SUPPLEMENTARY MATERIAL

A new sesquiterpenoid glycoside from Saussurea involucrata

Shizhou Qi^a, Yiren Yang^a, Xiaoyan Xian^a, Xianzhe Li^a, Huiyuan Gao^{a*}

^aSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.

*Corresponding author. Tel: +862423986481. Fax: +862423986460. E-mail: sypugaohy@163.com. School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University.

Abstract

Saussurea involucrata, known for the abundant bioactive components, is a precious traditional Chinese medicine. In this study, a novel guaiane sesquiterpenoid glycoside (1R,5R, 6R, 7R, 8*S*, 11*S*)-11, named 13-dihydrodehydrocostuslactone-8-*O*-6'-2"(*E*)-butenoyl-β-D-glucopyranoside **(1)**, together with seven known compounds (2-8) were isolated from the dried aerial part of S. involucrata. Their structures were elucidated by spectroscopic and physico-chemical analyses. The antioxidant and anti-inflammatory activities of compound 1 were investigated. And compound 1 showed weak radical scavenging activity and low inhibitory activity on nitric oxide (NO) production.

Keywords: Saussurea involucrata; sesquiterpenoid glycoside; antioxidant; anti-inflammatory

List of supplementary materials

Table S1. ¹H-NMR, ¹³C-NMR, HMBC and NOESY spectral data of compound **1** (DMSO- d_6 , δ in ppm, J in Hz)

Figure S1. The key HMBC correlations of compound 1

Figure S2. The key NOESY correlations of compound 1

Figure S3. The ¹H-NMR spectrum of compound **1** (DMSO-*d*₆, 600 MHz)

Figure S4. The ¹H-NMR spectrum of compound **1** (DMSO-*d*₆, 600 MHz)

Figure S5. The ${}^{1}\text{H-NMR}$ spectrum of compound **1** (DMSO- d_6 , 600 MHz)

Figure S6. The 13 C-NMR spectrum of compound **1** (DMSO- d_6 , 125 MHz)

Figure S7. The HSQC spectrum of compound 1 (DMSO- d_6 , 600 MHz)

Figure S8. The HMBC spectrum of compound 1 (DMSO- d_6 , 600 MHz)

Figure S9. The NOESY spectrum of compound 1 (DMSO- d_6 , 600 MHz)

Figure S10. The ECD cotton effect of compound 1a

Figure S11. The HR-ESI-MS spectrum of compound 1

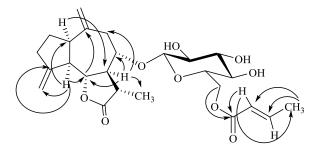
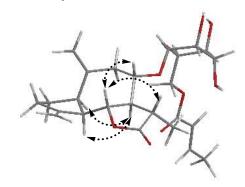
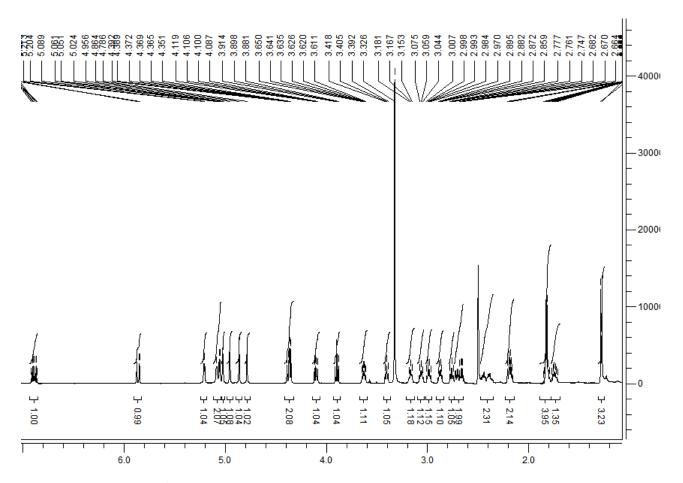
Figure S12. The IR spectrum of compound 1

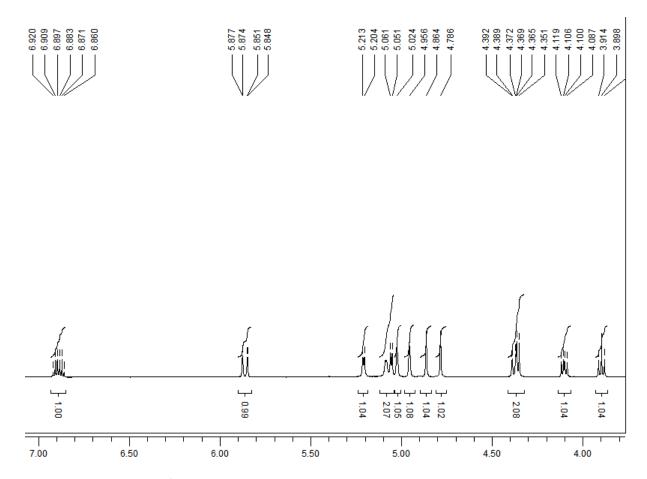
Table S1 1 H-NMR, 13 C-NMR, HMBC and NOESY spectral data of compound **1** (DMSO- d_{6} , δ in ppm, J in Hz)

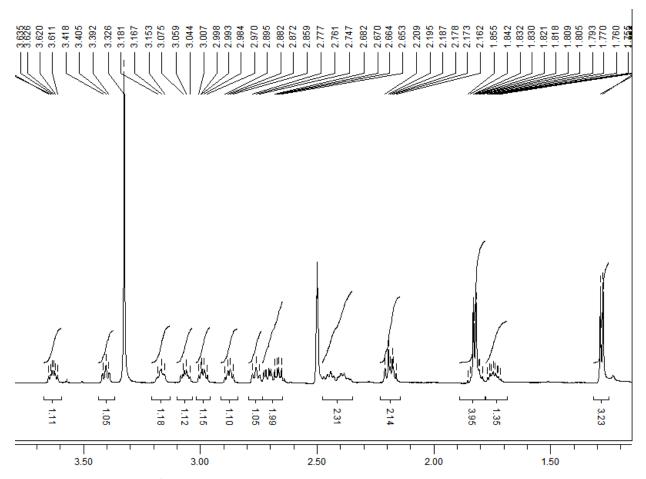
Position	$\delta_{ m C}$	$\delta_{ m H}$	HMBC(H→C)	NOESY
1	46.5	2.88 (1H, dd, <i>J</i> = 13.8, 7.8 Hz)	C-7	H-7
2	31.9	2.38 (1H, m), 2.44 (1H, m)	C-4	
3	29.4	1.74 (1H, m), 1.82 (1H, m)	C-1	
4	152.2	-	-	
5	52.2	2.77 (1H, br t, $J = 9.6$ Hz)	C-1, 4, 6, 10, 15	
6	79.3	3.91 (1H, t, J = 9.6 Hz)	C-4, 7, 8	H-8
7	53.0	2.19 (1H, dd, J = 13.2, 9.6 Hz)	C-1, 5, 6, 8, 9,11, 13	H-1, 5
8	83.3	3.65 (1H, td, J = 9.0, 5.4 Hz)	C-11	H-6, 11
9	44.1	2.18 (1H, m), 2.70 (1H, m)	C-1, 6, 8, 11, 14	
10	145.4	-	-	
11	40.2	2.67 (1H, dd, $J = 10.8, 7.2 \text{ Hz}$)	C-7, 12, 13	H-6
12	178.8	-	-	
13	16.1	1.28 (3H, d, $J = 7.2 \text{ Hz}$)	C-7, 11, 12	
14	113.6	4.78 (1H, br s), 4.86 (1H, br s)	C-9, 10, 11	
15	108.6	4.95 (1H, br s), 5.02 (1H, br s)	C-2, 7	
1'	103.7	4.35 (1H, d, J = 8.4 Hz)	C-8, 1"	
2'	76.8	3.17 (1H, t, J = 8.4 Hz)	C-3', 4', 5'	
3'	73.6	3.40 (1H, t, J = 8.4 Hz)	C-6'	
4'	70.3	3.06 (1H, t, J = 9.0 Hz)	C-2', 3', 5', 6'	
5'	73.7	2.99 (1H, m)	C-1'	
6'	63.5	4.10 (1H, dd, $J = 11.4, 7.8 \text{ Hz}$), 4.38 (1H, dd, $J = 12.0, 1.8 \text{ Hz}$)	C-3', 5', 1"	
1"	165.4	-	-	
2"	122.2	5.86 (1H, dd, J = 15.6, 1.8 Hz)	C-1", 4"	
3"	145.3	6.88 (1H, m)		

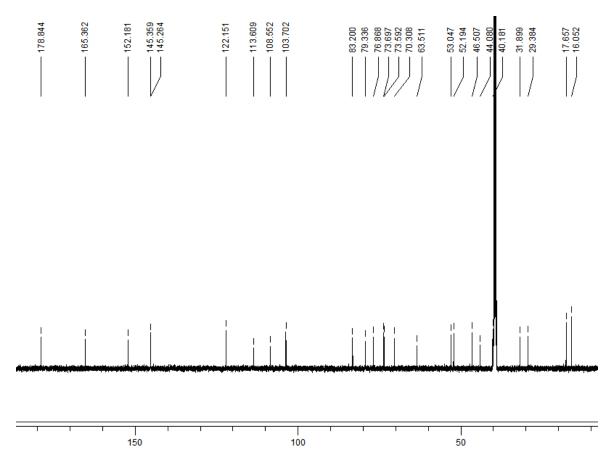
4" 17.7 C-2", 3" 1.82 (3H, d, J = 7.2 Hz) 5.21 (1H, d, J = 5.4 Hz), 5.09 (1H, s), $\quad \text{OH} \quad$

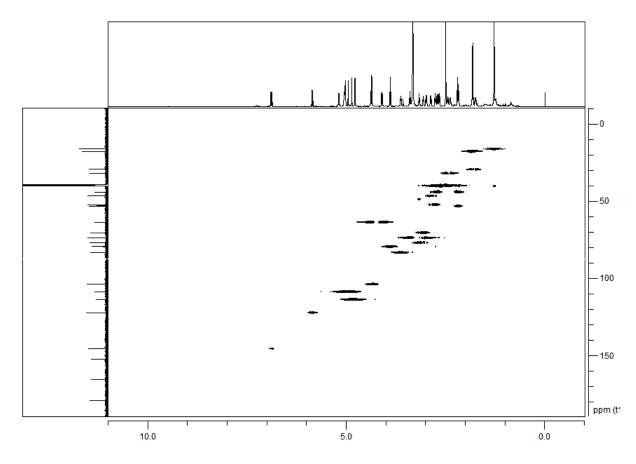
5.05 (1H, d, J = 6.0 Hz)

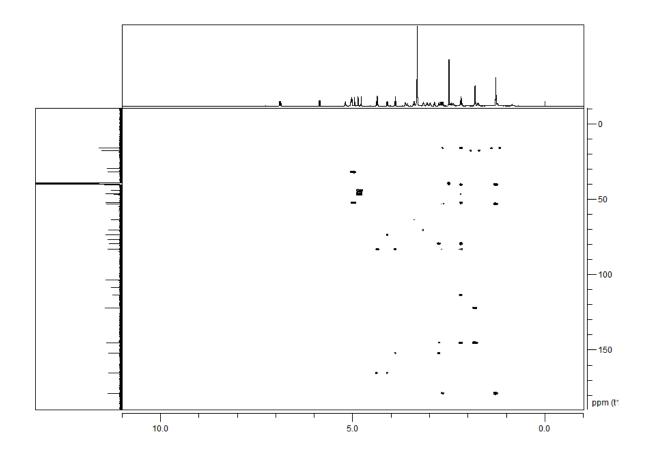





Figure S1. The key HMBC correlations of compound 1.


Figure S2. The key NOESY correlations of compound **1**.


Figure S3. The ${}^{1}\text{H-NMR}$ spectrum of compound **1** (DMSO- d_6 , 600 MHz)


Figure S4. The ${}^{1}\text{H-NMR}$ spectrum of compound **1** (DMSO- d_6 , 600 MHz)


Figure S5. The ${}^{1}\text{H-NMR}$ spectrum of compound **1** (DMSO- d_6 , 600 MHz)

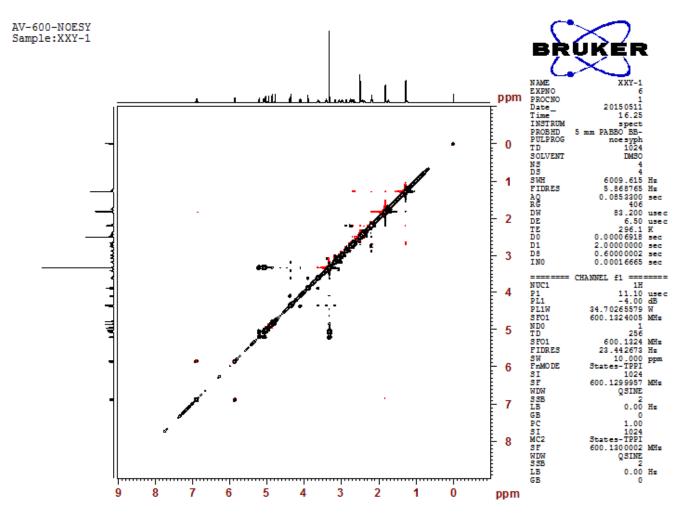

Figure S6. The 13 C-NMR spectrum of compound **1** (DMSO- d_6 , 150 MHz)

Figure S7. The HSQC spectrum of compound 1 (DMSO- d_6 , 600 MHz)

Figure S8. The HMBC spectrum of compound **1** (DMSO- d_6 , 600 MHz)

Figure S9. The NOESY spectrum of compound **1** (DMSO- d_6 , 600 MHz)

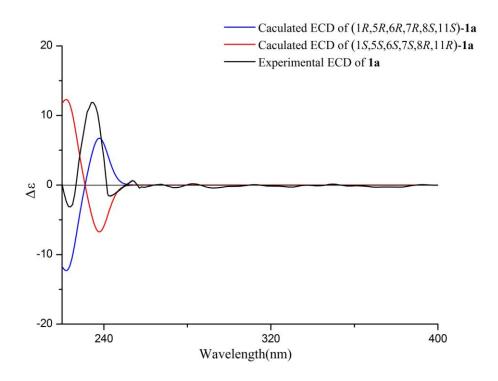


Figure S10. The ECD cotton effect of compound 1a

Comment						
Acquisition Paran Source Type	neter ESI		Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active		Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin Scan End	50 m/: 3000	_	Set End Plate Offset Set Collision Cell RF		Set Dry Gas Set Divert Valve	4.0 l/min Source
				600.0 Vpp	Set Divert valve	Source
Generate Molecul	ar Form	ula Paramete	r			
Formula, min. Formula, max.						
Measured m/z			Tolerance		Charge	
Check Valence Nirogen Rule			Minimum Electron Conf	figuration	Maximum	
Filter H/C Ratio			Minimum	ilguration	Maximum	
Estimate Carbon						
Intens.						+MS, 0.1min #5
x10 ⁵						
5-						
4-						
1		501.2173				
3-						
1						
2						
1 1	12 2640					
1 349.1824	13.2040	11			979.4245	
0 	كمحملك	4	***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
300	100	500	600 700	800	900 1000	1100 m/s

Figure S11. The HR-ESI-MS spectrum of compound 1

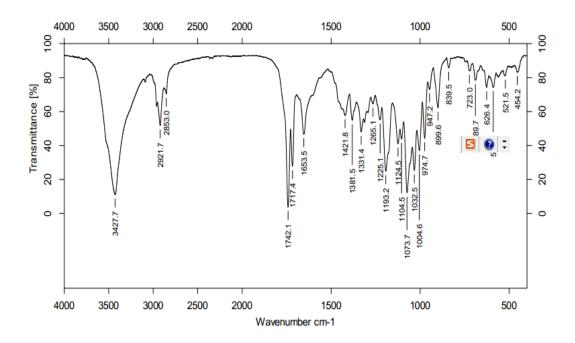


Figure S12. The IR spectrum of compound 1

Reference

Wang XL, Gesang SL, Jiao W, Liao X, Ding LS. 2007. Two new sesquiterpenoid glucosides from the aerial parts of *Saussurea involucrate*. J Integr Plant Biol. 49: 609-614.

Xiao W, Li X, Li N, Bolati M, Wang XJ, Jia XG, Zhao, YQ. 2011. Sesquiterpene lactones from *Saussurea involucrata*. 82:983-987.