### SUPPLEMENTARY MATERIAL

### New flavonoid glycosides from seeds of Baccharoides anthelmintica

Yi Liu<sup>a,b</sup>, Wen-Qiong Wang<sup>a</sup>, Tong-Chen<sup>a</sup> and Li-jiang Xuan<sup>a\*</sup>

<sup>a</sup> State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China

<sup>b</sup>University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China

\*Corresponding Author

Prof. Dr. Li-jiang Xuan, Tel/fax: +86 21 20231968. E-mail: ljxuan@simm.ac.cn

**Abstract:** *Baccharoides anthelmintica* is the most popular traditional Uighur medicines used for vitiligo. The chemical investigation of the seeds of *B. anthelmintica* led to the isolation of three new flavonoid glycosides (Vernosides A-C). Their structures were determined by comprehensive analysis of spectroscopic data including 1D and 2D NMR and HRMS data. Vernosides A-C were evaluated for their effects on tyrosinase activity, Vernoside B can enhance tyrosinase activity.

Key words: Baccharoides anthelmintica; vitiligo; flavonoid glycosides

#### List of content

Abbreviations

- Table S1. <sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) data for Compounds 1-3 ( $\delta_{\rm H}$ ,
- $\delta_{\rm C}$  in ppm, *J* in Hz)
- Figure S1. Key COSY and HMBC correlations of compounds 1-3
- Figure S2. <sup>1</sup>H NMR spectrum of compound **1** in CD<sub>3</sub>OD
- Figure S3. <sup>13</sup>C NMR spectrum of compound **1** in CD<sub>3</sub>OD
- Figure S4. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **1** in CD<sub>3</sub>OD
- Figure S5. HSQC spectrum of compound 1 in CD<sub>3</sub>OD
- Figure S6. HMBC spectrum of compound **1** in CD<sub>3</sub>OD
- Figure S7. <sup>1</sup>H NMR spectrum of compound **2** in CD<sub>3</sub>OD
- Figure S8. <sup>13</sup>C NMR spectrum of compound **2** in CD<sub>3</sub>OD
- Figure S9. HSQC spectrum of compound 2 in CD<sub>3</sub>OD
- Figure S10. HMBC spectrum of compound 2 in CD<sub>3</sub>OD
- Figure S11. <sup>1</sup>H NMR spectrum of compound **3** in CD<sub>3</sub>OD-CDCl<sub>3</sub>(1:1)
- Figure S12. <sup>13</sup>C NMR spectrum of compound **3** in CD<sub>3</sub>OD-CDCl<sub>3</sub>(1:1)
- Figure S13. HSQC spectrum of compound **3** in CD<sub>3</sub>OD-CDCl<sub>3</sub>(1:1)
- Figure S14. HMBC spectrum of compound **3** in CD<sub>3</sub>OD-CDCl<sub>3</sub>(1:1)
- Figure S15. Activation of tyrosinase activity by compound 2
- Figure S16. IR spectrum of compound 1
- Figure S17. HR-ESI-MS spectrum of compound 1
- Figure S18. IR spectrum of compound 2
- Figure S19. HR-ESI-MS spectrum of compound 2
- Figure S20. IR spectrum of compound 3
- Figure S21. HR-ESI-MS spectrum of compound 3

Abbreviations

**HMBC:** <sup>1</sup>H detected heteronuclear multiple-bond correlation

**COSY:** correlated spectroscopy

# **HSQC:** <sup>1</sup>H detected heteronuclear single-quantum coherence

| position             | $1^{a}$                                       |                       | $2^a$                       |                 | $3^b$                                  |                 |
|----------------------|-----------------------------------------------|-----------------------|-----------------------------|-----------------|----------------------------------------|-----------------|
|                      | $\delta_{ m H}$                               | $\delta_{ m C}$       | $\delta_{ m H}$             | $\delta_{ m C}$ | $\delta_{ m H}$                        | $\delta_{ m C}$ |
| 2                    | 5.12 (dd, 10.5, 3.6)                          | 74.3                  | 5.08 (d, 12.3)              | 74.8            | 4.99 (d, 12.1)                         | 74.2            |
| 3                    | 2.08 (m), 2.06 (m)                            | 39.8                  | 2.25 (m) 1.99 (m)           | 36.7            | 2.25 (m) 1.96 (m)                      | 35.5            |
| 4                    | 4.68 (dd, 2.4, 2.2)                           | 64.2                  | 4.37 (dd, 5.3, 2.7)         | 72.1            | 4.22 (m)                               | 73.3            |
| 5                    | 7.13 (d, 8.5)                                 | 132.4                 | 7.06 (d, 8.4)               | 132.8           | 7.05 (d, 8.4)                          | 132.4           |
| 6                    | 6.68 (dd, 8.5, 2.5)                           | 110.3                 | 6.65 (dd, 8.4, 2.4)         | 110.4           | 6.64 (dd, 8.4, 2.5)                    | 109.8           |
| 7                    |                                               | 157.1                 |                             | 157.5           |                                        | 156.8           |
| 8                    | 6.58 (d, 2.5)                                 | 105.4                 | 6.62 (d, 2.4)               | 105.2           | 6.62 (d, 2.5)                          | 105.0           |
| 9                    |                                               | 159.8                 |                             | 160.2           |                                        | 159.5           |
| 10                   |                                               | 119.1                 |                             | 117.0           |                                        | 115.8           |
| 11                   |                                               |                       | 3.63 (m) 3.69 (m)           | 64.6            | 3.41 (s)                               | 56.1            |
| 12                   |                                               |                       | 1.24 (t, 7.0)               | 15.9            |                                        |                 |
| 1′                   |                                               | 133.4                 |                             | 133.5           |                                        | 133.6           |
| 2'                   | 7.25 (d, 8.5)                                 | 128.8                 | 7.25 (d, 8.5)               | 128.8           | 6.87 (d, 1.9)                          | 114.4           |
| 3'                   | 6.80 (d, 8.5)                                 | 116.2                 | 6.81 (d, 8.5)               | 116.2           |                                        | 145.7           |
| 4′                   |                                               | 158.3                 |                             | 158.5           |                                        | 156.9           |
| 5'                   | 6.80 (d, 8.5)                                 | 116.2                 | 6.81 (d, 8.5)               | 116.2           | 6.80 (d, 8.1)                          | 115.9           |
| 6'                   | 7.25 (d, 8.5)                                 | 128.8                 | 7.25 (d, 8.5)               | 128.8           | 6.75 (dd, 1.9, 8.1)                    | 118.8           |
| 1″                   | 5.02 (d, 5.6)                                 | 101.8                 | 4.93 (d, 7.3)               | 102.0           | 4.91 (d, 6.5)                          | 101.4           |
| 2″                   | 3.78 (m)                                      | 74.8                  | 3.49 (m)                    | 74.8            | 3.52 (m)                               | 74.0            |
| 3″                   | 3.51 (m)                                      | 77.8                  | 3.41 (m)                    | 77.8            | 3.40 (m)                               | 77.2            |
| 4″                   | 3.43 (m)                                      | 72.0                  | 3.40 (m)                    | 72.0            | 3.42 (m)                               | 74.2            |
| 5″                   | 3.48 (m)                                      | 75.4                  | 3.83 (m)                    | 75.6            | 3.79 (m)                               | 74.9            |
| 6″                   | 4.64 (m), 4.33 (m)                            | 65.0                  | 4.72 (m)<br>4.35 (m)        | 65.6            | 4.71 (d, 12.3)<br>4.36 (dd, 11.8, 7.6) | 65.2            |
| 1‴                   |                                               | 121.8                 |                             | 131.1           |                                        | 130.3           |
| 2‴                   | 7.86 (d, 8.7)                                 | 132.9                 | 7.99 (d, 7.5)               | 130.6           | 7.97 (d, 7.8)                          | 130.2           |
| 3‴                   | 6.76 (d, 8.7)                                 | 116.3                 | 7.28 (t, 7.5)               | 129.6           | 7.25 (t, 7.8)                          | 129.1           |
| 4‴                   |                                               | 163.9                 | 7.48 (t, 7.5)               | 134.2           | 7.47 (t, 7.4)                          | 133.9           |
| 5‴                   | 6.76 (d, 8.7)                                 | 116.3                 | 7.28 (t, 7.5)               | 129.6           | 7.25 (t, 7.8)                          | 129.1           |
| 6‴                   | 7.86 (d, 8.7)                                 | 132.9                 | 7.99 (d, 7.5)               | 130.6           | 7.97 (d, 7.8)                          | 130.2           |
| 7‴                   |                                               | 168.1                 |                             | 167.9           |                                        | 167.7           |
| <sup>a</sup> Recorde | ed in CD <sub>3</sub> OD. <sup>b</sup> Record | ed in CD <sub>3</sub> | OD-CDCl <sub>3</sub> (1:1). |                 |                                        |                 |

**Table S1**. <sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (125 MHz) data for Compounds 1-3 ( $\delta_{\rm H}$ ,  $\delta_{\rm C}$  in ppm, *J* in Hz)



Figure S1. Key COSY and HMBC correlations of compounds 1-3







Figure S4.  $^{1}$ H- $^{1}$ H COSY spectrum of compound **1** in CD<sub>3</sub>OD

Figure S5. HSQC spectrum of compound 1 in CD<sub>3</sub>OD



-10 -20 -30 -40 -50 -60 0 . th -70 0 . .0 . . -80 -90 (ppm) -100 30... -110 . . .... 1 120 -130 (9 19 0 0 . 8 -140 150 . ! 8\_ 0 **8**6'' 160 00 (8 8 -170 180 190 -200 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 f2 (ppm) 1.5 0.5 0.0 1.0

Figure S6. HMBC spectrum of compound 1 in CD<sub>3</sub>OD

Figure S7. <sup>1</sup>H NMR spectrum of compound 2 in CD<sub>3</sub>OD





# Figure S8. <sup>13</sup>C NMR spectrum of compound **2** in CD<sub>3</sub>OD



Figure S10. HMBC spectrum of compound 2 in CD<sub>3</sub>OD

Figure S11. <sup>1</sup>H NMR spectrum of compound **3** in CD<sub>3</sub>OD-CDCl<sub>3</sub>(1:1)





Figure S12. <sup>13</sup>C NMR spectrum of compound **3** in CD<sub>3</sub>OD-CDCl<sub>3</sub>(1:1)

4.0 3.5 3.0 2.5

5.0 4.5 f2 (ppm)

6.0 5.5

2.0 1.5 1.0 0.5

9.0 8.5 8.0 7.5 7.0 6.5

-150 -160 -170 -180 -190



Figure S14. HMBC spectrum of compound **3** in CD<sub>3</sub>OD-CDCl<sub>3</sub>(1:1)

Figure S15. Activation of tyrosinase activity by compound 2



### Percent increase

Concentration ( $\mu M$ )





Figure S17. HR-ESI-MS spectrum of compound 1



#### User Spectra









--- End Of Report ---











--- End Of Report ---