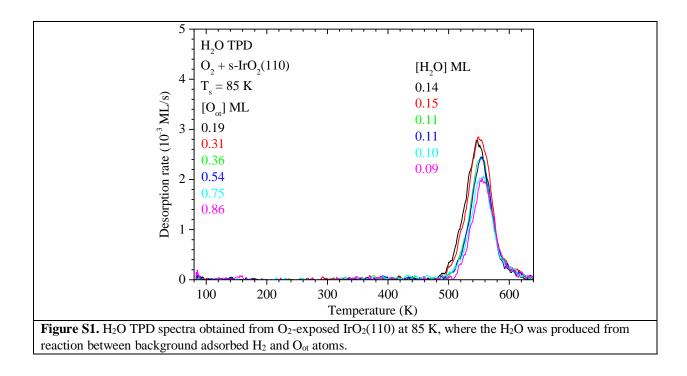
Supporting Information Hydrogen oxidation on oxygen-rich IrO₂(110)

T. Li,^{1,†} M. Kim,^{2,†} Z. Liang,¹ A. Asthagiri² and J.F. Weaver¹

¹Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA ²William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA

[†]Tao Li and Minkyu Kim contributed equally to this work.

*To whom correspondence should be addressed, weaver@che.ufl.edu


Tel. 352-392-0869, Fax. 352-392-9513

Estimates of adsorbate coverage and product yields from TPRS

We estimate atomic oxygen coverages by scaling integrated O₂ TPD spectra with those obtained from a saturated (2×1) -O layer containing 0.50 ML of O-atoms and prepared by exposing the Ir(100)-(5 \times 1) surface to O₂ in UHV [1]. To estimate hydrogen coverages, we scaled integrated hydrogen desorption spectra by an integrated TPD spectrum collected from a saturated Ir(100)-(5 \times 1)-H layer containing 0.80 ML of atomic hydrogen that we prepared by adsorbing hydrogen to saturation on the Ir(100)-(5 \times 1) surface at 300 K [2]. We performed TPRS experiments of CO oxidation on saturated O-covered Ir(100) to estimate CO₂ desorption yields. Specifically, we collected O_2 and CO_2 TPRS spectra after exposing a (2 × 1)-O layer to a sub-saturation dose of CO and assuming that the CO₂ yield is equal to the difference between the initial (0.50 ML) and final coverages of oxygen as determined from the O₂ TPRS yield. We performed TPRS experiments of hydrogen oxidation on partially O-covered Ir(100) to estimate the H₂O desorption yields. In these experiments, we first collected O_2 and CO_2 TPRS spectra after exposing a (2 × 1)-O layer to a sub-saturation dose of CO and assuming that the oxygen remaining on Ir(100) is equal to the difference between the initial oxygen coverage in the (2×1) -O layer (0.50 ML) and the CO₂ yield determined from the CO₂ TPRS spectrum. We then collected O₂ and H₂O TPRS spectra after exposing the partially O-covered Ir(100) surface generated from the first step to a saturation dose of H₂ and assuming that the H₂O yield is equal to the difference between the initial and finial coverage of oxygen determined from the O₂ TPRS yield. We repeat these calibration TPRS experiments to ensure accuracy in our estimates of desorption yields.

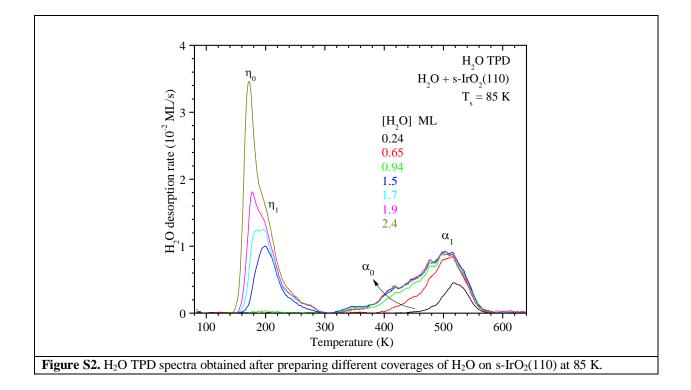
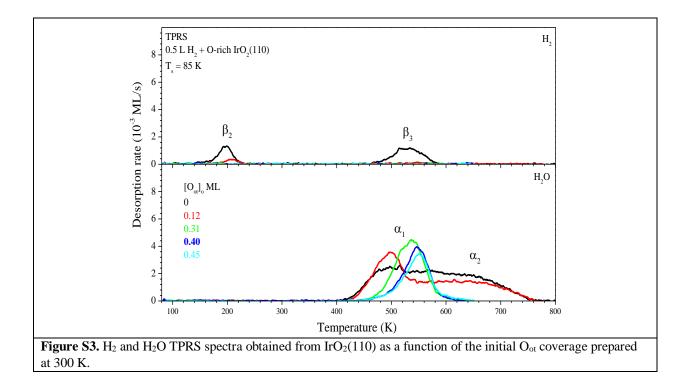

H₂O TPD spectra obtained from O₂-exposed IrO₂(110) at 85 K

Figure S1 shows H₂O TPRS spectra obtained after adsorbing O₂ on IrO₂(110) at 85 K, where the H₂O was produced by reaction between O_{ot} atoms and H₂ that adsorbed from the vacuum background before or during O₂ adsorption. An average of 0.11 ± 0.02 ML of H₂O desorbs from the O₂-exposed surfaces. Because the background-adsorbed hydrogen is the limiting reactant for the O_{ot} coverages studied, we assume that the initial O_{ot} coverage is equal to the sum of H₂O and O₂ that desorbs. Experiments with ¹⁸O_{ot}-covered IrO₂(110) support our approach for computing the initial O_{ot} coverages.

H₂O TPD spectra from s-IrO₂(110) after H₂O adsorption at 85 K


We investigated H₂O adsorption on IrO₂(110) using TPD to aid in interpreting the H₂O desorption features that result from H₂ oxidation on O-rich IrO₂(110) (Figure S2). After adsorbing 2-3 ML of H₂O on IrO₂(110) at 85 K, the H₂O TPD spectrum exhibits a broad feature with a maximum near 500 K as well as sharper peaks at 200 and 170 K. Based on similarities with TPD spectra reported for H₂O-covered RuO₂(110) [3] and PdO(101) [4], we attribute the broad feature (α) to H₂O species chemisorbed either associatively or dissociatively on Ir_{cus} sites while the peaks at 200 K and 170 K are consistent with H₂O adsorbed on O_{br} sites and an initial H₂O multilayer, respectively. Figure 3 shows that the water-Ir_{cus} species on IrO₂(110) desorb in a peak (α ₁) at ~520 K at low coverage and that a broad shoulder (α ₀) develops on the leading edge of the α ₁ peak with increasing H₂O coverage. The α TPD feature saturates at an H₂O coverage of ~1 ML, i.e., one H₂O molecule per Ir_{cus} atom, further supporting the assignment of this feature to water species adsorbed on the Ir_{cus} atoms.

A prior study reports that the TPD feature from chemisorbed H_2O on PdO(101) exhibits a broadening that is similar to that observed here [4]. Those authors report that H_2O molecules prefer to adsorb as H-bonded H_2O -HO dimer complexes on the Pd_{cus} sites, but that a variety of less stable H_2O oligomers can develop on the Pd_{cus} rows at H_2O coverages above 0.50 ML, with desorption from the oligomer structures producing a broad shoulder in the TPD spectra. A preference for H_2O -HO dimer formation has also been reported for water adsorption on s-RuO₂(110)[5,6] and crystalline Fe₃O₄ surfaces [7]. Below, we report DFT calculations which predict that H_2O dissociative chemisorption is moderately favored over H_2O -HO dimer formation on s-IrO₂(110). This prediction suggests that the composition of the water adlayer evolves differently with increasing coverage on IrO₂(110) compared with PdO(101) and RuO₂(110); however, a shared characteristic among these oxide surfaces is that chemisorbed water becomes destabilized with increasing H₂O coverage. Further characterization using surface vibrational and/or photoelectron spectroscopy is needed to determine the structure and composition of the water adlayer on $IrO_2(110)$.

TPRS for H₂ oxidation on IrO₂(110) with O_{ot}-layer prepared at 300 K

Figure S3 shows H₂ and H₂O TPRS spectra obtained after exposing a saturation amount of H₂ to $IrO_2(110)$ surfaces with different initial O_{ot} coverages. We prepared the O_{ot}-layers by exposing the $IrO_2(110)$ surface to varying amounts of O₂ at a surface temperature of 300 K. The TPRS traces evolve with the O_{ot}-coverage in a qualitatively similar way as when the O_{ot}-layer is prepared by flashing a saturated on-top oxygen layer to selected temperatures (Figure 3a, main manuscript).

H_2 oxidation yields as a function of initial O_{ot} coverage prepared by heating to selected temperatures vs. O_2 adsorption at 300 K

Figures S4a and S4b show H_2 and H_2O TPRS yields as a function of the initial on-top oxygen coverage for two methods of preparing the oxygen layer, namely, heating a saturated oxygen layer to selected temperatures (Fig. S4a and Fig. 4c) and varying the O_2 exposure to $IrO_2(110)$ at a surface temperature of 300 K. The H_2 uptake decreases continuously when the O_{ot} -layer is prepared at 300 K (Figure S4b), rather than exhibiting an abrupt decrease near ~0.4 ML as seen when the layer is prepared by heating (Figure S4a). The H_2 uptake is also lower for the O_{ot} -layer prepared at 300 K vs. the layer prepared by heating. This behavior strongly supports the interpretation that H_{ot} atoms, resulting from H_2 adsorption from the background, block subsequent H_2 adsorption at 85 K and that heating the initial O_{ot} -layer above ~450 K causes an abrupt increase in the coverage of empty Ir_{cus} sites by promoting the conversion of Hot atoms to OH groups.

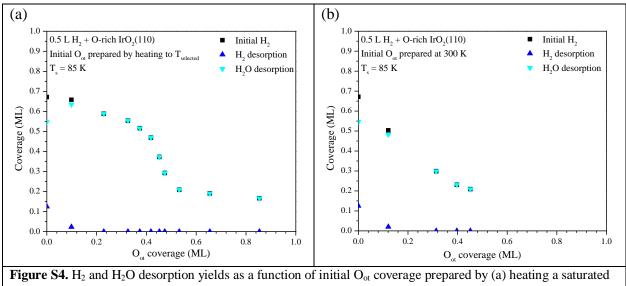
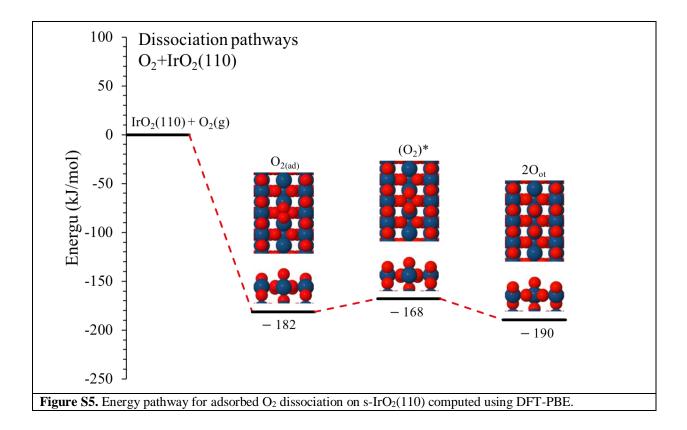
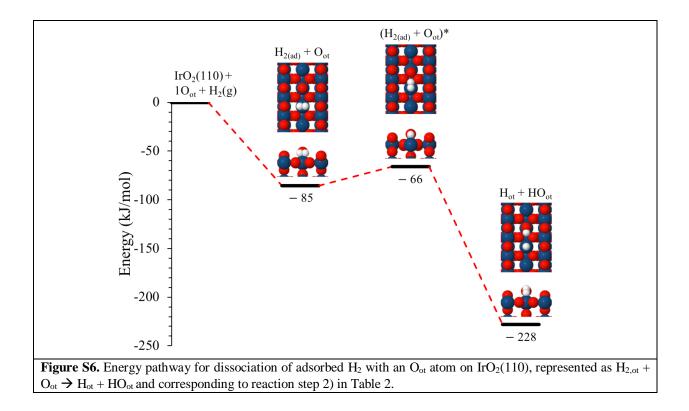
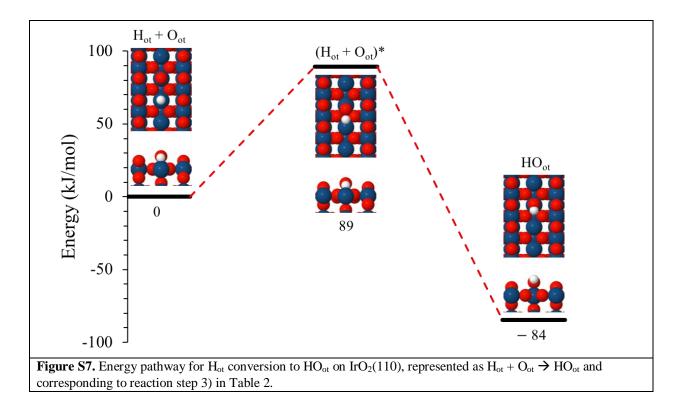
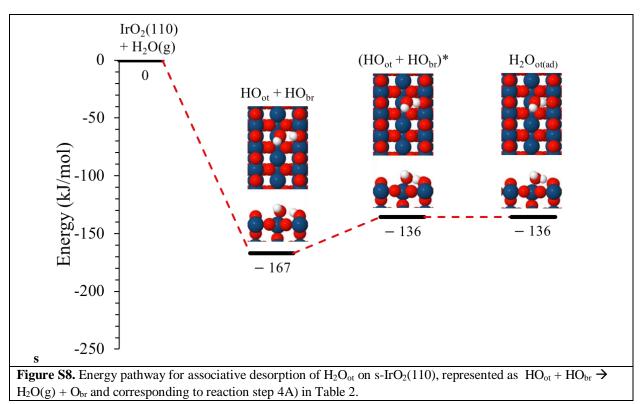
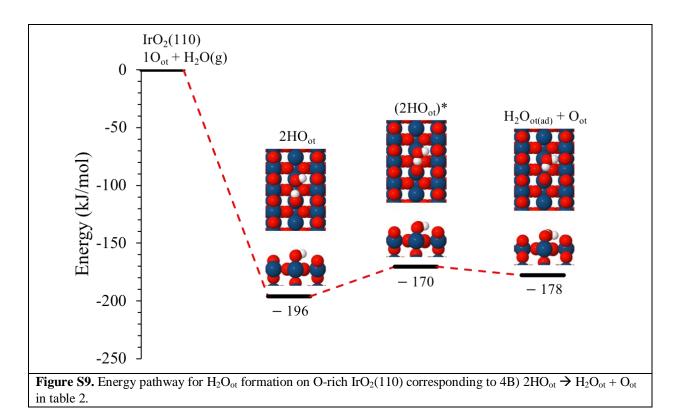



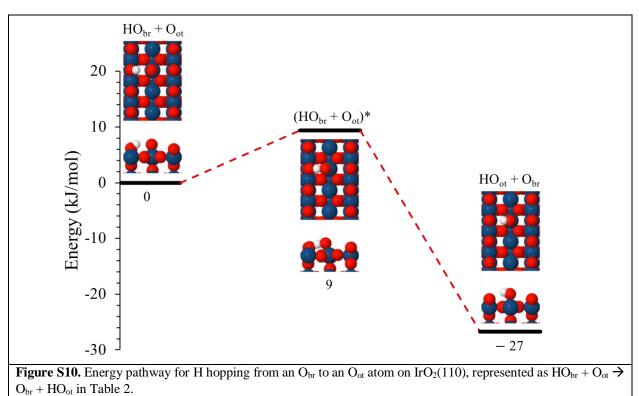
Figure S4. H_2 and H_2O desorption yields as a function of initial O_{ot} coverage prepared by (a) neating a saturated on-top oxygen layer to selected temperatures prior to H_2 adsorption and (b) varying the O_2 exposure to $IrO_2(110)$ at a surface temperature of 300 K.

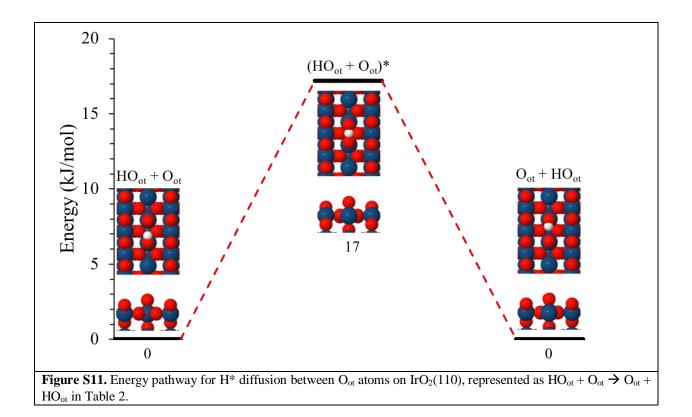

O₂ dissociation pathway on s-IrO₂(110)


Figure S4 shows the computed energy diagram and molecular images for dissociation of molecularly adsorbed O_2 on $IrO_2(110)$.




Energy diagrams and molecular images for reactions in H₂ oxidation on O-rich IrO₂(110)


Figures S6-S11 show energy diagrams and molecular images for the reaction steps identified as governing H_2 oxidation on O-rich IrO₂(110) and summarized in Table 2 of the main manuscript.



References

- 1. Anic K, Bulchtiyarov AV, Li H, et al. CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study. J Phys Chem C. 2016;120(20):10838-10848.
- 2. Arman MA, Klein A, Ferstl P, et al. Adsorption of hydrogen on stable and metastable Ir(100) surfaces. Surf Sci. 2017;656:66-76.
- 3. Lobo A, Conrad H. Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS. Surf Sci. 2003;523(3):279-286.
- 4. Kan HH, Colmyer RJ, Asthagiri A, et al. Adsorption of Water on a PdO(101) Thin Film: Evidence of an Adsorbed HO-H₂O Complex. J Phys Chem C. 2009;113(4):1495-1506.
- 5. Mu RT, Cantu DC, Glezakou VA, et al. Deprotonated Water Dimers: The Building Blocks of Segmented Water Chains on Rutile RuO2(110). J Phys Chem C. 2015;119(41):23552-23558.
- 6. Mu RT, Cantu DC, Lin X, et al. Dimerization Induced Deprotonation of Water on RuO2(110). J Phys Chem Lett. 2014;5(19):3445-3450.
- 7. Parkinson GS. Iron oxide surfaces. Surf Sci Rep. 2016;71(1):272-365.