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Abstract

Neo-debromoaplysiatoxin C (1), a new member of the aplysiatoxin family, was isolated
from the marine cyanobacterium Lyngbya sp.. The structure of 1 was elucidated based on
spectroscopic data, and its stereochemistry was determined from NOESY spectrum and
biosynthetic considerations. This new compound presents an intriguing 10-membered
lactone ring skeleton derived from debromoaplysiatoxin by structural rearrangement,
which is the first example in the aplysiatoxin family. Its biological properties were
evaluated for cytotoxicity, PKCé activation and inhibitory effects on potassium channel.
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Figure S1. Key COSY, HMBC and NOESY correlations of 1
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Table S1
NMR data for Neo-debromoaplysiatoxin C (1) in CDCls.

Neo-debromoaplysiatoxin C (1)

NO. dc, type ? Ju, mult (J in Hz)® COSY HMBC NOESY
1 175.6, qC

2 46.0, qC

3a 44.0, CH, 3.38,d (13.2) C-1,2,4,5,24,25,26 H-24

3B 1.66,d (13.2) C-1,2,4,5,24,25,26 H-25

4 138.5, qC

5 134.2, qC

6 34.9, CH, 3.18, overlap C4,517,8 H-26

7 169.2, qC

8 205.2,qC

9a 46.1, CH, 2.12,dd (15.0, 1.0) H-9B C-8,10, 11,23 H-10

9B 2.51,dd (15.0,11.2) H-9a, 10 C-8,10, 11 H-11

10 33.1, CH 2.76, overlap H-98, 11, 23 C-23 H-9a, 22
11 80.1, CH 4.64, dd (10.8, 1.0) H-10, 12 C-1,9,10, 12,13, 22,23 H-98, 12,23
12 34.4,CH 1.64, m H-11 C-13,22 H-11,23
13a 30.3, CH, 1.15,m H-13B, 14,

13p 0.92, overlap H-13a, 14

14 35.7, CH, 1.74, m H-130, 138,15  C-12,13,15, 16

15 84.3, CH 3.94,1(6.7) H-14 C-13, 14,16, 17,21, 32

16 143.8, qC

17 119.4, CH 6.76, overlap H-18 C-15

18 129.4, CH 7.16,t(7.7) H-17, 19

19 114.9, CH 6.74, overlap H-18

20 156.4, qC

21 113.5,CH 6.79, m (2.0) C-15

22 13.7, CH; 0.87,d (6.8) C-11,12, 13

23 17.9, CH; 0.93,d (6.9) H-10 C-9,10,11

24 28.6, CH; 1.01,s C-1,2,3,25

25 24.3, CH; 1.13,s C-1,2,3,24

26 22.3, CH; 1.80, s C-3,C4,C-5

27 174.7, qC

28a 36.5, CH, 2.74, overlap H-29, 28pB C-27,29, 30

28p 2.91,dd (18.5, 6.4) H-29, 28a C-27, 30 H-29, 30
29 72.0,CH 5.47,ddd (6.2,4.3,1.6) H-28a,28B,30 C-7,27,30 H-28p
30 79.1,CH 4.72,ddd (13.0, 6.5,4.3) H-29, 31 C-29, 31 H-28p
31 14.4, CH; 1.37,d(6.5) H-30 C-29, 30

-OCH; 56.7, CH; 3.18, overlap C-15

aData recorded at 600 MHz.

bData recorded at 150 MHz.



Figure S3. 'H NMR (600 MHz) spectrum of 1 in CDCls
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Figure S4. 3C NMR (150 MHz) spectrum of 1 in CDCl;
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Figure S5. DEPT NMR spectrum (150 MHz) of 1 in CDCl;
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Figure S6. HSQC spectrum of 1 in CDCl;

JV\ I Al

A

AJLMJM N WY W

=100

=110

=120

£1 (ppm)

=
B
£ (7. 16, 129. 40}
- T -
7.0 6. 5

T T T T T T T T T T T
3.5 3.0 2.5 2.0 1.5 Lo
2 (ppm)




Figure S7. COSY spectrum of 1 in CDCl;
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Figure S8. HMBC spectrum of 1 in CDCl;
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Figure S9. NOESY spectrum of 1 in CDCl;
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Figure S10. HRESIMS of 1
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Figure S11.UV spectrum of 1
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Figure S12. IR spectrum of 1
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Scheme S1. Plausible biosynthetic pathway of 1

Neo-debromoaplysiatoxin C (1), contains a single 10-membered lactone ring core structure which, to
the best our knowledge, is the first example in ATXs. The plausible biosynthetic pathway of 1 was
represented in Scheme 1. We postulated that the structural rearrangement of debromoaplysiatoxin was
caused by the instability of the hemiketal at C-3 and ketal at C-7 in the presence of weak acids or
alkalis, such as in the case of 30-methyloscillatoxin D and neo-debromoaplysiatoxin A-B. We
envisioned that the ester linkage at C-27 was attacked by 30-OH and resulted in the formation of vy-
lactone ring and 9-OH. A nucleophilic reaction between anionic C-8 and cationic C-3 accompanied by
dehydration of C-3 and C-4 result the appearance of intermediate III. III subsequently experienced
dehydration, hydration and oxidation, and finally neo-debromoaplysiatoxin C (1) was produced.

nucleophilic reaction =

alcoholysis between ester
between C-8 and C-3 HO,

bond at C-27 and 30-OH

o R
o
1]
debromoaplysitoxin o~ O )
dehydration
between
C-4 and C-3

dehydration between
C-8 andC-9

hydration between

O
b— C-8/C-9 b—
0]

neo-debromoaplysitoxin C (1) o v O © i
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Figure 13. Diagram of all energetically reasonable rotamers (staggered) for the C-
11/C-12 and C-10/C-11

The configuration of C-11 was assumed as R, the stereochemistry at C-12 and C-10 were defined
using NOESY experiment and coupling constant in combination with a systematic analysis of all
energetically reasonable (staggered) rotamers. The anti relationship of H-10 and H-11 and the gauch
relationship of H-12 and H-11 were established from the coupling constants of H-11 (J=10.8, 1.0 Hz)
and the presence of NOESY correlation of H-11/H-12 and the absence of correlation between H-10
and H-1 1, which indicated JH—lO, H—11:10-8 Hz and JH—ll, H—12:1‘0 Hz. The NOESY Cross-peaks of H-
11/H-12 and the small coupling constant of H-11/H-12 (Jy.11, 4.12=1.0) ruled out model A3 and B3, H-
10/H3-22 ruled out model Al and B3, H-12/H3-23 ruled out A2 and B2. Model B1 full all criteria for
C-11/C-12. The large coupling constant of H-10 and H-11 (Ji1.10, n.11=10.8) ruled out C1, C2, D1 and
D2, the NOESY correlations from H-11 to H3-23 ruled out C2 and D1, H-10/H3-22 ruled out C1 and
D1, H3-23/H-12 ruled out model C3 and D2. Model D3 full all criteria for C-11/C-10. Thus, indicated
a 10S*, 11R*, 125* configuration for neo-debromoaplysiatoxin C (1)

11R, 12R
11R, 128
c C1o y C1o C1o Cro Cro Cro
° ? n Cis Hip C Czz Hiz Cis Cx Hip Ci3
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2 Hy, Cy3 Cis Hiz C22
Al A2 A3 Bl B2 B3
11R, 10R
OR or OR 11R, 108 ox o
c H C C Hio Cos oR
9 10 23 9 Crs Hio Gy Cas Hyo Co
C H
Cis Ha4 Ciz Hiq 12 " Cis Hiy Ciz Hiq Cip His
Ca Ho G Co 10 Cx
Cl C2 C3 DI D2 D3
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