
Online Appendix

A. Measurement issues and seasonal adjustment

The seasonally adjusted numbers of people unemployed for less than 5 weeks, for between 5 and

14 weeks, 15-26 weeks and for longer than 26 weeks are published by the Bureau of Labor Statistics.

To further break down the number unemployed for longer than 26 weeks into those with duration

between 27 and 52 weeks and with longer than 52 weeks, we used seasonally unadjusted CPS

microdata publicly available at the NBER website (http://www.nber.org/data/cps_basic.html).

Since the CPS is a probability sample, each individual is assigned a unique weight that is used to

produce the aggregate data. From the CPS microdata, we obtain the number of unemployed whose

duration of unemployment is between 27 and 52 weeks and the number longer than 52 weeks. We

seasonally adjust the two series using X-12-ARIMA,27 and calculated the ratio of those unemployed

27-52 weeks to the sum. We then multiplied this ratio by the published BLS seasonally adjusted

number for individuals who had been unemployed for longer than 26 weeks to obtain our series

U7.12t .28

An important issue in using these data is the redesign of the CPS in 1994. Before 1994,

individuals were always asked how long they had been unemployed. After the redesign, if an

individual is reported as unemployed during two consecutive months, then her duration is recorded

automatically as the sum of her duration last month and the number of weeks between the two

months’ survey reference periods. Note that if an individual was unemployed during each of the two

weeks surveyed, but worked at a job in between, that individual would likely self-report a duration

of unemployment to be less than 5 weeks before the redesign, but the duration would be imputed

to be a number greater than 5 weeks after the redesign.

As suggested by Elsby, Michaels and Solon (2009) and Shimer (2012) we can get an idea of the

size of this effect by making use of the staggered CPS sample design. A given address is sampled

for 4 months (called the first through fourth rotations, respectively), not sampled for the next 8

27An earlier version of this paper dealt with seasonality by taking 12-month moving averages and arrived at
similar overall results to those presented in this version. As a further check on the approach used here, we compared
the published BLS seasonally adjusted number for those unemployed with duration between 15 and 26 weeks to an
X-12-ARIMA-adjusted estimate constructed from the CPS microdata, and found the series to be quite close.

28This adjustment is necessary because the published number for unemployed with duration longer than 26 weeks
is different from that directly computed from the CPS microdata, although the difference is subtle. The difference
arises because the BLS imputes the numbers unemployed with different durations to various factors, e.g., correction
of missing observations.
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months, and then sampled again for another 4 months (the fifth through eighth rotations). After

the 1994 redesign, the durations for unemployed individuals in rotations 2-4 and 6-8 are imputed,

whereas those in rotations 1 and 5 are self-reported, just as they were before 1994. For those in

rotation groups 1 and 5, we can calculate the fraction of individuals who are newly unemployed

and compare this with the total fraction of newly unemployed individuals across all rotations. The

ratio of these two numbers is reported in Panel A of Figure A1, and averaged 1.15 over the period

1994-2007 as reported in the second row of Table A1. For comparison, the ratio averaged 1.01

over the period 1989-1993, as seen in the first row. This calculation suggests that if we want to

compare the value of U1t as calculated under the redesign to the self-reported numbers available

before 1994, we should multiply the former by 1.15. This is similar to the adjustment factors of

1.10 used by Hornstein (2012), 1.154 by Elsby, Michaels and Solon (2009), 1.106 by Shimer (2012),

and 1.205 by Polivka and Miller (1998).

For our study, unlike most previous researchers, we also need to specify which categories the

underreported newly unemployed are coming from. Figure A1 reports the observed ratios of

rotation 1 and 5 shares to the total for the various duration groups, with average values summarized

in Table A1. One interesting feature is that under the redesign, the fraction of those with 7-12

month duration from rotations 1 and 5 is very similar to that for other rotations, whereas the

fraction of those with 13 or more months is much lower.29 Based on the values in Table A1, we

should scale up the estimated values for U1t and scale down the estimated values of U2.3t and U13.+t

relative to the pre-1994 numbers. The values for U4.6t and U7.12t seem not to have been affected

much by the redesign. Our preferred adjustment for data subsequent to the 1994 redesign is to

multiply U1t by 1.15, U2.3t by 0.87, U13.+t by 0.77, and leave U4.6t and U7.12t as is. We then multiplied

all of our adjusted duration figures by the ratio of total BLS reported unemployment to the sum

of our adjusted series in order to match the BLS aggregate exactly.

Hornstein (2012) adopted an alternative adjustment, assuming that all of the imputed newly

unemployed came from the U2.3 category. He chose to multiply U1t by 1.10 and subtract the

added workers solely from the U2.3t category. As a robustness check we also report results using

29One possible explanation is digit preference— an individual is much more likely to report having been unemployed
for 12 months than 13 or 14 months. When someone in rotation 5 reports they have been unemployed for 12 months,
BLS simply counts them as such, and if they are still unemployed the following month, BLS imputes to them a
duration of 13 months. The imputed number of people 13 months and higher is significantly bigger than the self-
reported numbers, just as the imputed number of people with 2-3 months appears to be higher than self-reported.
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Hornstein’s proposed adjustment in Section 5.1, as well as results using no adjustments at all.

An alternative might be to to use the ratios for each t in Figure A1 rather than to use the aver-

ages from Table A1. However, as Shimer (2012) and Elsby, Michaels and Solon (2009) mentioned,

such an adjustment would be based on only about one quarter of the sample and thus multiplies

the sampling variance of the estimate by about four, which implies that noise from the correction

procedure could be misleading in understanding the unemployment dynamics.

Table A1. Average ratio of each duration group’s share in the first/fifth rotation group to that

in total unemployment

U1 U2.3 U4.6 U7.12 U13.+

1989-1993 1.01 1.01 0.96 1.02 0.97

1994-2007 1.15 0.87 0.95 1.05 0.77

B. Estimation algorithm

The system in Section 2.1 can be written as

xt = Fxt−1 + vt

yt = h(xt) + rt

for xt = (ξ
′
t, ξ

′
t−1, ..., ξ

′
t−47)

′, E(vtv′t) = Q, and E(rtr′t) = R. The function h(.) as well as elements of

the variance matrices R and Q depend on the parameter vector θ = (δ̃1, δ̃2, δ̃3, R1, R2.3, R4.6, R7.12,

R13+, σ
w
L , σ

w
H , σ

x
L, σ

x
H)

′. The extended Kalman filter (e.g., Hamilton, 1994b) can be viewed as an

iterative algorithm to calculate a forecast x̂t|t−1 of the state vector conditioned on knowledge of θ and

observation of Yt−1 = (y
′
t−1, y

′
t−2, ..., y

′
1)
′ with Pt|t−1 the MSE of this forecast. With these we can

approximate the distribution of yt conditioned on Yt−1 as N(h(x̂t|t−1),Ωt) for Ωt = H ′
tPt|t−1Ht+R

and Ht = ∂h(xt)/∂x′t|xt=x̂t|t−1 from which the approximate likelihood function associated with that

θ,

ℓ(θ) =
�T
t=1 ln f(yt|Yt−1; θ)

ln f(yt|Yt−1; θ) = −(1/2) ln(2π)− (1/2) ln |Ωt| − (1/2)[yt − h(x̂t|t−1)]
′Ω−1t [yt − h(x̂t|t−1)],
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can be maximized numerically. The forecast of the state vector can be updated by iterating on

Kt = Pt|t−1Ht(H
′
tPt|t−1Ht +R)−1

Pt|t = Pt|t−1 −KtH
′
tPt|t−1

x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1))

x̂t+1|t = Fx̂t|t

Pt+1|t = FPt|tF
′ +Q.

Prior to the starting date January 1976 for our sample, BLS aggregates are available but not the

micro data that we used to construct U13.+t . For the initial value for the extended Kalman filter,

we calculated the values that would be implied if pre-sample values had been realizations from an

initial steady state, estimating the (4× 1) vector ξ̄0 from the average values for Ū1, Ū2.3, Ū4.6, and

Ū7.+ over February 1972 - January 1976 using the method described in Section 1.1. Our initial

guess was then x̂1|0 = ι48 ⊗ ξ̄0 where ι48 denotes a (48 × 1) vector of ones. Diagonal elements of

P1|0 determine how much the presample values of ξj are allowed to differ from this initial guess ξ̂j|0.

For this we set E(ξj − ξ̂j|0)(ξj − ξ̂j|0)
′ = c0I4 + (1− j)c1I4 with c0 = 10 and c1 = 0.1. The value

for c0 is quite large relative to the range of ξt|T over the complete observed sample, ensuring that

the particular value we specified for x̂1|0 has little influence. For k < j we specify the covariance30

E(ξj − ξ̄0)(ξk − ξ̄0)
′ = E(ξj − ξ̄0)(ξj − ξ̄0)

′. The small value for c1 forces presample ξj to be close

to ξk when j is close to k, again consistent with the observed month-to-month variation in ξ̂t|T .

Smoothed inferences about xt using the full sample of available data, x̂t|T = E(xt|YT ) and their

variance matrix Pt|T = E[(xt − x̂t|T )(xt − x̂t|T )
′] can be calculated by iterating backwards on the

30 In other words,

P1|0 =






c0I4 c0I4 c0I4 · · · c0I4

c0I4 c0I4 + c1I4 c0I4 + c1I4 · · · c0I4 + c1I4

c0I4 c0I4 + c1I4 c0I4 + 2c1I4 · · · c0I4 + 2c1I4

...
...

... · · ·

...
c0I4 c0I4 + c1I4 c0I4 + 2c1I4 · · · c0I4 + 47c1I4





.
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following equations for t = T − 1, T − 2, ..., 1:

Jt = Pt|tF
′P−1
t+1|t

x̂t|T = x̂t|t + Jt(x̂t+1|T − x̂t+1|t)

Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J
′
t.

These smoothed inferences x̂t|T and functions of them are plotted in Figures 5-7 and 10.

We calculated standard errors for the estimate θ̂ as in equation (3.13) in Hamilton (1994b):

E(θ̂ − θ)(θ̂ − θ)′ ≃ V = K−1
1 K2K

−1
1

K1 =
∂ℓ(θ)

∂θ∂θ′

����
θ=θ̂

K2 =
�T
t=1

��
∂ ln f(yt|Yt−1; θ)

∂θ

����
θ=θ̂

��
∂ ln f(yt|Yt−1; θ)

∂θ

����
θ=θ̂

�′�
.

To obtain standard errors for the variance decompositions in Figure 7 and Table 3, we gen-

erated J = 1, 000 draws from the asymptotic distribution of θ̂, θ[j] ∼ N(θ̂, V ), j = 1, ..., J and

calcuated qs,k(θ
[j]) as in equation (21) for each s and each k = 1, ..., 4. The standard deviation

of qs,k(θ
[j])/

�4
k=1 qs,k(θ

[j]) across draws j was used to get the error bands and standard errors in

Figure 7 and Table 3.

The standard errors used for Figures 5 and 6 incorporate both filter and parameter uncertainty.

The matrix Pt|T summarizes uncertainty we would have about xt even if we knew the true value of

the parameters in θ. Given that we also have to estimate θ, the true uncertainty is greater than

that represented by Pt|T . Following Ansley and Kohn (1986) we calculate the total variance as

Pt|T
��
θ=θ̂

+ ZtV Z
′

t

Zt
(4×12)

=
∂x̂t|T

∂θ′

����
θ=θ̂

.

The values of {Zt}Tt=1 can be found by numerical differentiation, e.g., replace θ̂ with θ̂ + δei for

δ = 10−8 and ei the ith column of I12 and then redo the iteration to calculate x̂t|T (θ̂ + δei). The

40



ith column of Zt is then δ−1[x̂t|T (θ̂ + δei)− x̂t|T |(θ̂)].

C. Derivation of linearized variance and historical decompositions

The state equation ξt+1 = ξt + εt+1 implies

ξt+s = ξt + εt+1 + εt+2 + εt+3 + · · ·+ εt+s

= ξt + ut+s.

Letting yt = (U
1
t , U

2.3
t , U4.6t , U7.12t , U13.+t )′ denote the (5× 1) vector of observations for date t, our

model implies that in the absence of measurement error yt would equal h(ξt, ξt−1, ξt−2, ..., ξt−47)

where h(·) is a known nonlinear function. Hence

yt+s = h(ut+s + ξt, ut+s−1 + ξt, ..., ut+1 + ξt, ξt, ξt−1, ..., ξt−47+s).

We can take a first-order Taylor expansion of this function around ut+j = 0 for j = 1, 2, ..., s,

yt+s ≃ h(ξt, ..., ξt, ξt, ξt−1, ..., ξt−47+s) +
s�

j=1
[Hj(ξt, ξt, ..., ξt, ξt, ξt−1, ..., ξt−47+j)]ut+s+1−j

for Hj(·) the (5× 4) matrix associated with the derivative of h(·) with respect to its jth argument.

Using the definition of ut+j, this can be rewritten as

yt+s ≃ cs(ξt, ξt−1, ..., ξt−47+s) +
s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]εt+j

from which (18) follows immediately.

Similarly, for purposes of a historical decomposition note that the smoothed inferences satisfy

ξ̂t+s|T = ξ̂t|T + ε̂t+1|T + ε̂t+2|T + ε̂t+3|T + · · ·+ ε̂t+s|T
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where ε̂t+s|T = ξ̂t+s|T − ξ̂t+s−1|T . For any date t + s we then have the following model-inferred

value for the number of people unemployed:

ι5
′h(ξ̂t+s|T , ξ̂t+s−1|T , ξ̂t+s−2|T , ..., ξ̂t+s−47|T ).

For an episode starting at some date t, we can then calculate

ι5
′h(ξ̂t|T , ξ̂t|T , ξ̂t|T , ..., ξ̂t|T , ξ̂t−1|T , ..., ξ̂t+s−47|T ).

This represents the path that unemployment would have been expected to follow between t and t+s

as a result of initial conditions at time t if there were no new shocks between t and t+s. Given this

path for unemployment that is implied by initial conditions, we can then isolate the contribution

of each separate shock between t and t+ s. Using the linearization in equation (18) allows us to

represent the realized deviation from this path in terms of the contribution of individual historical

shocks as in (22).

D. Alternative estimates of unemployment-continuation probabilities

There is an unresolved controversy in the literature about how to measure outflows from un-

employment. Our measure described in footnote 1 follows van den Berg and van Ours (1996),

van den Berg and van der Klaauw (2001), Elsby, Michaels and Solon (2009), Shimer (2012), and

Elsby, Hobijn and Şahin (2013) in deriving flow estimates from the observed change in the number

of unemployed by duration. An alternative approach, employed by Fujita and Ramey (2009) and

Elsby, Hobijn and Şahin (2010), is to look at only those individuals for whom there is a matched

observation of unemployment in month t− 1 and a status of employment or out of the labor force

in month t. In the absence of measurement error, the two estimates should be the same, but in

practice they turn out to be quite different. One reason for the discrepancy is misclassification. For

example, an individual who goes from long-term unemployed to out of the labor force to back to

long-term unemployed in three successive months counts as a successful “graduate” from long-term

unemployment using matched flows but is contributing to the stubborn persistence of long-term

unemployment when using the stock data. A follow-up paper to Elsby, Hobijn and Şahin (2010) by

Elsby et al. (2011) documented that of the individuals who were employed or out of the labor force
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in month t − 1 and who were recorded as unemployed in month t, more than half reported their

duration of unemployment to be 5 weeks or longer. Another important reason is that individuals

for whom two consecutive observations are available differ in important ways from those for whom

some observations are missing. Abowd and Zellner (1985) and Frazis et al. (2005) acknowledged

that these measurement errors are more likely to bias the matched flow data than the stock data

and suggested methods to correct the bias.

Since our goal is to understand how the reported stock of long-term unemployed came to be so

high and why it falls so slowly, we feel that our approach, which is consistent with the observed

stock data by construction, is preferable for our application.

E. Details of robustness tests

The standard errors in Table 3 were calculated as follows. For each model, we generated 500

draws for the k-dimensional parameter vector (where k is reported in the first row of the table)

from a N(θ̂, V̂ ) distribution where θ̂ is the MLE and V̂ is the (k×k) variance matrix from inversed

hessian of the likelihood function. For each draw of θ(ℓ) we calculated the values implied by that

θ(ℓ) and then calculated the standard error of that inference across the draws θ(1), ..., θ(500).

Time-varying genuine duration dependence. Vishwanath (1989) and Blanchard and Diamond

(1994) developed theoretical models in which genuine duration dependence could be linked to

market tightness. See Whittaker and Isaacs (2014) for a detailed discussion of the conditions that

can trigger extended unemployment benefits.

Shimer (2012) argued that this time-aggregation bias would result in underestimating the im-

portance of outflows in accounting for cyclical variation in unemployment, and Fujita and Ramey

(2009), Shimer (2012) and Hornstein (2012) all formulated their models in continuous time.

Allowing for structural shocks. For the factor model, the variance decomposition (19) becomes
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E(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)
′

=
s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)](λλ

′ +Q)[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]
′

=
s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]λλ

′[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]
′

+
s�

j=1

4�

m=1
Qm[Ψs,j(ξt, ξt−1, ..., ξt−47+j)em][Ψs,j(ξt, ξt−1, ..., ξt−47+j)em]

′

for Qm the row m, column m element of Q.

Time aggregation. Elsby, Michaels and Solon (2009) questioned the theoretical suitability of

a continuous-time conception of unemployment dynamics, asking if it makes any sense to count a

worker who loses a job at 5:00 p.m. one day and starts a new job at 9:00 a.m. the next as if they

had been unemployed at all. We agree, and think that defining the central object of interest to

be the fraction of those newly unemployed in month t who are still unemployed in month t + k,

as in our baseline model, is the most useful way to pose questions about unemployment dynamics.

Nevertheless, and following Kaitz (1970), Perry (1972), Sider (1985), Baker (1992), and Elsby,

Michaels and Solon (2009) we also estimated a version of our model formulated in terms of weekly

frequencies as an additional check for robustness.

We can do so relatively easily if we make a few simplifying assumptions. We view each month

t as consisting of 4 equally-spaced weeks and assume that in each of these weeks there is an

inflow of wit workers of type i, each of whom has a probability pit(0) = exp[− exp(xit)] of exiting

unemployment the following week. This means that for those type i individuals who were newly

unemployed during the first week of month t, wit[pit(0)]3 are still unemployed as of the end of the

month. Thus for the model interpreted in terms of weekly transitions, equations (10) and (11)

would be replaced by

U1t =
�

i=H,L
{wit +wit[pit(0)] +wit[pit(0)]

2 +wit[pit(0)]
3}+ r1t

U2.3t =
�

i=H,L

4�

s=1

�
wi,t−1[pi,t−1(1)]

8−s +wi,t−2[pi,t−2(2)]
12−s

�
+ r2.3t
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for pit(τ) given by (5) and (8). Note that although this formulation is conceptualized in terms of

weekly inflow and outflows wi and pi, the observed data yt are the same monthly series used in our

other formulations, and the number of parameters is the same as for our baseline formulation.
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Figure A1. Ratio of each duration group’s share in the first and fifth rotation groups to that in

all rotation groups
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