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1. Proof of Proposition 1

We show that for any 0<λ< 1,

RA(Φλ) = λRA(Φ1) + (1−λ)RA(Φ2) and RB(Φλ) = λRB(Φ1) + (1−λ)RB(Φ2), (1)

where Φλ = λΦ1 +(1−λ)Φ2. Thus, RA(Φ) and RB(Φ) are both convex and concave functions of Φ.

Therefore, RA(Φ) and RB(Φ) are both affine functions of Φ. In the following, we consider RA(Φλ)

first. The derivation for RB(Φλ) follows the same arguments, with A(t) substituted by B(t).

Rewrite the objective function RA(Φλ) by conditioning on the sequence of {(A(t),B(t))}Tt=1 as

RA(Φλ) =E[
T∑
t=1

X
Φλ
t A(t)] =EA,B

[
EX [

T∑
t=1

X
Φλ
t A(t)|{(A(t),B(t))}Tt=1]

]
, (2)

where the outer expectation is taken with respect to the joint distribution of {(A(t),B(t))}Tt=1 and

the inner expectation is taken with respect to {XΦλ
t }Tt=1.

Consider EX [
∑T

t=1X
Φλ
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]. Then,

EX [
T∑
t=1

X
Φλ
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1] =

T∑
t=1

EX [X
Φλ
t |{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]αt

=
T∑
t=1

P(X
Φλ
t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1)αt,

(3)
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where (3) follows from X
Φλ
t being a sequential candidate assignment with information of candidate

attribute vectors till time t. From (8) and (10),

P(X
Φλ
t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1) = χ

Φλ
t = λχΦ1

t + (1−λ)χΦ1
t ,

for t= 1,2, . . . , T , where {χΦ1
t }Tt=1, {χΦ2

t }Tt=1 and {χΦλ
t }Tt=1 denote the realized profiles of policy Φ1,

Φ2 and Φλ with respect to {(αt, βt)}Tt=1, respectively. Moreover, substituting Φλ with Φ1 and Φ2 in

(3) respectively, we have

EX [
T∑
t=1

XΦ1
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

=
T∑
t=1

P(XΦ1
t = 1|{(A(t′),B(t′))}tt′=1 = {(αt′ , βt′)}tt′=1)αt =

T∑
t=1

χΦ1
t αt,

EX [
T∑
t=1

XΦ2
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1] =

T∑
t=1

χΦ2
t αt.

Therefore,

EX [
T∑
t=1

X
Φλ
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1] =

T∑
t=1

χ
Φλ
t αt =

T∑
t=1

(
λχΦ1

t + (1−λ)χΦ1
t

)
αt

=λEX [
T∑
t=1

XΦ1
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

+ (1−λ)EX [
T∑
t=1

XΦ2
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1], (4)

which holds for any sequence of realized candidate attribute vectors {(αt, βt)}Tt=1. Substituting (4)

into (2) leads to

RA(Φλ) =λEA,B

[
EX [

T∑
t=1

XΦ1
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

]

+ (1−λ)EA,B

[
EX [

T∑
t=1

XΦ2
t A(t)|{(A(t),B(t))}Tt=1 = {(αt, βt)}Tt=1]

]

=λRA(Φ1) + (1−λ)RA(Φ2),

where the last equality follows from substituting Φλ with Φ1 and Φ2 in (2), respectively. Therefore,

RA(Φ) is an affine function of Φ.

Following the same arguments with A(t) substituted by B(t), we have RB(Φ) is an affine function

of Φ, which finishes the proof. �
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2. Proof of Theorem 2

First, we show every M-optimal policy for WOSA-η is a Pareto optimal policy for BMSP. Let Φ1 be

an M-optimal policy for WOSA-η, then Φ1 must satisfy one of the three conditions in Definition 2.

If Φ1 satisfies Definition 2(a), then w> 0, and hence, Φ1 is a Pareto optimal policy for BMSP by

Theorem 3.1.2 (Miettinen 1999, p. 78).

If Φ1 satisfies Definition 2(b), then w = (w1,0) with w1 > 0 and maxΦ∈Ψη Rw(Φ) ⇔

maxΦ∈Ψη RA(Φ) = RA(Φ1). If Φ1 is the unique policy that maximizes RA(Φ) in Ψη, then Φ1 is a

Pareto optimal policy for BMSP by Theorem 3.1.3 (Miettinen 1999, p. 79). Otherwise, Φ1 is not

unique and we prove Φ1 is Pareto optimal for BMSP by contradiction. Suppose Φ1 is not Pareto

optimal, then there exists another policy Φ′ ∈Ψη such that RA(Φ′)≥RA(Φ),RB(Φ′)≥RB(Φ) with

at least one strict inequality. Since RA(Φ1) = maxΦ∈Ψη RA(Φ), then RA(Φ′)≤RA(Φ1), and hence,

RA(Φ′) =RA(Φ1),RB(Φ′)>RB(Φ1). However, this is a contradictory to M-optimality of Φ1. There-

fore, Φ1 is a Pareto optimal policy for BMSP.

If Φ1 satisfies Definition 2(c), similar arguments can be applied.

For the reverse direction, we show every Pareto optimal policy for BMSP is M-optimal for

WOSA-η. Let Φ2 ∈Ψη+ be a mixed policy, which is Pareto optimal for BMSP indexed by η. Then,

by Proposition 1, Ψη+ is convex and the objective functions RA(Φ) and RB(Φ) are affine functions

of Φ. Then from Theorem 3.1.4 (Miettinen 1999, p. 79), there exists a non-negative weight vector

w such that Φ2 maximizes Rw(Φ), which is the objective function of WOSA indexed by w defined

in (6). From Section 4.3, optimal policies for WOSA-η are all pure policies, and hence, Φ2 ∈Ψη.

We are left to show Φ2 satisfies one of the three conditions in Definition 2 to prove Φ2 is M-optimal

for WOSA-η.

If w> 0, then Definition 2(a) is satisfied and Φ is M-optimal for WOSA-η.

If w = (w1,0) with w1 > 0, then RA(Φ2) = maxΦ∈Ψη RA(Φ). We prove RB(Φ2) = maxΦ∈Λ
η
A
RB(Φ)

with Λη
A defined by Definition 2(b) by contradiction. Suppose RB(Φ2) 6= maxΦ∈Λ

η
A
RB(Φ), then

there exists Φ′ ∈Λη
A such that RB(Φ′) = maxΦ∈Λ

η
A
RB(Φ). Therefore, RA(Φ′) =RA(Φ2), RB(Φ′)>
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RB(Φ2), which is a contradictory to the Pareto optimality of Φ2. Therefore, Φ2 is M-optimal for

WOSA-η.

If w = (0,w2) with w2 > 0, similar arguments can be applied, which finishes the proof. �

3. Proof of Proposition 2

The proof is based on induction on T . First, we consider the corresponding SSAP with almost-

binary success rates for T tasks. In this case, the SSAP optimal policy, denoted by ΦB, is a direct

application of Theorem 1 given by Derman et al. (1972).

Theorem 1 (Theorem 1, Derman et al. (1972)). For the tth task arrival with the task value

Ct, there are T − t + 1 workers available for t = 1,2, . . . , T . The thresholds for Ct are given by

−∞= a0,t ≤ a1,t ≤ . . .≤ aT−t+1,t = +∞, obtained based on the recursive equations

ai,t =

∫ ai,t+1

ai−1,t+1

xdFC(x) + ai−1,t+1FC(ai−1,t+1) + ai,t+1(1−FC(ai,t+1)), i= 1,2, . . . , T − t. (5)

If the tth task value Ct ∈ (ai−1,t, ai,t], then the worker with the ith smallest success rate among the

T − t+ 1 available workers will be assigned to the tth task under the optimal policy. Moreover, ai,t

is the expected task value that will be assigned to the worker with ith smallest success rate among

the T − t available workers for i= 1,2, . . . , T − t.

Let ai,t denote the threshold values defined by (5) for T , with i= 1,2, . . . , T−t and t= 0,1, . . . , T−1.

Then, the first task assignment under policy ΦB is

τΦB
j1

=



1, if C1 >aT−bΥc,1,

Υ−bΥc, if aT−bΥc−1,1 < C1 ≤ aT−bΥc,1,

0, if C1 ≤ aT−bΥc−1,1.

(6)

Moreover, the optimal expected assignment reward is achieved under policy ΦB as E[
∑T

t=2 τ
ΦB
jt
Ct] =∑T

i=T−bΥc+1 ai,0 + aT−bΥc,0(Υ−bΥc).

When T = 1, there is only one task to be assigned to one worker, and hence, ΦB is trivially

optimal for the SSAP with the fixed success rate sum.
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Suppose Proposition 2 holds for T ′ ≤ T − 1. When there are T tasks to be assigned, we need

to show τΦB
j1

is optimal for the first task assignment in the fixed success rate sum scenario, and

the remaining T − 1 task assignments are optimal under policy ΦB by the induction assumption.

Let a′i,t denote the threshold values defined by (5) for T ′ = T − 1, with i = 1,2, . . . , T − t and

t= 0,1, . . . , T − 2. We compute the optimal conditional expected reward for T tasks assignments

given the first task value,

max
{τjt}

T
t=1

E[
T∑
t=1

τjtCt|
T∑
t=1

τjt = Υ,C1 = x1] = max
{τjt}

T
t=1

E[τj1x1 +
T∑
t=2

τjtCt|
T∑
t=1

τjt = Υ,C1 = x1]

= max
0≤τj1≤1

(τj1x1 + max
{τjt}

T
t=2

E[
T∑
t=2

τjtCt|
T∑
t=2

τjt = Υ− τj1 ]), (7)

where x1 denotes the realized value of the first task.

The second term on the right-hand side of (7) is the optimal expected reward for T − 1 task

assignments with the success rate sum of T − 1 workers as Υ− τj1 , and

bΥ− τj1c=


bΥc− 1, if τj1 >Υ−bΥc,

bΥc, if τj1 ≤Υ−bΥc.
(8)

Then by the induction assumption, the maximum of the second term on the right-hand side of (7)

is achieved under the SSAP optimal policy for the almost-binary success rate scenario with T − 1

workers. Therefore,

max
{τjt}

T
t=2

E[
T∑
t=2

τjtCt|
T∑
t=2

τjt = Υ− τj1 ] =
T−1∑

i=T−bΥ−τj1c

a′i,0 + a′T−bΥ−τj1c−1,0(Υ− τj1 −bΥ− τj1c)

=


∑T−1

i=T−bΥc+1 ai,1 + aT−bΥc,1(Υ− τj1 −bΥc+ 1), if τj1 >Υ−bΥc,

∑T−1

i=T−bΥc ai,1 + aT−bΥc−1,1(Υ− τj1 −bΥc), if τj1 ≤Υ−bΥc,

(9)

where the second equality follows from (8) and the recursive definitions of threshold values (i.e.,

a′i,0 = ai,1 for i= 1,2, . . . , T −1). Then, we substitute (9) into (7) and compute the optimal expected

conditional reward (7) for two cases: (a) τj1 >Υ−bΥc and (b) τj1 ≤Υ−bΥc, respectively, and then
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combine them together to obtain the optimal assignment for the first task. Note that (7) is an affine

function of τj1 in both cases, and hence, the maximum of (7) is achieved at the boundary point of

τj1 . Therefore, in each case, we take derivative with respect to τj1 and if the derivative is positive,

the maximum (supremum) of (7) is achieved when τj1 takes the maximum (supremum) value.

Otherwise, the maximum (supremum) of (7) is achieved when τj1 takes the minimum (infimum)

value. Therefore, for case (a), τj1 >Υ−bΥc,

max
{τjt}

T
t=1

E[
T∑
t=1

τjtCt|
T∑
t=1

τjt = Υ,C1 = x1] =


∑T−1

i=T−bΥc+1 ai,1 +x1 + aT−bΥc,1(Υ−bΥc), if x1 >aT−bΥc,1,∑T−1

i=T−bΥc+1 ai,1 +x1(Υ−bΥc) + aT−bΥc,1, if x1 ≤ aT−bΥc,1,
(10)

where the second line is the supremum of the left-hand side and

τj1 =


1, if x1 >aT−bΥc,1,

Υ−bΥc, if x1 ≤ aT−bΥc,1,

with the second line being the infimum of the left-hand side.

For case (b), τj1 ≤Υ−bΥc,

max
{τjt}

T
t=1

E[
T∑
t=1

τjtCt|
T∑
t=1

τjt = Υ,C1 = x1] =


∑T−1

i=T−bΥc ai,1 +x1(Υ−bΥc), if x1 >aT−bΥc−1,1,∑T−1

i=T−bΥc ai,1 + aT−bΥc−1,1(Υ−bΥc), if x1 ≤ aT−bΥc−1,1,

(11)

where

τj1 =


Υ−bΥc, if x1 >aT−bΥc−1,1,

0, if x1 ≤ aT−bΥc−1,1.

Combining cases (a) and (b) together by comparing (11) and (10) leads to the optimal first task

assignment as

τj1 =



1, if x1 >aT−bΥc,1,

Υ−bΥc, if aT−bΥc−1,1 <x1 ≤ aT−bΥc,1,

0, if x1 ≤ aT−bΥc−1,1,
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which is the same as the SSAP optimal policy assignment τΦB
j1

in the almost-binary success rate

scenario given by (6). By the induction assumption, the optimal expected reward for assigning the

remaining T −1 tasks to T −1 workers with a fixed success rate sum Υ− τj1 is achieved under the

SSAP optimal policy ΦB. This completes the proof. �

4. Proof of Theorem 3

The proof is by induction on T , using similar techniques as in Derman et al. (1972) but specifically

trimmed for WOSA with discrete attribute distributions.

Let f(η,T ) denote the optimal expected reward for T candidate assignments with a selectee

capacity η. Further, let f(η,T |γ1) denote the optimal conditional expected reward for T candidate

assignments with a selectee capacity η given the first candidate combined attribute G(1) = γ1, then

f(η,T ) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t G(t)],

f(η,T |γ1) = max
Φ∈Ψη

E[
T∑
t=1

XΦ
t G(t)|G(1) = γ1].

When T = 1, there is only one candidate to be assigned and a0,1 = −∞, a1,1 = +∞. Then,

under policy (Φ1), this candidate will be assigned to the selectee category if η = 1 while to the

non-selectee category if η = 0. Therefore, policy (Φ1) is trivially optimal for T = 1. Moreover, the

expected combined attribute value of this candidate is the expected value of G(1), and from (20),

ai,t =

GL∑
γ=G1

γpG(γ) =E[G(1)].

Therefore, Theorem 3 holds for T = 1.

Suppose Theorem 3 holds for T ′ ≤ T − 1. Then, policy (Φ1) with threshold values defined by

(20) maximizes the objective function Rw(Φ) (6) for T ′ = T −1 candidates. Let {a′i,0}T
′

i=1 denote the

threshold values in the initial stage for T ′ candidates, which are the expected combined attribute

values for T ′ candidates to be assigned by the induction assumption. Let {ai,t} denote the threshold

values defined by (20) for T candidates, for i= 1,2, . . . , T −t and t= 0,1, . . . , T −1. We show the first

candidate assignment under policy (Φ1) is optimal for T candidates, and optimal assignments for



Author: Article Short Title
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

the remaining T −1 candidates follow from the induction assumption. When there are T candidates

to be assigned, conditional on the combined attribute value of the first candidate,

f(η,T |γ1) = max
XΦ

1 ∈{0,1}
(γ1X

Φ
1 + f(η−XΦ

1 , T − 1)). (12)

Note that f(η−XΦ
1 , T −1) is the optimal expected reward for T −1 candidate assignments with a

selectee capacity η−XΦ
1 . Then, by the induction assumption, the optimal expected reward for T −1

candidate assignments is achieved under policy (Φ1). Since {a′i,0}T
′

i=1 are monotonically increasing

by (19), and hence,

f(η−XΦ
1 , T − 1) =

T−1∑
i=(T−1)−(η−XΦ

1 )+1

a′i,0, (13)

where the (η−X1) largest expected candidate combined attribute values are assigned to the selectee

category to maximize (6). Substitute (13) into (12); the optimal policy assigns X1 = 1 if

γ1 +
T−1∑

i=(T−1)−(η−1)+1

a′i,0 >
T−1∑

i=(T−1)−η+1

a′i,0,

or equivalently,

γ1 >a
′
(T−1)−η+1,0 = a′T−η,0 = aT−η,1, (14)

where the last equality follows from the recursive definitions of threshold values (20), ai,1 = a′i,0

for i= 1,2, . . . , T − 1 (the first stage for T candidates {ai,1}T−1
i=1 are equal to the threshold values

in the initial stage for T − 1 candidates). Therefore, the optimal first candidate assignment given

by (14) is the same as that given by policy (Φ1). By the induction assumption, the remaining

T −1 candidates can be assigned under policy (Φ1) to maximize the objective function Rw(Φ) (6).

Therefore, policy (Φ1) is optimal for T candidates.

Next, we compute the expected combined attribute values for the T candidates to be assigned. By

the monotonicity of the threshold values and the induction assumption, ai,1 = a′i,0, i= 1,2, . . . , T −1

is the ith smallest expected combined attribute value for the T−1 candidates to be assigned. Let Ĝ(i)
T
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(random variable) denote the ith smallest combined attribute value for T candidates, i= 1,2, . . . , T .

Conditioning on the value of G(1) leads to

E[Ĝ(i)
T ] =E[E[Ĝ(i)

T |G(1)]]

=E[G(1)|ai−1,1 < G(1)≤ ai,1]P(ai−1,1 < G(1)≤ ai,1) +E[Ĝ(i−1)
T−1 |G(1)≤ ai−1,1]P(G(1)≤ ai−1,1)

+E[Ĝ(i)
T−1|G(1)>ai,1]P(G(1)>ai,1)

=

 gli,1∑
γ′=gui−1,1

γ′pG(γ
′)

+ ai−1,1FG(ai−1,1) + ai,1(1−FG(ai,1))

=ai,0,

with gli,1 and gui−1,1 given by (21). Therefore, the threshold values in the initial stage {ai,0}Ti=1 are

the expected combined attribute values for the T candidates to be assigned. This completes the

proof. �

5. Proof of Proposition 3

The proof is based on induction on T . When T = 1, there is only one candidate to be assigned, and

hence, i= 1, t= 0. The expected value of Â(1)
1 is just the expectation of A(t). From Proposition 3,

only b1,0 is defined by (24) when T = 1, which is given by

b1,0 =

GL∑
γ′=G1

E[A(t)|G(t) = γ′]pG(γ
′) =E[A(t)]. (15)

Therefore, Proposition 3 holds for T = 1.

Suppose Proposition 3 holds for T ′ ≤ T − 1 and {b′i,t} are defined by (24) for T − 1, for i =

1,2, . . . , T − 1 − t and t = 0,1, . . . , T − 2. Then we show that (24) holds for T with {bi,t}, for

i = 1,2, . . . , T − t and t = 0,1, . . . , T − 1. From the recursive definitions of {ai,t} and (24), {bi,t}

are the same as {b′i,t−1} for t= 1,2, . . . , T − 1. We are left with {bi,0}, i= 1,2, . . . , T , which need

to be verified as the expected value of Â(i)
T for T candidates. Since the threshold values {ai,t} are

monotonically increasing with respect to i, then conditioning on the combined attribute value of

the first candidate G(1) leads to

E[Â(i)
T ] =EG[EA[Â(i)

T |G(1)]]
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=EA[Â(i)
T |ai−1,1 < G(1)≤ ai,1]P(ai−1,1 < G(1)≤ ai,1) +EA[Â(i)

T |G(1)≤ ai−1,1]P(G(1)≤ ai−1,1)

+EA[Â(i)
T |G(1)>ai,1]P(G(1)>ai,1)

(a)
=EG [EA[A(1)|G(1)]|ai−1,1 < G(1)≤ ai,1]P(ai−1,1 < G(1)≤ ai,1) + bi−1,1P(G(1)≤ ai−1,1) + bi,1P(G(1)>ai,1)

(b)
=

 gli,1∑
γ′=gui−1,1

E[A(t)|G(t) = γ′]

+ bi−1,1FG(ai−1,1) + bi,1(1−FG(ai,1))

=bi,0,

where: equality (a) follows from the induction assumption; and equality (b) follows from that A(t)

and G(t) are both IID. Therefore, bi,0 defined by (24) is the expected value of Â(i)
T for i= 1,2, . . . , T ,

which completes the proof. �

6. A Short Proof of the Relationship between the Weight Vectors and the
Achievement Ratios

We want to prove that if w1 = 1 is fixed, then δηA(w) decreases with w2 while δηB(w) increases with

w2. It is sufficient to prove that if w1 = 1 is fixed, then RA(Φ1) decreases with w2 while RB(Φ1)

increases with w2. Let w1 = (1,w1
2) and w2 = (1,w2

2) be two non-negative weight vectors, with

w1
2 >w2

2. Let Φ1 and Φ2 denote the optimal SSAP optimal policy for WOSA indexed by w1 and

w2, respectively. Therefore,

RA(Φ1) +w1
2RB(Φ1)≥RA(Φ2) +w1

2RB(Φ2),

RA(Φ2) +w2
2RB(Φ2)≥RA(Φ1) +w2

2RB(Φ1).

Rearranging the terms leads to

w1
2(RB(Φ1)−RB(Φ2))≥RA(Φ2)−RA(Φ1)≥w2

2(RB(Φ1)−RB(Φ2)).

Since w1
2 >w

2
2, then RB(Φ1)−RB(Φ2)≥ 0, which completes the proof.

Following similar arguments, it can be proved that if w2 = 1 is fixed, then δηA(w) increases with

w1 while δηB(w) decreases with w1.
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