Supporting Information for

Size, composition, morphology and health implications of airborne incidental metal-containing nanoparticles

Key Words: Incidental nanoparticles, respiratory deposition curve, single particle analysis, fractal-like agglomerates, NP-collectors.

Word count: 515

Supporting Information. The SI contains the following information:

Table S1. Size separation is done using a nano-MOUDI cascade impactor and corresponding stages.

Table S2. LOQs and LODs of Al, Mn, Fe, Cu and Zn in nano-MOUDI substrates.

Figure S1. Comparison of the Fe (left) Mn, (middle) and Cu (right) concentrations between onsite and off-site nano-MOUDI measurements at the machining center during Day 2 (a) and Day 3 (b).

Figure S2. Comparison of the Fe (left) Mn, (middle) and Cu (right) concentrations between onsite and off-site nano-MOUDI measurements at the foundry during Day 1 (a) and Day 3 (b).

Figure S3. Composition of incidental particles observed at the machining center and the foundry. Percentage of the main metals found in the elemental analysis of the digested nano-MOUDI filters are summarized for samples collected during days 1, 2 and 3 for the machining center (a) and foundry (b). No data are shown if metals were present in concentrations lower than the corresponding LOD.

Figure S4. Low magnification SEM images of particles found at the machining center and the foundry for different size ranges including for particles collected by the nano-MOUDI stages 3 (3.2-5.6μm), 5 (1-1.8μm), 7 (320-560nm) and 9 (100-180nm) at the machining center (a) and the foundry (b).

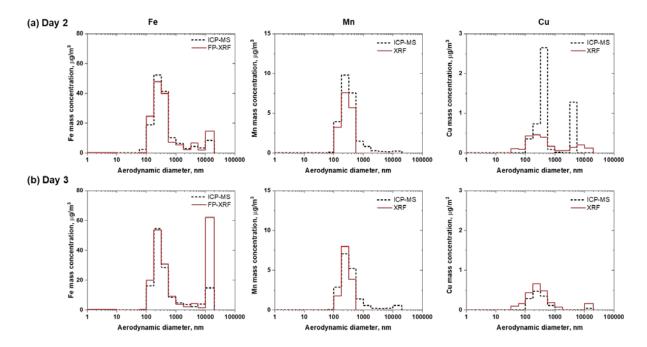
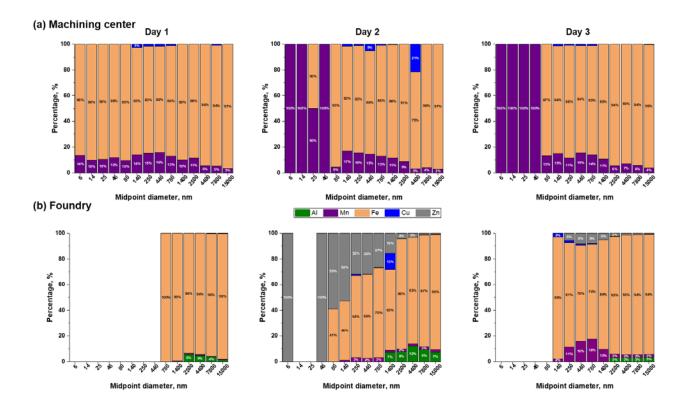
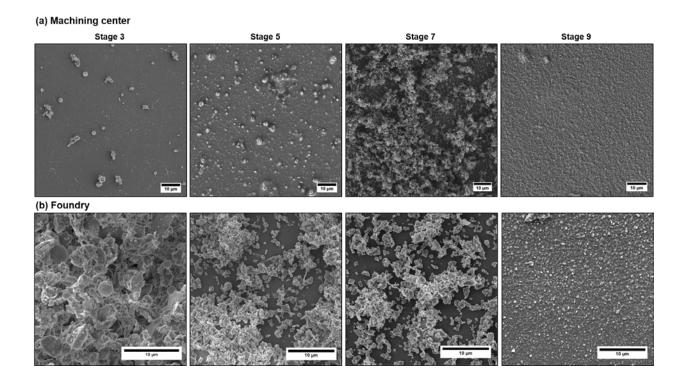

Figure S5. SEM-EDS of particles found on the machining center and the foundry. The SEM image is compared to the Fe, O, Mn, and Cu elemental mappings for both sites in nano-MOUDI stage 7 (320-560nm). Zn, and Mg were also found and mapped in the foundry.

Table SI. Size separation is done using a nano-MOUDI cascade impactor and corresponding stages.

Stage	d ₅₀ , nm	Midpoint diameter (d _i), nm	Substrate material			
1	10000	15000	Polycarbonate			
2	5600	7800 Polycarbonate				
3	3200	4400	Polycarbonate			
4	1800	2500	Polycarbonate			
5	1000	1400	Polycarbonate			
6	560	780	Polycarbonate			
7	320	440	Polycarbonate			
8	180	250	Polycarbonate			
9	100	140	Polycarbonate			
10	59	79.5	Polycarbonate			
11	32	45.5	Polycarbonate			
12	18	25	Polycarbonate			
13	10	14	Polycarbonate			
14 Final filter	<10	6	Mixed cellulose ester (MCE)			

Table SII. LOQs and LODs of Al, Mn, Fe, Cu and Zn in nano-MOUDI substrates.


Technique	Substrate	Al		M	Mn		Fe		Cu		Zn	
		LOQ (µg)	LOD (µg)									
ICP-MS	РСТЕ	0.801	0.473	0.071	0.054	1.849	1.335	0.039	0.012	1.703	1.429	
	MCE	0.730	0.333	0.071	0.057	0.417	0.125	0.031	0.009	0.782	0.621	
FP-XRF	РСТЕ	N.M.	N. M.	N. D.	0.94*	N. D.	0.93*	4.52	3.38	N.D.	0.40*	
	MCE	N.M.	N. M.	N. D.	1.61*	10.47	4.82	N. D.	1.61*	N.D.	1.61*	


Figure S1. Comparison of the Fe (left) Mn, (middle) and Cu (right) concentrations between onsite and off-site nano-MOUDI measurements at the machining center during Day 2 (a) and Day 3 (b).

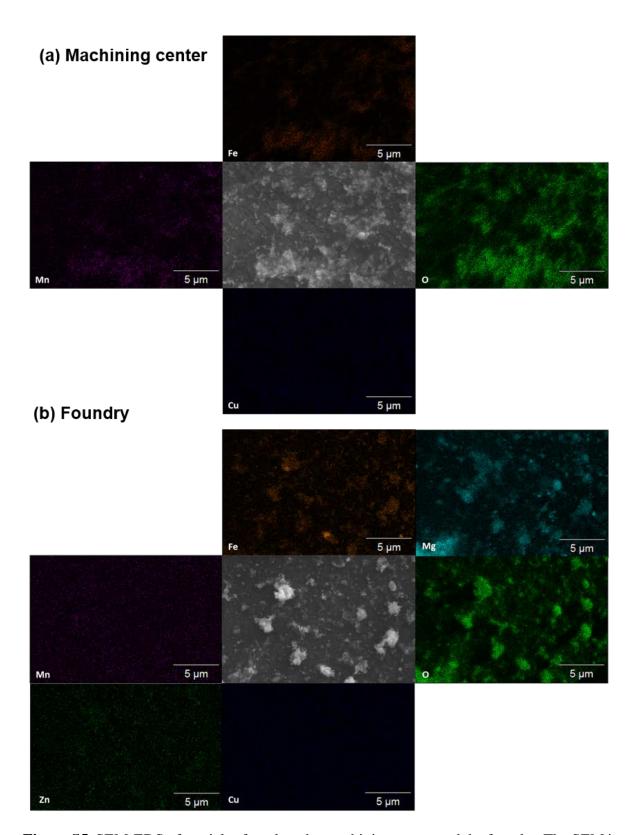

Figure S2. Comparison of the Fe (left) Mn, (middle) and Cu (right) concentrations between onsite and off-site nano-MOUDI measurements at the foundry during Day 1 (a) and Day 3 (b).

Figure S3. Composition of incidental particles observed at the machining center and the foundry. Percentage of the main metals found in the elemental analysis of the digested nano-MOUDI filters are summarized for samples collected during days 1, 2 and 3 for the machining center (a) and foundry (b). No data are shown if metals were present in concentrations lower than the corresponding LOD.

Figure S4. Low magnification SEM images of particles found at the machining center and the foundry for different size ranges including for particles collected by the nano-MOUDI stages 3 (3.2-5.6μm), 5 (1-1.8μm), 7 (320-560nm) and 9 (100-180nm) at machining center (a) and the foundry (b).

Figure S5. SEM-EDS of particles found on the machining center and the foundry. The SEM image is compared to the Fe, O, Mn, and Cu elemental mappings for both sites in nano-MOUDI stage 7 (320-560nm). Zn, and Mg were also found and mapped in the foundry.