. ¹H NMR spectrum of compound 3 (DMSO- d_6).

Figure S17. ¹³C NMR and DEPT spectrum of compound 3 (DMSO- d_6).

hhm10a	
C13DEPT135-sxhuo DMSO D:\\ root 14	
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	and the second
hhml0a	
CI3DELIAO-EXUNO DWEO D:// LOOT 14	
	and a star star is been attained as indicated with the start of the start of the start of the start of the star
	la barrie and a Mericel and a dall'h politik de la andre fa dalla andre andre andre andre andre andre andre and

Figure S18. HSQC spectrum of compound 3.

Figure S19. HMBC spectrum of compound $\mathbf{3}$.

Figure S20. $^{1}\text{H}^{-1}\text{H}$ COSY spectrum of compound 3 .

Figure S21. ¹H NMR spectrum of compound 4 (DMSO- d_6).

Figure S22. ¹³C NMR and DEPT spectrum of compound 4 (DMSO- d_6).

Figure S23. HSQC spectrum of compound 4.

Figure S24. HMBC spectrum of compound 4 .

Figure S25. ¹H-¹H COSY spectrum of compound 4.

Figure S26. ¹H NMR spectrum of compound 5 (Acetone).

Figure S27. ¹³C NMR and DEPT spectrum of compound 5 (Acetone).

Figure S28. HSQC spectrum of compound ${\bf 5}$.

Figure S29. HMBC spectrum of compound 5.

Figure S31. ¹H NMR spectrum of compound **6** (DMSO- d_6).

Figure S32. ¹³C NMR and DEPT spectrum of compound 6 (DMSO- d_6).

Figure S33. HSQC spectrum of compound 6.

Figure S34. HMBC spectrum of compound 6.

Figure S35. ¹H-¹H COSY spectrum of compound 6.

Position	<i>δ</i> (C)	<i>ð</i> (H)
1	176.0	
2	34.8	2.31 (t, 7.44)
3	26.0	1.60 (m)
4	30.1	1.32 (m)
5	25.5	1.60 (m)
6	41.0	2.59 (t, 7.36)
7	203.9	
8	128.8	6.12 (d, 15.6)
9	145.3	7.23 (dd, 15.6, 9.68)
10	147.4	6.27 (ddd, 21.44, 15.2, 6.4)

Table S1. ¹H and ¹³C NMR Data (δ) of Compound **1** (δ in ppm and J in 800 Hz)

11	130.3	6.27 (ddd, 21.44, 15.2, 6.4)
12	34.1	2.20 (dd, 14, 7.12)
13	29.6	1.46 (m)
14	30.0	1.32 (m)
15	23.5	1.32 (m)
16	32.6	1.32 (m)
17	14.3	0.91 (t, 6.96)
OCH ₃	52.0	3.64 (s)

Position	<i>δ</i> (C)	<i>δ</i> (H)
1	171.62	
2	35.45	2.05 (t,7.74)
3	23.27	2.19 (dd,7.2, 14.46)
4	128.53	5.27 (m)
5	130.28	5.31 (m)
6	26.60	1.97(dd, 6.9, 13.92)
7	28.81	1.26 (m)
8	30.92	1.23 (m)
9	22.03	1.24 (m)
10	13.99	0.84 (t, 6.84)
1'	35.77	3.06 (m)
2'	38.83	1.40 (m)
3'	63.81	3.58 (m)
4'	23.63	1.02 (d, 6.18)

Table S2. ¹H and ¹³C NMR Data (δ) of Compound **2** (δ in ppm and *J* in 600 Hz)

Position	<i>δ</i> (C)	<i>δ</i> (H)
1	172.24	
2	35.46	2.01 (t, 7.38)
3	25.37	1.45 (m)
4	28.47	1.21 (m)
5	28.64	1.21 (m)

Table S3. ¹H and ¹³C NMR Data (δ) of Compound **3** (δ in ppm and *J* in 600 Hz)

6	31.23	1.21 (m)
7	22.10	1.23 (m)
8	14.00	0.84 (t, 6.84)
1'	35.71	3.06 (m)
2'	38.86	1.40 (m)
3'	63.82	3.57 (m)
4'	23.63	1.02 (d, 6.18)

Position	δ(C)	<i>δ</i> (H)
1		
2	131.45	
3	123.94	6.94 (d, 3.95)
4	109.54	6.17 (d, 3.95)
5	143.44	
1'	42.33	4.29 (m)
2'	40.35	1.66 (m)
3'	63.65	3.55 (m)
4'	23.66	1.04 (d, 6.2)
1″	54.69	4.50 (dd, 13.7, 19.6)
2-СНО	178.92	9.43 (s)

Table S4. ¹H and ¹³C NMR Data (δ) of Compound 4 (δ in ppm and J in 500 Hz)

Table S5. ¹H and ¹³C NMR Data (δ) of Compound **5** (δ in ppm and J in 600 Hz)

Position	δ(C)	<i>δ</i> (H)
1		
2	132.34	
3	125.14	6.98 (d, 3.9)
4	110.02	6.20 (dd, 2.34, 3.78)
5	132.61	7.19 (brs)
1'	46.40	4.42 (m)
2'	41.46	1.84 (m),1.73 (m)
3'	64.62	3.62 (m)
4'	24.03	1.12 (d, 6.12)
2-CHO	179.71	9.53 (s)

Table S6. ¹H and ¹³C NMR Data (δ) of Compound **6** (δ in ppm and *J* in 600 Hz)

Position	δ(C)	δ(Η)
1	35.25	2.72 (t, 7.5)
2	39.78	3.30 (m)

4	172.32	
5	72.95	3.87 (s)
6	73.54	3.67 (m)
7	62.04	3.39 (m)
1'	139.50	
2',6'	128.66	7.29 (t, 7.68)
3',5'	128.42	7.21 (m)
4'	126.16	7.21 (m)