SUPPLEMENTARY MATERIAL

Neo-debromoaplysiatoxin C, with new structural rearrangement, derived from debromoaplysiatoxin

Yang-Hua Tang ^{a,b,f}, Ting-Ting Liang ^{b,c,f}, Ting-Ting Fan ^b, Lawrence Jordan Keen ^b, Xiao-Dan Zhang ^b, Lin Xu ^b, Qi Zhao ^d, Rong Zeng ^a, Bing-Nan Han ^{b,*}

^a Department of Pharmacy, Graduate School, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China; ^b Department of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; ^cSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai 201418, China; ^d Faculty of Health Sciences, University of Macau; Macau, China

Abstract

Neo-debromoaplysiatoxin C (1), a new member of the aplysiatoxin family, was isolated from the marine cyanobacterium *Lyngbya* sp.. The structure of 1 was elucidated based on spectroscopic data, and its stereochemistry was determined from NOESY spectrum and biosynthetic considerations. This new compound presents an intriguing 10-membered lactone ring skeleton derived from debromoaplysiatoxin by structural rearrangement, which is the first example in the aplysiatoxin family. Its biological properties were evaluated for cytotoxicity, PKC δ activation and inhibitory effects on potassium channel.

Keywords: neo-debromoaplysiatoxin C; debromoaplysiatoxin; newly discovered structural frame; *Lyngbya* sp.

^{*} Corresponding author E-mail: hanbingnan@zstu.edu.cn (B.-N. Han)

^fThese authors equally contributed to this work.

Table of Contents

Contents. Figure S1. Key COSY, HMBC and NOESY correlations of 1	page 3
Figure S2. CD spectrum of 1	3
Table S1. Details NMR data of 1	4
Figure S3. ¹ H NMR spectrum (600 MHz) of 1 in CDCl ₃	5
Figure S4. ¹³ C NMR spectrum (150 MHz) of 1 in $CDCl_3$	6
Figure S5. DEPT NMR spectrum (150 MHz) of 1 in CDCl ₃	7
Figure S6. HSQC spectrum of 1 in CDCl ₃	8
Figure S7. COSY spectrum of 1 in CDCl ₃	9
Figure S8. HMBC spectrum of 1 in CDCl ₃	10
Figure S9. NOESY spectrum of 1 in CDCl ₃	11
Figure S10. HRESIMS of 1	12
Figure S11. UV spectrum of 1	13
Figure S12. IR spectrum of 1	14
Scheme S1. Plausible biosynthetic pathway of 1	15
Figure S13. Newman projections analysis for C11/C12 and C10/C11	16

Figure S1. Key COSY, HMBC and NOESY correlations of 1

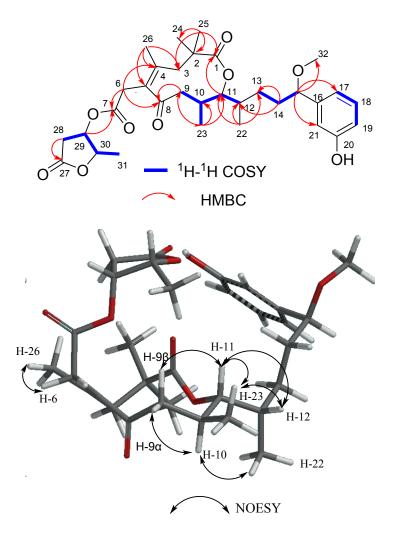
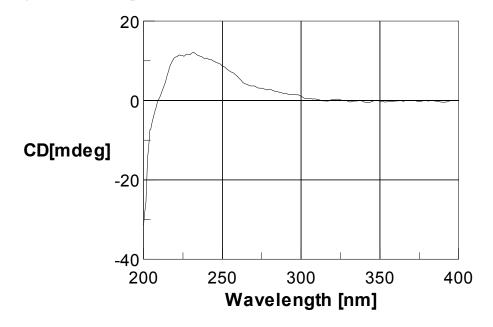



Figure S2. CD spectrum of 1 in MeOH

NO.	Neo-debromoaplysiatoxin C (1)					
NO.	$\delta_{\rm C}$, type ^a	$\delta_{ m H}$, mult (J in Hz) ^b	COSY	HMBC	NOESY	
1	175.6, qC					
2	46.0, qC					
3α	44.0, CH ₂	3.38, d (13.2)		C-1, 2, 4, 5, 24, 25, 26	H-24	
3β		1.66, d (13.2)		C-1, 2, 4, 5, 24, 25, 26	H-25	
4	138.5, qC					
5	134.2, qC					
6	34.9, CH ₂	3.18, overlap		C-4, 5, 7, 8	H-26	
7	169.2, qC					
8	205.2, qC					
9α	46.1, CH ₂	2.12, dd (15.0, 1.0)	Η-9β	C-8, 10, 11, 23	H-10	
9β		2.51, dd (15.0, 11.2)	Η-9α, 10	C-8, 10, 11	H-11	
10	33.1, CH	2.76, overlap	Η-9β, 11, 23	C-23	Η-9α, 22	
11	80.1, CH	4.64, dd (10.8, 1.0)	H-10, 12	C-1, 9, 10, 12, 13, 22, 23	Η-9β, 12, 23	
12	34.4, CH	1.64, m	H-11	C-13, 22	H-11, 23	
13α	30.3, CH ₂	1.15, m	Η-13β, 14,			
13β		0.92, overlap	Η-13α, 14			
14	35.7, CH ₂	1.74, m	Η-13α, 13β, 15	C-12, 13, 15, 16		
15	84.3, CH	3.94, t (6.7)	H-14	C-13, 14, 16, 17, 21, 32		
16	143.8, qC					
17	119.4, CH	6.76, overlap	H-18	C-15		
18	129.4, CH	7.16, t (7.7)	H-17, 19			
19	114.9, CH	6.74, overlap	H-18			
20	156.4, qC					
21	113.5, CH	6.79, m (2.0)		C-15		
22	13.7, CH ₃	0.87, d (6.8)		C-11, 12, 13		
23	17.9, CH ₃	0.93, d (6.9)	H-10	C-9, 10,11		
24	28.6, CH ₃	1.01, s		C-1, 2, 3, 25		
25	24.3, CH ₃	1.13, s		C-1, 2, 3, 24		
26	22.3, CH ₃	1.80, s		C-3, C-4, C-5		
27	174.7, qC					
28α	36.5, CH ₂	2.74, overlap	Η-29, 28β	C-27, 29, 30		
28β		2.91, dd (18.5, 6.4)	Η-29, 28α	C-27, 30	H-29, 30	
29	72.0, CH	5.47, ddd (6.2, 4.3, 1.6)	Η-28α, 28β, 30	C-7, 27, 30	Η-28β	
30	79.1, CH	4.72, ddd (13.0, 6.5, 4.3)	H-29, 31	C-29, 31	Η-28β	
31	14.4, CH ₃	1.37, d (6.5)	H-30	C-29, 30	-	
-OCH ₃	56.7, CH ₃	3.18, overlap		C-15		

 Table S1

 NMR data for Neo-debromoaplysiatoxin C (1) in CDCl₃.

^aData recorded at 600 MHz. ^bData recorded at 150 MHz.

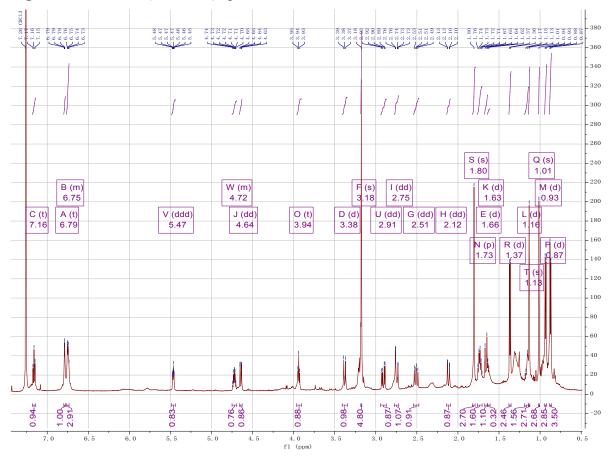


Figure S3. ¹H NMR (600 MHz) spectrum of 1 in CDCl₃

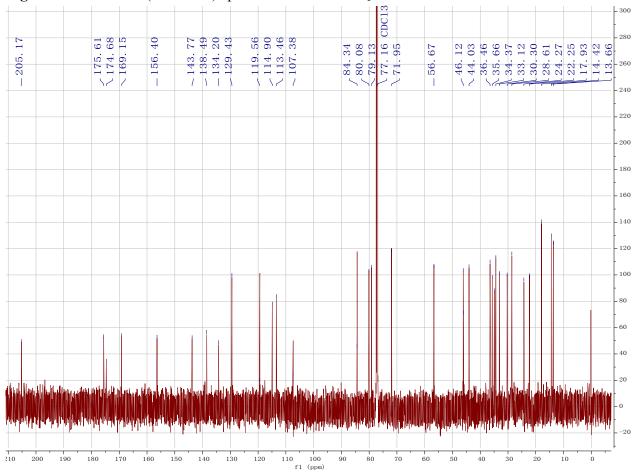
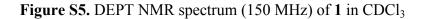
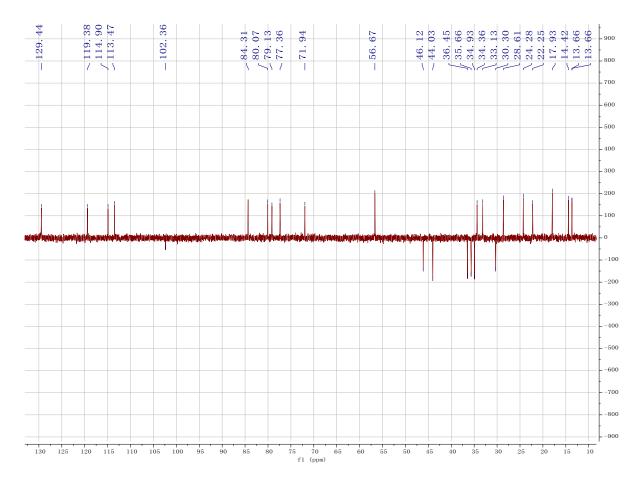
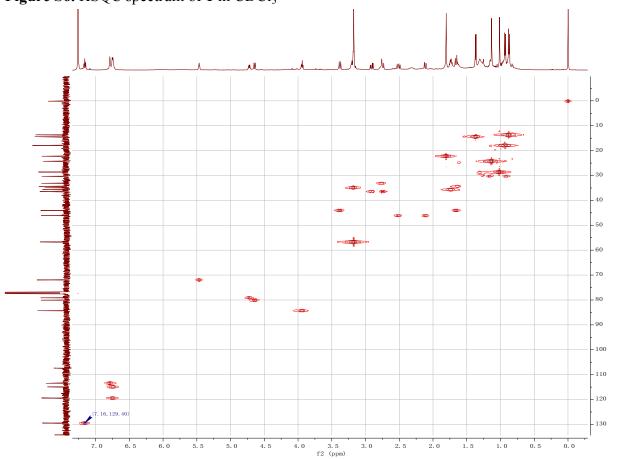





Figure S4. ¹³C NMR (150 MHz) spectrum of 1 in CDCl₃

(udd)

 f_1

Figure S6. HSQC spectrum of 1 in CDCl₃

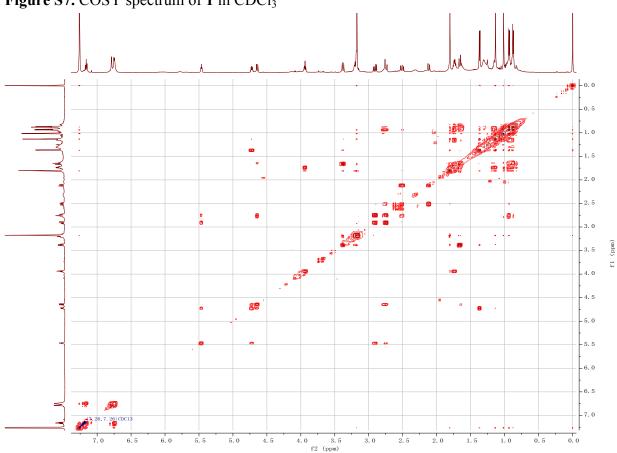
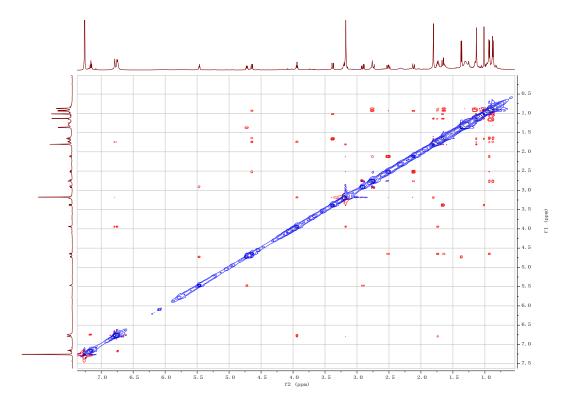



Figure S7. COSY spectrum of 1 in CDCl₃

. hll --10 -0 - 10 10 a - 20 8 -- 30 1 1 . - 40 ٠. \$ \$. . • - 50 . . - 60 - 70 • • - + ٠. ٠ - 80 + • . - 90 (mqq) - 100 \mathbf{f}_{1} -110 _ . . • - 120 -130 :: **;:** -140 -150 • -- 160 - 170 • . •• - 180 - 190 _ 200 ٠ . 4 -210 L₂₂₀ 4.0 3.5 3.0 2.5 2.0 1.5 1.0 f2 (ppm) 9.0 8.0 7.5 7.0 6.5 6.0 0.5 0.0 -0.5 8.5 5.5 5.0 4.5

Figure S8. HMBC spectrum of 1 in CDCl₃

Figure S9. NOESY spectrum of 1 in CDCl₃

Figure S10. HRESIMS of 1

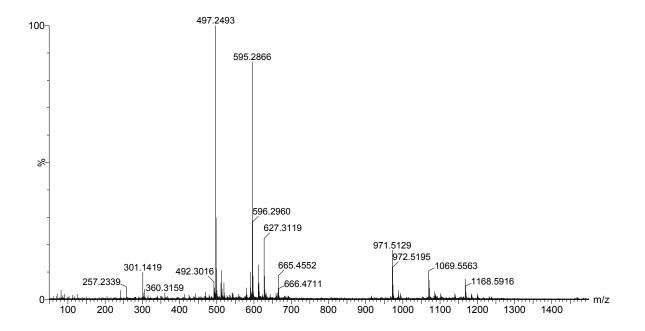
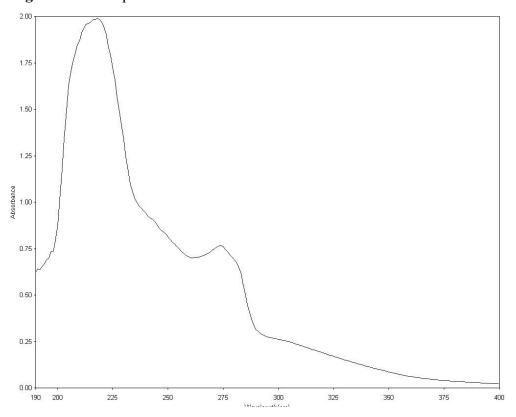



Figure S11.UV spectrum of 1

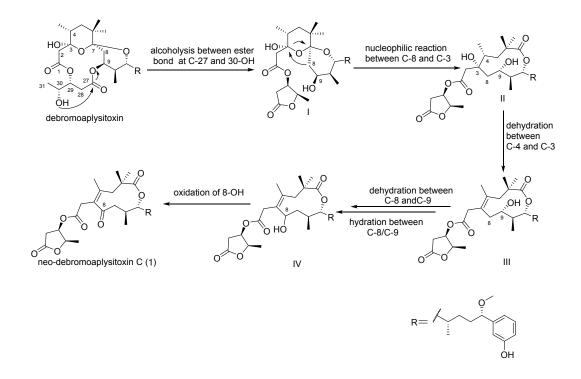



Figure S12. IR spectrum of 1

Scheme S1. Plausible biosynthetic pathway of 1

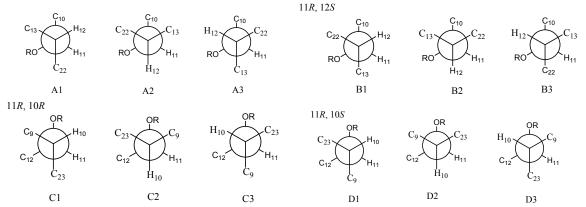

Neo-debromoaplysiatoxin C (1), contains a single 10-membered lactone ring core structure which, to the best our knowledge, is the first example in ATXs. The plausible biosynthetic pathway of 1 was represented in Scheme 1. We postulated that the structural rearrangement of debromoaplysiatoxin was caused by the instability of the hemiketal at C-3 and ketal at C-7 in the presence of weak acids or alkalis, such as in the case of 30-methyloscillatoxin D and neo-debromoaplysiatoxin A-B. We envisioned that the ester linkage at C-27 was attacked by 30-OH and resulted in the formation of γ -lactone ring and 9-OH. A nucleophilic reaction between anionic C-8 and cationic C-3 accompanied by dehydration of C-3 and C-4 result the appearance of intermediate III. III subsequently experienced dehydration, hydration and oxidation, and finally neo-debromoaplysiatoxin C (1) was produced.

Figure 13. Diagram of all energetically reasonable rotamers (staggered) for the C-11/C-12 and C-10/C-11

The configuration of C-11 was assumed as *R*, the stereochemistry at C-12 and C-10 were defined using NOESY experiment and coupling constant in combination with a systematic analysis of all energetically reasonable (staggered) rotamers. The anti relationship of H-10 and H-11 and the gauch relationship of H-12 and H-11 were established from the coupling constants of H-11 (*J*=10.8, 1.0 Hz) and the presence of NOESY correlation of H-11/H-12 and the absence of correlation between H-10 and H-11, which indicated $J_{H-10, H-11}$ =10.8 Hz and $J_{H-11, H-12}$ =1.0 Hz. The NOESY cross-peaks of H-11/H-12 and the small coupling constant of H-11/H-12 ($J_{H-11, H-12}$ =1.0) ruled out model A3 and B3, H-10/H₃-22 ruled out model A1 and B3, H-12/H₃-23 ruled out A2 and B2. Model B1 full all criteria for C-11/C-12. The large coupling constant of H-10 and H-11 ($J_{H-10, H-11}$ =10.8) ruled out C1, C2, D1 and D2, the NOESY correlations from H-11 to H₃-23 ruled out C2 and D1, H-10/H₃-22 ruled out C1 and D1, H₃-23/H-12 ruled out model C3 and D2. Model D3 full all criteria for C-11/C-10. Thus, indicated a 10*S**, 11*R**, 12*S** configuration for neo-debromoaplysiatoxin C (1)

