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[bookmark: _GoBack]Technical Appendix A: -prior distribution approximation
Under the reparameterized -prior definition it can be shown that when assuming that:

the implied -prior distribution can be approximated based on quadratic forms theory [Ruben, 1962; Mathai et al., 1992]. In particular, the distribution can be represented by an expansion in non-central chi-square distributions:

with

where  are the eigenvalues of  and the vector  is a by-product of diagonalizing  by P, the p  p orthonormal matrix of eigenvectors of . By using a finite number of terms in the series expansion, it is possible to approximate the distribution of , for different choices of  and , with arbitrary precision.
Assume availability of 3 biomarkers. Then the parameters of the considered multivariate normal distribution can be defined as:
 and .
Figure A1 shows the resulting  prior-distributions for several choices of standard deviation  and correlation  defining . Specifically, standard deviation  is varied between 0.2 and 1, while correlation coefficient  ranges from 0.1 to 0.9. Results are obtained by simulating 10,000 values of  under the proposed parameterization (histograms) as well as considering the non-central chi-square expansion approximation (black solid lines). Although the approximation to higher AUC-values defined by small standard deviation and large correlation combinations breaks down, the approximation is valuable to inspect the overall distributional characteristics. Overall, the resulting prior distributions differ substantially in shape, expressing different a-priori beliefs about .
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Figure A1: Histogram (grey) and approximated densities (black solid line) of 10,000 simulated  values based on the proposed parameterization in terms of  for different combinations of  and .
In the paper, the considered -prior is . This multivariate normal distributions leads to the -prior shown in Figure A2. In the figure, 10,000 draws from this distribution are denoted by the grey histogram and the approximation is indicated by the black solid line. The mean of this prior distribution is 0.8274 with 95%-equal-tail probability interval equal to [0.6070;0. 9922].
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Figure A2. Histogram and approximated density of the -prior distributions implied by the prior-distribution on  with mean 0 and variance-covariance matrix defined by standard deviation  and correlation coefficient  equal to  and , respectively.

Technical Appendix B: BUGS code (development study):

1

## Hyperprior
# Prevalence
theta ~ dunif(TruncPar[1],TruncPar[2]);
# TruncPar = c(1/N,1-(1/N))

### Priors
## Latent true disease status
for(i in 1:N){
 D[i] ~ dbern(theta);
 D_ind[i] <- D[i] + 1;
}

## Precision matrices
for(Diag.index in 1:2){

 # Prior of Cholesky factor of correlation matrix
 L[Diag.index,1,1] <- 1;
 L[Diag.index,1,2] ~ dunif(-1,1);
 L[Diag.index,1,3] ~ dunif(-1,1);

 Lim[Diag.index] <- sqrt(1-(pow(L[Diag.index,1,3],2)));
 L23[Diag.index] ~ dunif(-1,1);
 L[Diag.index,2,3] <- 

 Lim[Diag.index]*L23[Prec.index];
 L[Diag.index,2,2] <- sqrt(1-pow(L[Diag.index,1,2],2));
 L[Diag.index,3,3] <- sqrt(1-((pow(L[Diag.index,1,3],2))+(pow(L[Diag.index,2,3],2))));

 L[Diag.index,2,1] <- 0;
 L[Diag.index,3,1] <- 0;
 L[Diag.index,3,2] <- 0;

# Reconstructing correlation matrix
 for(k1 in 1:K){
  for(k2 in 1:K){
   R[Diag.index,k1,k2] <- inprod(L[Diag.index,1:K,k1],L[Diag.index,1:K,k2]);
   }
  }

 # Standard deviation matrix
 for(k in 1:K){
  Sd[Prec.index,k] ~ dunif(0,1000);
 }

 # Definition of Variance covariance matrix Sigma
 for(k1 in 1:K){
  for(k2 in 1:K){
   Sigma[Prec.index,k1,k2] <- (equals(k1,k2) * pow(Sd[Prec.index,k1],2)) + ((1-equals(k1,k2))*Sd[Prec.index,k1]*R[Prec.index,k1,k2]*Sd[Prec.index,k2]);
  }
 }
 # Define precision matrix
 Prec[Diag.index,1:K,1:K] <- inverse(Sigma[Diag.index,1:K,1:K]);
}

## Scaled difference vector
Delta[1:K] ~ dmnorm(Kappa[1:K],Psy_Inv[1:K,1:K]);

## Cholesky decomposition of inverse of pooled variance covariance matrix
# Pooled Variance Covariance matrix
for(k1 in 1:K){
 for(k2 in 1:K){
  Sigma_Pooled[k1,k2] <- Sigma[1,k1,k2] + Sigma[2,k1,k2]; 
 }
}

# Inverse of pooled variance covariance matrix
Sigma_Pooled_Inv[1:K,1:K] <- inverse(Sigma_Pooled[1:K,1:K]);

# Cholesky decomposition 
Q[1,1] <- sqrt(Sigma_Pooled_Inv[1,1]);
Q[2,1] <- (1/Q[1,1]) * Sigma_Pooled_Inv[2,1];
Q[3,1] <- (1/Q[1,1]) * Sigma_Pooled_Inv[3,1];
Q[1,2] <- 0;
Q[2,2] <- sqrt(Sigma_Pooled_Inv[2,2]-pow(L2[2,1],2));
Q[3,2] <- (1/Q[2,2]) * (Sigma_Pooled_Inv[3,2] - (Q[3,1]*Q[2,1]));

Q[1,3] <- 0;
Q[2,3] <- 0;

Q[3,3] <- sqrt(Sigma_Pooled_Inv[3,3]-(pow(Q[3,1],2)+pow(Q[3,2],2)));

# Inverse of cholesky factor of inverse of pooled variance covariance matrix
Q_Inv[1:K,1:K] <- inverse(L2[1:K,1:K]);

## Normal component means
for(k in 1:K){
 Mu[k,1] ~ dnorm(0,1.E-6);
 Mu[k,2] <- inprod(Q_Inv[1:K,k],ScD[1:K]) + Mu[k,1];
}

## Clinical diagnosis parameters
Se ~ dbeta(1,1)T(0.51,);
Sp ~ dbeta(1,1)T(0.51,);

## Likelihood
for(i in 1:N){
 # Continuous Biomarker part
 Y[i,1:K] ~ dmnorm(mean[i,],Prec[D_ind[i],,]);
 for(k in 1:K){
  mean[i,k] <- (Mu[k,1] * (2-D_ind[i])) + (Mu[k,2] * (D_ind[i]-1));
 }

 # Clinical diagnosis part
 T[i] ~ dbern(ProbT[i]);
 ProbT[i] <- (Se * (D_ind[i]-1)) + ((1-Sp) * (2-D_ind[i]));
}
## Functions of parameters
for(k in 1:K){
 # Linear coefficients a
 Mu_diff[k] <- Mu[k,2] - Mu[k,1];
 a[k] <- inprod(Sigma_Pooled_Inv[k,1:K],Mu_diff[1:K]);
}

# AUC
AUC <- phi(pow(inprod(a[1:K],Mu_diff[1:K]),0.5));



Technical Appendix C: -posterior approximation on -scale
Figure C1 shows the -posteriors and its normal and log-normal approximations depicted in Figure 1 of the main text, on the -scale. The transformation leads to the same conclusions with respect to the best fitting approximation in terms of underlying  value and development study sample size. When the underlying  value equals 0.6 and the development study sample size is 150, the log-normal approximation captures the mode of the transformed -distribution best. In case development study sample size is equal to 400 (indicated in the right-hand-side column of Figure C1), the normal-approximation captures the mode of the transformed posterior distribution better. The results shown in Figure C1 show that the conclusions from the simulation exercise transfer to the AUC-scale. In particular, they show that the transformed posterior distribution of  can be approximated well by a transformed normal distribution with mean and variance equal to the respective mean and variance of the MCMC samples of  obtained in the development study if sample size is sufficient.
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Figure C1. Empirical posterior  distributions resulting from data with different accuracy (rows) and sample sizes (columns) transformed to the AUC-scale. The dashed lines denote the transformed log-normal (grey) and normal (black) approximation. a. Posterior of data with . b.  and c. . The left‑hand‑side column shows results for , the right‑hand‑side column for .


Technical Appendix D: BUGS code (validation study): 

## Hyperpriors
# Prevalence
theta ~ dunif(TruncPar[1],TruncPar[2]);
# TruncPar = c(1/N,1-(1/N))

### Priors
## Latent true disease status
for(i in 1:N){
 D[i] ~ dbern(theta);
 D_ind[i] <- D[i] + 1;
}

## Precisions
# Standard deviations
for(k in 1:2){
 Sd[k] ~ dunif(0,1000);
 Prec[k] <- pow(Sd[k],-2);
 Var[k] <- pow(Sd[k],2);
}

# Pooled variance
sum_var <- Var[1] + Var[2];
pooled_var <- pow(sum_var,0.5);

## Scaled difference vector
gamma ~ dnorm(mean_gamma,prec_gamma);

## Normal component means
Mu[1] ~ dnorm(0,1.E-6);
Mu[2] <- (gamma*pooled_var) + Mu[1];

## Clinical diagnosis parameters
Se ~ dbeta(1,1)T(0.51,);
Sp ~ dbeta(1,1)T(0.51,);

## Likelihood
for(i in 1:N){
 # Continuous Biomarker part
 Y[i] ~ dnorm(mean[i],Prec[D_ind[i]]);
 mean[i] <- (Mu[1] * (2-D_ind[i])) + (Mu[2] * (D_ind[i]-1));

 # Clinical diagnosis part
 T[i] ~ dbern(ProbT[i]);
 ProbT[i] <- (Se * (D_ind[i]-1)) + ((1-Sp) * (2-D_ind[i]));
}

# Biomarker performance measure AUC
AUC <- phi(AUC_star);



Technical Appendix E: Type-I error calibration:
The Type-I error probability for the considered models was defined as the proportion of simulated  validation study data sets for which the posterior probability of  being smaller or equal to 0.75 was smaller than . In other words, i.e., the proportion of validation data sets simulated under  for which the null-hypothesis was incorrectly rejected.

In order to obtain empirical estimates of the Type-I error probability, the described simulation study was repeated on validation study data satisfying the null-hypothesis. To achieve this, data were simulated based on the parameter values shown in Table E.1. To obtain data under , the distance between the means of the multivariate normal distributions of subjects with and without the condition of interest was decreased to yield .

For each of the considered sample sizes, 1000 ‑validation datasets were simulated, based on the parameter values shown in Table E.1. These data were analyzed by considering all validation‑dataset sample sizes, design settings, and development study combinations, leading to 64 empirical Type-I error probability estimates.

Since comparing the empirical power estimates of settings for which the results are characterized by a different Type-I error probability is meaningless, we adjusted the validation‑criterion probabilities  for all model settings to calibrate the Type-I error probabilities at 0.05. 

The results of this exercise are presented in Table E.2. It is clear from this table that substantial correction of the validation‑criterion probabilities is required to control the Type-I error. The corrected  values from Table E.2 were considered in the main simulation study, in order to meaningfully compare the empirical power estimates for the considered design settings.



Table E.1.: Parameter values considered under the null-hypothesis setting.
	Parameters
	Value

	Multivariate parameters

	
	

	
	

	
	

	
	

	
	

	
	

	Functions of multivariate parameters

	
	

	
	

	
	

	
	

	Optimal-combination parameters

	
	

	
	

	
	

	
	

	
	




Table E.2.: Validation criterion probabilities  used in the main simulation study in order to control the Type-I error at 0.05.
	
	Complete Uninformative
	Intermediate Bayes [Independent]
	Intermediate Bayes [Dependent]
	Complete Bayes

	
	
	
	

	2.5% Development Study
	
	
	

	N=100
	0.0791
	0.1091
	0.2428
	0.2776

	N=400
	0.0786
	0.1506
	0.1943
	0.2539

	N=800
	0.1043
	0.1883
	0.2023
	0.2791

	50% Development Study
	
	
	

	N=100
	0.0777
	0.1133
	0.1219
	0.1493

	N=400
	0.0865
	0.1627
	0.0989
	0.1535

	N=800
	0.0992
	0.1837
	0.1076
	0.1709

	97.5% Development Study
	
	
	

	N=100
	0.1064
	0.1437
	0.0545
	0.0766

	N=400
	0.0997
	0.1790
	0.0516
	0.1006

	N=800
	0.1185
	0.2061
	0.0635
	0.1213

	
	
	
	

	
	
	
	

	2.5% Development Study
	
	
	

	N=100
	0.0754
	0.0997
	0.1553
	0.1711

	N=400
	0.0852
	0.1520
	0.1226
	0.1910

	N=800
	0.1031
	0.1936
	0.1303
	0.2111

	50% Development Study
	
	
	

	N=100
	0.1051
	0.1328
	0.1091
	0.1260

	N=400
	0.0980
	0.1909
	0.0832
	0.1558

	N=800
	0.1119
	0.2199
	0.0993
	0.1819

	97.5% Development Study
	
	
	

	N=100
	0.0795
	0.1011
	0.0324
	0.0443

	N=400
	0.0884
	0.1520
	0.0349
	0.0690

	N=800
	0.1109
	0.1942
	0.0469
	0.1003





Technical Appendix F: Traceplot examples:
F.1 Development study
Figure F1 shows the traceplots for the fit of the 50-percentile development data set. The 20.000 retained iterations for three chains are shown for a selection of parameters. In Figure F1, the traceplots for , ,  and  are shown. All chains are mixing well and appear to have established convergence. This was also confirmed more formally by convergence statistics.
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Figure F1. Traceplots for parameters , θ, , and  of the development study leading to the median  posterior point estimate. Every sample is shown as a function of iteration number for each of the three chains indicated by different shades of grey.


F.2 Validation study
Figure F2 shows the traceplots for the fit of a randomly selected validation data set. The 20,000 retained iterations for five chains are shown for all parameters. In Figure F2, the traceplots for , , , and  are shown. All chains are mixing well and appear to have established convergence. This was also confirmed more formally by convergence statistics.
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Figure F2. Traceplots for parameters , θ, , and  of a randomly selected validation study. Every sample is shown as a function of iteration number for each of the three chains indicated by different shades of grey.

Technical Appendix G: Empirical verification of the simulation-based strategy:
To check the operating characteristics of the proposed simulation-based strategy, developed under section 4.1, a simulation study was performed. The goal of this simulation study was to compare the results from the proposed strategy, obtaining  and  population information from the development study results, to a benchmark setting, using the true underlying  and  population information. 

Underlying true parameter values were set as shown in Table 3.  was fixed at 0.75 and the expected effect size expressed by assuming . This leads to the following hypotheses of interest:

.

In a first step, 100 development studies of size 600 were sampled based on the parameter settings described in Table 3 and Table E.1. 50 studies were sampled under the alternative hypothesis, i.e.  as in Table 3, the remaining 50 were coming from the null hypothesis, i.e.  as described in Table E.1. All 100 development study data sets were fitted by applying the priors and model described in section 2.1. For each of the 100 development studies the result can then be used to simulate power conditional on the development study results.

Validation-criterion probability 
In order to proceed to testing the considered hypotheses, validation-criterion probability  needs to be set. As described in Technical Appendix E,  was chosen to control Type-I error to 0.05 conditionally on the prior distribution assumed for . In order to have an estimate of the conditional , validation studies satisfying  are required. In the benchmark setting, one could just sample 400 validation studies based on the underlying true  parameters. For the proposed simulation-based strategy, however, these validation studies are sampled based on the available data from the particular development study. In particular, the point estimate for parameter  is shifted in order to ensure , while fixing the point estimates of the remaining parameters. 

Next, for every development study, the obtained posterior  is approximated by a normal density and discarded by increasing its standard deviation by 200%. This discarded normal distribution is then used as the prior for  in fitting each of the simulated validation studies, i.e. 400 benchmark studies and 400 proposed simulation-based strategy studies. The resulting posteriors are then employed to estimate that  which ensures a Type-I error of only 0.05. The resulting  estimates, obtained by the benchmark as well as the simulation-based strategy validation studies, for each of the 100 development studies are denoted in Figure G1 and Figure G2.

The mean epsilon of the 50  development studies (indicated in green) is equal to 0.15 and 0.19 for the benchmark and simulation-based strategy, respectively. The corresponding 95% empirical equal tail intervals are, respectively, (0.08;0.25) and (0.08;0.34) for the benchmark and simulation-based strategy. For the  development studies (indicated in red) the mean epsilon value is equal to 0.12 and 0.11 for the benchmark and simulation-based strategy, respectively. The corresponding empirical 95% equal tail intervals are, respectively (0.07;0.21) and (0.05;0.22) for the benchmark and simulation-based strategy.

From Figure G1. it can be seen that for the  development studies the estimated epsilons are on average somewhat larger compared to the estimates for the  development studies, both for the benchmark as simulation-based strategy estimates. Although the difference would not be considered statistically significant, this is expected, since the discrepancy between the prior coming from the  population and the validation study sampled from , causes a shift in the posterior . Consequently this shift needs to be compensated more in the  development study setting to ascertain a Type-I probability of 0.05.

Considering the agreement between the benchmark estimates and the simulation-based strategy estimates, it is clear from Figure G1. that for both development study settings, the estimates lie close to the diagonal. This observation is confirmed by Figure G2. were the bias in both development settings is small. Moreover, compared to the variability within each development study and validation sampling setting combination, the limits of agreement could be interpreted as narrow. Leading to the conclusion that the proposed simulation-based strategy leads to estimates of validation-criterion probabilities which are sufficiently close to the benchmark estimates to proceed to investigate the performance of the simulation-based strategy in estimating the power.
[image: ]
Figure G1.: The estimated validation-criterion probabilities for each of the 100 simulated development studies, based on 400 validation studies simulated using the proposed simulation-based strategy versus the estimates coming from the benchmark validation studies.  development studies are indicated in green,  development studies in red. Vertical and horizontal colored dashed lines denote the mean epsilon in the benchmark and simulation-based strategy, respectively.

[image: ]
Figure F2.: Bland-Altman plot of the benchmark versus simulation-based strategy epsilon estimates. Green symbols denote epsilon estimates from the  development studies, red symbols from the  development studies.

Power
A similar strategy is applied to obtain estimates of power, conditionally on the considered development study. For the benchmark validation studies, 400 studies are simulated from the true underlying  population based on the parameter values shown in Table 3. The 400 simulation-based strategy validation studies are simulated based on the obtained point estimates of each parameter from the development study fit, while adjusting the point estimate of , in order to ensure that. By fitting the validation model to the simulated validation data sets, we can estimate the power to correctly reject the considered null hypothesis under the assumption that the effect size is characterized by  and employing the conditional  estimates ensuring that the Type-I error probability is equal to 0.05 irrespectively of development study.

Results of this exercises are summarized in Figure G3. and G4. The mean estimated power for the  development studies are 0.19 and 0.19 for the benchmark and simulation-based strategy, respectively. The respective corresponding empirical 95% equal tail intervals are (0.14;0.27) and (0.10;0.27). For the  development studies the mean estimated power for the benchmark and simulation-based strategy are 0.19 and 0.21, respectively. The respective corresponding 95% empirical equal tail intervals are (0.13;0.23) and (0.13;0.30) for the benchmark and simulation-based strategy.

Concerning the observed effect of the development study setting on the epsilon estimates, it can be seen from the Figure G3 that in terms of power this effect is absent. This observation shows that correcting for a difference in Type-I error probability caused by a difference in prior (development study) by choosing the appropriate , leads to comparable power estimates. Moreover, the marginally normal shape of the power estimates indicates that irrespective of the development study, the procedure is estimating a single true population power.

In terms of the agreement between the benchmark estimates and the simulation-based strategy estimates, it is clear from Figure G3. that for both development study settings, on average the estimates lie close to the diagonal. This observation is confirmed by Figure G4. were it can be seen that the bias in both development settings is small. Moreover, compared to the variability within each development study and validation sampling setting combination, the limits of agreement could be interpreted as narrow. Leading to the conclusion that the proposed simulation-based strategy leads to power estimates which are sufficiently close to the benchmark estimates. In other words, estimating the power to validate the results from a development study based on validation studies sampled from parameters derived from that development study, leads to results in sufficiently close agreement with the results based on the true underlying populations.
[image: ]
Figure G3.: The estimated power for a validation study of size 400 with a Type-I probability equal to 0.05 for each of the 100 simulated development studies, based on 400 validation studies with  simulated using the proposed simulation-based strategy versus the estimates coming from the benchmark validation studies.  development studies are indicated in green,  development studies in red. Vertical and horizontal colored dashed lines denote the mean power in the benchmark and simulation-based strategy, respectively.

[image: ]
Figure G4.: Bland-Altman plot of the benchmark versus simulation-based strategy power estimates. Green symbols denote epsilon estimates from the  development studies, red symbols from the  development studies.
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