### Web Appendix to 'Univariate versus multivariate surrogate endpoints in the single-trial setting.'

## Part I Proof of Lemma's 1 and 2.

Proof of Lemma 1. In the following Lemma 1 will be proven.

1.  $R_H^2$  is invariant by bijective transformations of  $\Delta T$  and  $\Delta S$ The result follows from the fact that the mutual information  $I(\Delta T, \Delta S)$  is invariant by bijective transformations of  $\Delta T$  and  $\Delta S$ .

2.  $0 \le R_H^2 \le 1$ 

It is a direct consequence of  $R_H^2 = \max_t \left[ \operatorname{corr} \left( \Delta T, t' \Delta S \right) \right]^2$ .

3.  $R_H^2 = 0$  if and only if  $\sigma_{\Delta S_k \Delta T} = 0$  for all  $r = 1, 2 \dots p$ Given that  $\Sigma_{\Delta S}^{-1}$  is positive-definite it follows from expression (4) in the manuscript that  $R_H^2 = 0$  if and only if  $\Sigma_{\Delta S \Delta T} = \mathbf{0}$ . Moreover  $\Sigma_{\Delta S \Delta T} = \mathbf{0}$  if and only if  $\sigma_{\Delta S_r \Delta T} = 0$  for all  $r = 1, 2 \dots p$ .

4.  $R_H^2 = 1$  if and only if there exists a deterministic relationship between  $\Delta T$  and  $\Delta S$ . From  $R_H^2 = \max_t \left[ \operatorname{corr} \left( \Delta T, t' \Delta S \right) \right]^2$  it is clear that  $R_H^2 = 1$  if and only if there exists a  $t_*$ .

*Proof of Lemma* 2. In the following Lemma 2 will be proven.

Notice that for every vector  $\mathbf{t} \in \mathbb{R}^p$  there exists a  $\mathbf{t}_0 = (\mathbf{t}, 0)' \in \mathbb{R}^{p+1}$  so that corr  $(\Delta T, \mathbf{t}' \Delta S) = \operatorname{corr} (\Delta T, \mathbf{t}'_0 \Delta S_*)$ . Consequently,

$$R_{H}^{2} = \max_{\boldsymbol{t} \in \mathbb{R}^{p}} \left[ \operatorname{corr} \left( \Delta T, \boldsymbol{t}' \Delta S \right) \right]^{2} = \max_{\boldsymbol{t}_{0} \in \mathbb{R}^{p+1}} \left[ \operatorname{corr} \left( \Delta T, \boldsymbol{t}'_{0} \Delta S_{*} \right) \right]^{2} \leq \max_{\boldsymbol{t}_{*} \in \mathbb{R}^{p+1}} \left[ \operatorname{corr} \left( \Delta T, \boldsymbol{t}'_{*} \Delta S_{*} \right) \right]^{2} = R_{H*}^{2}$$

#### Part II

# Case study analysis using the R package *Surrogate*

#### 1 The dataset: the transPAT microbiome intervention study

Data from the transPAT experiment (Ruiz *et al.*, 2017) are used to illustrate the multivariate surrogate evaluation methodology. TransPAT is an animal study that was conducted to evaluate the influence of an antibiotic treatment on the immune system (Immunoglobulin A level, IgA level) and the microbiome of an animal. The microbiome is composed of a wide variety of operational taxonomic units (OTUs), which are essentially proxies for microbial species. The transPAT dataset contains information of N = 15 germ-free mice that received cecal contents of a donor mouse. The cecal contents of the donor mouse was either exposed (experimental treatment) or not exposed (control treatment) to a tylosin pulse. A total of n = 7 and n = 8 mice received the experimental and the control treatments, respectively. The relative abundance of a total of 67 OTUs was assessed at day 12 of the experiment. In the current analysis, it will be evaluated whether the individual causal treatment effect on the relative abundance of one or more of the 67 OTUs at day 12 of the experiment ( $\Delta S_1$ ,  $\Delta S_2$ , ...,  $\Delta S_{67}$ ) is predictive for the individual causal treatment effect on IgA level at day 20 of the experiment ( $\Delta T$ ). The data are available on github (see https://github.com/blaser-lab/Paper-Ruiz-2017).

#### **2** The multivariate individual causal association $(R_H^2)$

The function ICA.ContCont.MultS() in the *Surrogate* package allows for computing the individual causal association (ICA) in the setting where both the true and surrogate endpoints are <u>Continuous</u> normally distributed variables, and where <u>Multiple Surrogates</u> are considered. This function computes the multivariate individual causal association ( $\overline{R_H^2}$ ) following the procedure that was detailed in Van der Elst *et al.* (2018). The function requires the user to specify the following arguments:

- M= : the number of multivariate individual causal association ( $R_H^2$ ) values that have to be sampled by the algorithm. Default M=500.
- N= : the number of patients/subjects in the dataset.
- Sigma= : the variance-covariance matrix  $\Sigma$  of the true and surrogates endpoints in both treatment

groups (i.e., *T*<sub>0</sub>, *T*<sub>1</sub>, *S*<sub>10</sub>, *S*<sub>11</sub>, ..., *S*<sub>*p*0</sub>, *S*<sub>*p*1</sub>).

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{T_0 T_0} & \sigma_{T_0 T_1} & \sigma_{T_0 S_{10}} & \sigma_{T_0 S_{11}} & \sigma_{T_0 S_{20}} & \sigma_{T_0 S_{21}} & \cdots & \sigma_{T_0 S_{p0}} & \sigma_{T_0 S_{p1}} \\ \sigma_{T_0 T_1} & \sigma_{T_1 T_1} & \sigma_{T_1 S_{10}} & \sigma_{T_1 S_{11}} & \sigma_{T_1 S_{20}} & \sigma_{T_1 S_{21}} & \cdots & \sigma_{T_1 S_{p0}} & \sigma_{T_1 S_{p1}} \\ \sigma_{T_0 S_{10}} & \sigma_{T_1 S_{11}} & \sigma_{S_{10} S_{11}} & \sigma_{S_{10} S_{11}} & \sigma_{S_{10} S_{20}} & \sigma_{S_{10} S_{21}} & \cdots & \sigma_{S_{10} S_{p0}} & \sigma_{S_{10} S_{p1}} \\ \sigma_{T_0 S_{20}} & \sigma_{T_1 S_{20}} & \sigma_{S_{10} S_{20}} & \sigma_{S_{20} S_{20}} & \sigma_{S_{20} S_{21}} & \cdots & \sigma_{S_{20} S_{p0}} & \sigma_{S_{20} S_{p1}} \\ \sigma_{T_0 S_{21}} & \sigma_{T_1 S_{21}} & \sigma_{S_{20} S_{21}} & \sigma_{S_{20} S_{20}} & \sigma_{S_{20} S_{21}} & \cdots & \sigma_{S_{20} S_{p0}} & \sigma_{S_{20} S_{p1}} \\ \vdots & \vdots \\ \sigma_{T_0 S_{p0}} & \sigma_{T_1 S_{p0}} & \sigma_{S_{10} S_{p0}} & \sigma_{S_{11} S_{p0}} & \sigma_{S_{20} S_{p0}} & \sigma_{S_{21} S_{p0}} & \cdots & \sigma_{S_{p0} S_{p0}} & \sigma_{S_{p0} S_{p1}} \\ \sigma_{T_0 S_{p1}} & \sigma_{T_1 S_{p1}} & \sigma_{S_{10} S_{p1}} & \sigma_{S_{11} S_{p1}} & \sigma_{S_{20} S_{p1}} & \sigma_{S_{21} S_{p1}} & \cdots & \sigma_{S_{p0} S_{p1}} & \sigma_{S_{p1} S_{p1}} \end{pmatrix} \right)$$

The unidentifiable covariances in  $\Sigma$  should be given the value NA.

- G=: a vector of values that should be considered for the unidentified correlations. Default G=seq(-1, 1, by=0.00001).
- Seed= : the seed to be used in the analysis (for reproducibility).
- Show.Progress=: a logical indicator that can be used to request visual feedback regarding the progress of the algorithm in finding  $R_H^2$  values. When Show.Progress=TRUE is used, 1% done..., 2% done..., etc is shown in the R console when the function is running. This option is mainly useful when 4 or more surrogates are being considered in the analysis, because finding positive definite  $\Sigma$  (which are needed to compute  $R_H^2$ ) can take a very long time when the dimensionality of  $\Sigma$  is high (see Van der Elst *et al.*, 2018).

**Identification of subset of good surrogates** A hierarchical approach with forward selection was used to identify the best set of surrogates. To this end, univariate analyses were conducted for each of the p = 67 candidate surrogates. The candidate univariate surrogate that had the highest median  $R_H^2$  was retained. In the second step, multivariate analyses were conducted that included the first identified candidate surrogate combined with a second one (i.e., one of the p - 1 = 66 remaining OTUs). Again, for the 66 analyses conducted, the bivariate surrogate that led to the highest median  $R_H^2$  was retained. This procedure was repeated until  $\Delta S$  had a median  $R_H^2 \ge 0.90$ . The so-obtained final vector of surrogates included  $S_1 = OTU$  44,  $S_2 = OTU$  1 and  $S_3 = OTU$  59, with variance-covariance matrix:

|            | / 176.7790691375 | NA            | 0.0936263266  | NA            | -1.5311587825 | NA            | 0.0000404661  | NA            | ۱ |
|------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---|
| $\Sigma =$ | NA               | 11.8330574635 | NA            | -0.0002432784 | NA            | -0.4853893940 | NA            | -0.0018366108 |   |
|            | 0.0936263266     | NA            | 0.0000621257  | NA            | -0.0006507995 | NA            | -0.0000002111 | NA            |   |
|            | NA               | -0.0002432784 | NA            | 0.0000002061  | NA            | 0.0000572090  | NA            | 0.0000002735  |   |
| $\Delta =$ | -1.5311587825    | NA            | -0.0006507995 | NA            | 0.0238066268  | NA            | -0.0000025912 | NA            | ŀ |
|            | NA               | -0.4853893940 | NA            | 0.0000572090  | NA            | 0.0487158192  | NA            | 0.0002031266  |   |
|            | 0.0000404661     | NA            | -0.0000002111 | NA            | -0.0000025912 | NA            | 0.000000065   | NA            |   |
| 1          | NA               | -0.0018366108 | NA            | 0.000002735   | NA            | 0.0002031266  | NA            | 0.0000008971  | / |

The following code can be used to request a surrogacy analysis for the transPAT case study, using all three surrogates and the default options of the ICA.ContCont.MultS() function (runtime about 2 hours):

```
# First define the Sigma matrix for T and S_1 = OTU 44, S_2 = OTU 1 and S_3 = OTU 59
> Sigma <- matrix(data=c(
1.767791e+02, NA, 9.362633e-02, NA, -1.531159e+00, NA, 4.046615e-05, NA,
NA, 11.8330574635, NA, -2.432784e-04, NA, -4.853894e-01, NA, -1.836611e-03,
9.362633e-02, NA, 6.212567e-05, NA, -6.507995e-04, NA, -2.111307e-07, NA,
NA, -0.0002432784, NA, 2.060978e-07, NA, 5.720905e-05, NA, 2.734616e-07,
-1.531159e+00, NA, -6.507995e-04, NA, 2.380663e-02, NA, -2.591242e-06, NA,
NA, -0.4853893940, NA, 5.720905e-05, NA, 4.871582e-02, NA, 2.031266e-04,
4.046615e-05, NA, -2.111307e-07, NA, -2.591242e-06, NA, 6.545024e-09, NA,
NA, -0.0018366108, NA, 2.734616e-07, NA, 2.031266e-04, NA, 8.970605e-07
), nrow=8)
# Conduct the analysis
> ICA_S1S2S3 <- ICA.ContCont.MultS(Sigma = Sigma, N=15)</pre>
```

The fitted object ICA\_S1S2S3 of class ICA.ContCont.MultS contains the results. The names() function can be applied to the fitted object to obtain a list of the components in this object:

| <pre>&gt; names(ICA_S1S2S3)</pre> |             |                                |
|-----------------------------------|-------------|--------------------------------|
| # Generated output:               |             |                                |
| "R2_H"                            | "Corr.R2_H" | "Lower.Dig.Corrs.Sigma" "Call" |

These components contain the following information:

- R2\_H= : the  $R_H^2$  values, computed as detailed in Van der Elst *et al.* (2018).
- Corr.R2\_H= : the  $R_H^2$  values correspond to the coefficient of determination of a multiple regression model in which  $\Delta T$  is regressed on  $\Delta S_1$ ,  $\Delta S_2$ , ..., and  $\Delta S_k$ . As a consequence,  $R_H^2$  can never decrease when additional surrogates are added to the existing ones. One could argue that this property of  $R_H^2$  is less desirable, because a more parsimonious model (i.e., a model that uses less surrogates) may be preferred over a less parsimonious model (i.e., a model that uses more surrogates) if both models explain about the same amount of variance in  $\Delta T$ . In addition, the sample coefficient of determination (Cohen *et al.*, 2003). This bias is small when only a small number of surrogates is used and when the sample size is large, but it becomes more substantial when these conditions are not fulfilled. Several proposals have been made to correct for this bias (Yin and Fan, 2001). The often-used Wherry's equation makes the correction  $1 - (1 - R_H^2) \frac{N-1}{N-K-1}$ , with N = the sample size and K the number of surrogates. The Corr.R2\_H component contains the  $R_H^2$  that use the latter correction.
- Lower .Dig.Corrs.Sigma= : A data.frame that contains the matrix of the identifiable and unidentifiable correlations in  $\Sigma$  (lower diagonal elements) that were used to compute R2\_H and Corr.R2\_H in each of the runs. This information is useful to e.g., identify the subset of  $R_H^2$  values that are in line with certain biologically plausible constraints. For example, one can select the subset of  $R_H^2$  for which  $r(T_0, T_1) < 0$  based on this information.

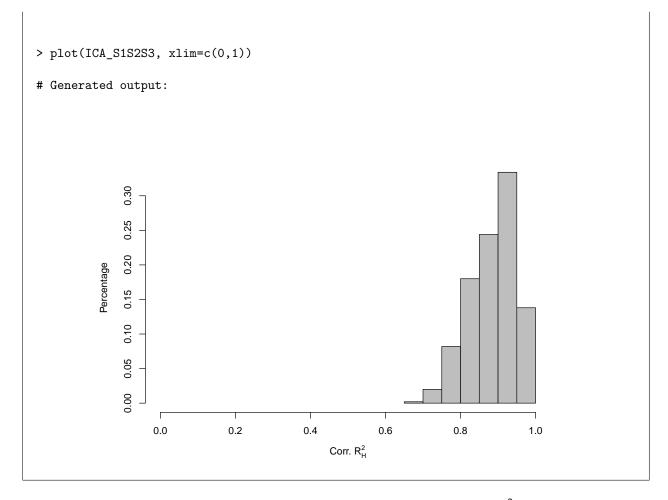
• Call= : the function call.

For example, the first 10 bias-corrected  $R_H^2$  values (contained in the Corr.R2\_H component of the fitted ICA\_S1S2S3 object) can be obtained using the command:

```
> ICA_S1S2S3$Corr.R2_H[1:10]
# Generated output:
[1] 0.8290846 0.7874177 0.8902235 0.9099270 0.8971906
0.8983485 0.9026660 0.8296100 0.8840793 0.8849449
```

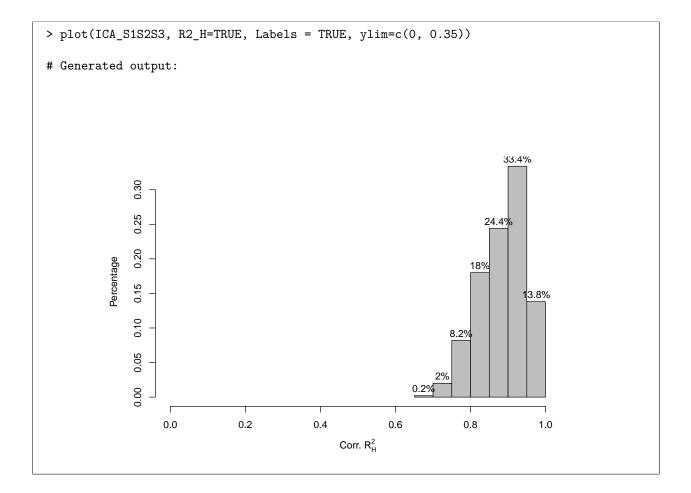
The results can be explored by applying the summary() and plot() functions to the fitted object:

```
> summary(ICA_S1S2S3)
# Generated output:
Function call:
ICA.ContCont.MultS(M = M, N = 15, Sigma = Sigma, Show.Progress = TRUE)
# Uncorrected R2_H results summary
Mean R2_H: 0.9097 (0.0481) [min: 0.7508; max: 0.9986]
Mode R2_H: 0.9344
Quantiles of the distribution:
     5%
            10%
                     20% 50%
                                     80%
                                             90%
                                                     95%
0.8240214 0.8402335 0.8666881 0.9182989 0.9521223 0.9672257 0.9812187
# Bias-corrected R2_H results summary
Mean adjusted R2_H: 0.8851 (0.0612) [min: 0.6829; max: 0.9982]
Mode adjusted R2_H: 0.9165
Quantiles of the distribution:
                     20%
                          50%
                                     80%
            10%
                                             90%
     5%
                                                     95%
0.7760273 \ 0.7966608 \ 0.8303303 \ 0.8960168 \ 0.9390648 \ 0.9582873 \ 0.9760965
```



The first part of the output of the summary() function shows descriptives of the  $R_H^2$  values. It can be seen that the mean, median, and mode of  $R_H^2$  are high with values 0.910, 0.918, and 0.934, respectively. Further, the impact of the unverifiable assumptions on the results is small, i.e., the range of  $R_H^2$  values is quite narrow and equals [0.751, 0.999]. The second part of the output of the summary() function provides the same descriptives for the bias-corrected  $R_H^2$ . As can be seen, the bias-corrected  $R_H^2$  values are slightly below those of  $R_H^2$  (as expected), but the results for both metrics are very similar and the qualitative conclusions are identical.

By default, the plot() function provides a histogram of the bias-corrected  $R_H^2$  values. A similar plot for the uncorrected  $R_H^2$  values can be obtained using the R2\_H=TRUE argument in the plot() function call. Another useful plot option is Labels=TRUE, which adds the percentages of ICA values that fall within the different bins of the histogram. For example, a histogram of the  $R_H^2$  values with labels can be obtained using the following command:



**Considering a subset of the three surrogates** In the analysis above, a multivariate analysis with three surrogates were used. It is straightforward to consider only one or two of the available surrogates in the analysis by respecifying  $\Sigma$ . To conduct the analyses using all possible combinations of the available surrogates (i.e.,  $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_1 + S_2$ ,  $S_1 + S_3$ ,  $S_2 + S_3$ , and  $S_1 + S_2 + S_3$ ), the following commands can be used:

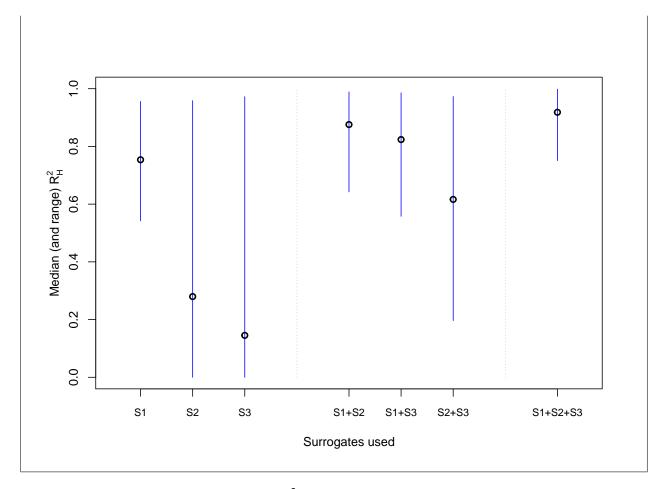
```
# S1 alone
> Sigma_T_S1 <- Sigma[c(1:4), c(1:4)]
> ICA_S1 <- ICA.ContCont.MultS(Sigma = Sigma_T_S1, N=15)
# S2 alone
> Sigma_T_S2 <- Sigma[c(1,2,5,6), c(1,2,5,6)]
> ICA_S2 <- ICA.ContCont.MultS(Sigma = Sigma_T_S2, N=15)
# S3 alone
> Sigma_T_S3 <- Sigma[c(1,2,7,8), c(1,2,7,8)]
> ICA_S3 <- ICA.ContCont.MultS(Sigma = Sigma_T_S3, N=15)</pre>
```

```
# S1, S2
> Sigma_T_S1S2 <- Sigma[c(1,2,3,4,5,6), c(1,2,3,4,5,6)]
> ICA_S1S2 <- ICA.ContCont.MultS(Sigma = Sigma_T_S1S2, N=15)
# S1, S3
> Sigma_T_S1S3 <- Sigma[c(1,2,3,4,7,8), c(1,2,3,4,7,8)]
> ICA_S1S3 <- ICA.ContCont.MultS(Sigma = Sigma_T_S1S3, N=15)
# S2, S3
> Sigma_T_S2S3 <- Sigma[c(1,2,5,6,7,8), c(1,2,5,6,7,8)]
> ICA_S2S3 <- ICA.ContCont.MultS(Sigma = Sigma_T_S2S3, N=15)
# S1, S2, S3
> ICA_S1S2S3 <- ICA.ContCont.MultS(Sigma = Sigma_T_S1S3, N=15)</pre>
```

The results of these analyses can be summarized in a plot that shows the medians (small circles) and the ranges (blue lines) of the  $R_H^2$  values in the different scenarios:

```
# Make empty plot field
> plot(x=c(.5:9.5), y=rep(0, times=10), col=0, ylab=" ", xaxt="no",
       xlab="Surrogates used", ylim=c(0, 1))
> mtext(expression(paste("Median (and range) ", R[H]<sup>2</sup>)), side=2, line = 2)
# Add results for S1
> segments(x0 = 1, x1 = 1, y0 = min(ICA_S1$R2_H),
    y1 = max(ICA_S1R2_H),
+
    col="blue", lwd=1); points(x=c(1), y=median(ICA_S1$R2_H), lwd=2)
+
# Add results for S2
> segments(x0 = 2, x1 = 2, y0 = min(ICA_S2$R2_H),
+
    y1 = max(ICA_S2\$R2_H),
    col="blue", lwd=1); points(x=c(2), y=median(ICA_S2$R2_H), lwd=2)
+
# Add results for S3
> segments(x0 = 3, x1 = 3, y0 = min(ICA_S3$R2_H),
    y1 = max(ICA_S3R2_H),
+
    col="blue", lwd=1); points(x=c(3), y=median(ICA_S3$R2_H), lwd=2)
+
# Add verticle grey line
> segments(x0 = 4, x1 = 4, y0=0, y1=1, col="grey", lty=3)
# Add results for S1 + S2
> segments(x0 = 5, x1 = 5, y0 = min(ICA_S1S2$R2_H),
    y1 = max(ICA_S1S2\$R2_H),
+
   col="blue", lwd=1); points(x=c(5), y=median(ICA_S1S2$R2_H), lwd=2)
+
# Add results for S1 + S3
```

```
> segments(x0 = 6, x1 = 6, y0 = min(ICA_S1S3$R2_H),
+ y1 = max(ICA_S1S3R2_H),
+ col="blue", lwd=1); points(x=c(6), y=median(ICA_S1S3$R2_H), lwd=2)
# Add results for S2 + S3
> segments(x0 = 7, x1 = 7, y0 = min(ICA_S2S3$R2_H),
+ y1 = max(ICA_S2S3R2_H),
  col="blue", lwd=1); points(x=c(7), y=median(ICA_S2S3$R2_H), lwd=2)
+
# Add verticle grey line
> segments(x0 = 8, x1 = 8, y0=0, y1=1, col="grey", lty=3)
# Add results for S1 + S2 + S3
> segments(x0 = 9, x1 = 9, y0 = min(ICA_S1S2S3$R2_H),
+ y1 = max(ICA_S1S2S3R2_H),
+ col="blue", lwd=1); points(x=c(9), y=median(ICA_S1S2S3$R2_H), lwd=2)
# Add labels X-axis
> axis(1, at=c(1, 2, 3, 5, 6, 7, 9), cex.axis=.8,
+ labels = c("S1", "S2", "S3", "S1+S2", "S1+S3", "S2+S3", "S1+S2+S3"))
# Generated output:
```

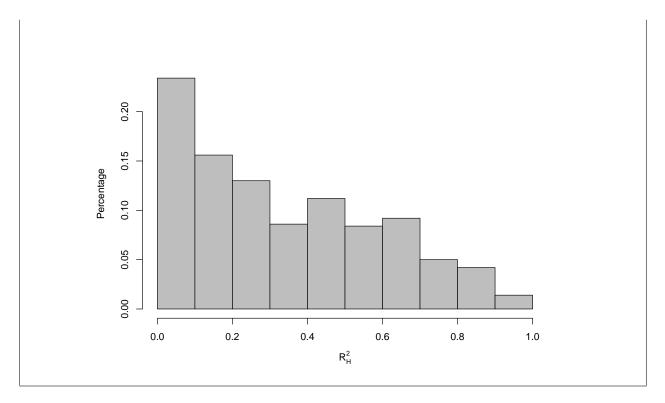


As can be seen, the ranges of the estimated  $R_H^2$  values were very wide in the univariate setting, and their median  $R_H^2$  relatively low. For example, in the univariate analysis in which  $S_2$  was used as a surrogate, the median  $R_H^2$  equalled 0.280 and its range was [0.001, 0.959]. These results can be obtained by using the following command:

```
> summary(ICA_S2)
# Generated output:
Function call:
ICA.ContCont.MultS(N = 15, Sigma = Sigma_T_S2)
```

# Uncorrected R2\_H results summary

Mean R2\_H: 0.3369 (0.2582) [min: 0.0000; max: 0.9587] Mode R2\_H: 0.0812 Quantiles of the distribution: 80% 20% 50% 90% 5% 10% 95%  $0.007002998 \ 0.022066935 \ 0.073900620 \ 0.279684511 \ 0.598672586 \ 0.703471548 \ 0.805695627$ # Bias-corrected R2\_H results summary Mean adjusted R2\_H: 0.2859 (0.2780) [min: 0.0000; max: 0.9555] Mode adjusted R2\_H: 0.0105 Quantiles of the distribution: 5% 10% 20% 50% 80% 90%  $-0.069381386 - 0.053158685 \quad 0.002662206 \quad 0.224275627 \quad 0.567801247 \quad 0.680661667$ 95% 0.790749137 # Request plot of R2H > plot(ICA\_S2, xlim=c(0,1), R2\_H = TRUE, Corr.R2\_H = FALSE) # Generated output:



The best prediction of  $\Delta T$  was obtained when all three surrogates were used, with median  $R_H^2 = 0.918$  and range [0.751, 0.999] (see output shown above). Notice that even though  $S_2$  and  $S_3$  had limited value as univariate surrogates, the use of these two surrogates led to a substantial increase in  $R_H^2$  when *considered jointly* with  $S_1$ . This shows that  $S_2$  and  $S_3$  contain useful information that is not captured by  $S_1$ , and it supports the claim that the use of multivariate surrogates can be a route to ameliorate the problems of finding a good surrogate.

#### 3 The multivariate adjusted association

The function AA.MultS in the *Surrogate* package can be used to compute the Adjusted Association (AA) in the <u>Multiple-Surrogate</u> setting. The multivariate adjusted association  $\gamma_{\Delta}^2$  is defined as the treatment-corrected squared multiple correlation between *T* and its best linear predictor based on the treatment-corrected  $S_1$ ,  $S_2$ , ..., and  $S_k$  (for details, see Van der Elst *et al.*, 2018). The AA.MultS function requires the following arguments:

- Sigma\_gamma= : the variance-covariance matrix of the residuals of regression models in which the true and surrogate endpoints are regressed on the treatment, referred to as Σ<sub>γ</sub>.
- N= : the number of patients in the dataset.

For the transPAT case study, the variance-covariance matrix of the residuals is:

 $\boldsymbol{\Sigma}_{\gamma} = \begin{pmatrix} 93.4608449102 & 0.0467089011 & -0.9736034172 & -0.0007668859 \\ 0.0467089011 & 0.0000311512 & -0.0003008816 & 0.0000000116 \\ -0.9736034172 & -0.0003008816 & 0.0327815216 & 0.0000857586 \\ -0.0007668859 & 0.0000000116 & 0.0000857586 & 0.0000003877 \end{pmatrix}$ 

Using the AA.MultS function, the multivariate adjusted association in which  $S_1$ ,  $S_2$  and  $S_3$  are considered can now be computed with the command:

```
# First define the Sigma_gamma matrix
> Sigma_gamma <- matrix(data = c(
93.4608449102, 4.670890e-02, -9.736034e-01, -7.668859e-04,
0.0467089011, 3.115116e-05, -3.008816e-04, 1.163247e-08,
-0.9736034172, -3.008816e-04, 3.278152e-02, 8.575864e-05,
-0.0007668859, 1.163247e-08, 8.575864e-05, 3.877270e-07
), nrow=4)
# Conduct the analysis
> AA_S1S2S3 <- AA.MultS(Sigma_gamma = Sigma_gamma, N = 15, Alpha = .05)</pre>
```

The results can be examined by applying the summary() function to the fitted AA\_S1S2S3 object:

```
> summary(AA_S1S2S3)
# Generated output
Function call:
AA.MultS(Sigma_gamma = Sigma_gamma, N = 15, Alpha = 0.05)
# Uncorrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
Multivariate AA Standard Error CI lower limit CI upper limit
               0.0618
        0.8862
                                0.7650
                                            1.0000
# Bias-corrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
 Adjusted multivariate AA Standard Error CI lower limit CI upper limit
                0.8552
                           0.0773
                                       0.7036
                                                    1.0000
```

The first part of the output of the summary function provides the estimated multivariate adjusted association and its 95% confidence interval, i.e., 0.886 [0.765, 1.000]. As was also the case with  $R_{H}^2$ , the second part

of the output provides the bias-corrected multivariate adjusted association, which was similar and equalled 0.885 [0.704, 1.000].

**Considering a subset of the available surrogates** In the above analysis, all three surrogates were used. It is straightforward to consider less than three surrogates by simply respecifying the appropriate  $\Sigma_{\gamma}$ . For example,  $\gamma_{\Delta}^2$  using  $S_1$  and  $S_3$  as surrogates can be obtained using the commands:

```
# Conduct the analysis
> Result <- AA.MultS(Sigma_gamma = Sigma_gamma[c(1,2,4), c(1,2,4)],</pre>
N = 15, Alpha = .05)
# Generated output:
> summary(Result)
Function call:
AA.MultS(Sigma_gamma = Sigma_gamma[c(1, 2, 4), c(1, 2, 4)], N = 15,
   Alpha = 0.05)
# Uncorrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
Multivariate AA Standard Error CI lower limit CI upper limit
         0.7663 0.1181
                                  0.5349
                                            0.9978
# Bias-corrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
       Adjusted multivariate AA Standard Error CI lower limit CI upper limit
                             0.1342
                                          0.4643
                                                       0.9905
                 0.7274
```

#### 4 Conclusion

In conclusion, the univariate analyses based on  $R_H^2$  and  $\gamma_{\Delta}^2$  indicated that no 'good' surrogate could be established for *T*. However, when all three surrogates were considered in the analysis, the  $R_H^2$  and  $\gamma_{\Delta}^2$  values were high. These results fully support the claim that the use of multivariate surrogates can be a useful strategy to identify 'good' surrogates.

## Part III An additional simulation study.

To further explore the impact of adding an extra surrogate on the obtained  $R_{H}^2$ , an additional simulation study was conducted where the focus is on bivariate setting  $S = (S_1, S_2)$ . A total of four scenarios were considered. These are detailed below.

1. Scenario 1: all identifiable correlations between the surrogates and the true endpoint, and between the surrogates themselves are low and equal 0.3. Assumed correlation structure:

|                 | $T_0$ | $T_1$ | $S_{10}$ | <i>S</i> <sub>12</sub> | $S_{20}$ | S <sub>21</sub> |
|-----------------|-------|-------|----------|------------------------|----------|-----------------|
| $T_0$           | 1.0   |       |          |                        |          |                 |
| $T_1$           | -     | 1.0   |          |                        |          |                 |
| $S_{10}$        | 0.3   | -     | 1.0      |                        |          |                 |
| $S_{11}$        | -     | 0.3   | -        | 1.0                    |          |                 |
| $S_{20}$        | 0.3   | -     | 0.3      | -                      | 1.0      |                 |
| S <sub>21</sub> | -     | 0.3   | -        | 0.3                    | -        | 1.0             |

Note. '-' refers to unidentifiable correlations for which no restrictions are set.

2. Scenario 2: same as scenario 1, but the identifiable correlations between  $S_1$  and T in both treatment conditions now equal 0.8. Assumed correlation structure:

|                 | $T_0$ | $T_1$ | $S_{10}$ | <i>S</i> <sub>12</sub> | S <sub>20</sub> | S <sub>21</sub> |
|-----------------|-------|-------|----------|------------------------|-----------------|-----------------|
| $T_0$           | 1.0   |       |          |                        |                 |                 |
| $T_1$           | -     | 1.0   |          |                        |                 |                 |
| $S_{10}$        | 0.8   | -     | 1.0      |                        |                 |                 |
| $S_{11}$        | -     | 0.8   | -        | 1.0                    |                 |                 |
| $S_{20}$        | 0.3   | -     | 0.3      | -                      | 1.0             |                 |
| S <sub>21</sub> | -     | 0.3   | -        | 0.3                    | -               | 1.0             |

3. Scenario 3: same as scenario 1, but the identifiable correlations between  $S_2$  and T in both treatment conditions now equal 0.8. Assumed correlation structure:

|          | $T_0$ | $T_1$ | $S_{10}$ | <i>S</i> <sub>12</sub> | S <sub>20</sub> | S <sub>21</sub> |
|----------|-------|-------|----------|------------------------|-----------------|-----------------|
| $T_0$    | 1.0   |       |          |                        |                 |                 |
| $T_1$    | -     | 1.0   |          |                        |                 |                 |
| $S_{10}$ | 0.3   | -     | 1.0      |                        |                 |                 |
| $S_{11}$ | -     | 0.3   | -        | 1.0                    |                 |                 |
| $S_{20}$ | 0.8   | -     | 0.3      | -                      | 1.0             |                 |
| $S_{21}$ | -     | 0.8   | -        | 0.3                    | -               | 1.0             |

4. Scenario 4: same as scenario 1, but the identifiable correlations between  $S_1$  and T and between  $S_2$  and T in both treatment conditions now equal 0.8. Assumed correlation structure:

|                 | $T_0$ | $T_1$ | $S_{10}$ | S <sub>12</sub> | S <sub>20</sub> | S <sub>21</sub> |
|-----------------|-------|-------|----------|-----------------|-----------------|-----------------|
| $T_0$           | 1.0   |       |          |                 |                 |                 |
| $T_1$           | -     | 1.0   |          |                 |                 |                 |
| $S_{10}$        | 0.8   | -     | 1.0      |                 |                 |                 |
| $S_{11}$        | -     | 0.8   | -        | 1.0             |                 |                 |
| $S_{20}$        | 0.8   | -     | 0.3      | -               | 1.0             |                 |
| S <sub>21</sub> | -     | 0.8   | -        | 0.3             | -               | 1.0             |

In the simulations, the impact of adding additional surrogates on  $R_H^2$  (in particular its range) was examined.  $R_H^2$  was estimated using the sensitivity-based approach that was proposed in Van der Elst *et al.* (2018). The function ICA.ContCont.MultS() of the *Surrogate* package (for details, see Section 2 of Part II of this Web Appendix) was used to conduct the analysis with M = 500 runs of the algorithm.

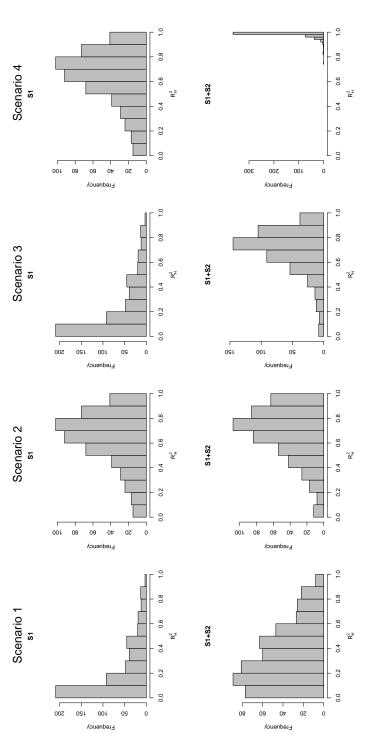
**Results** Figure 1 shows histograms of  $R_H^2$  using  $S_1$  alone (top panels) and using both  $S_1$  and  $S_2$  (bottom panels) in all four scenarios. Table 1 shows summary statistics of  $R_H^2$  in the different analyses.

In scenario 1, all identifiable correlations were low. As expected, most of the  $R_H^2$  values were low as well and ICA spanned nearly the entire unit interval in both the univariate and bivariate analyses.

In scenario 2,  $S_1$  had a relatively strongly correlation with T (i.e., r = 0.80) and  $S_2$  had a low correlation with T (i.e., r = 0.30). The results show that most of the obtained  $R_H^2$  values are relatively high in the analysis where  $S_1$  is used (see Figure 1, top panel, 2nd column), but the range of ICA is very large. When  $S_2$  is added in the analysis, the  $R_H^2$  is not substantially affected (see Figure 1, top panel, 2nd column). This result indicates that the addition of a new candidate surrogate that is not strongly correlated with T does not lead to a substantial reduction of the range of  $R_H^2$  (i.e., no reduction in uncertainty).

In scenario 3,  $S_1$  had a low correlation with T (i.e., r = 0.30) and  $S_2$  had a high correlation with T (i.e., r = 0.80). Here the results show that most of the  $R_H^2$  values are low in the analysis where  $S_1$  is used (see Figure 1, top panel, 3rd column) and ICA nearly spans the entire unit interval. Adding  $S_2$  as an additional surrogate substantially increases  $R_H^2$  (see Figure 1, top panel, 3rd column), but the range of ICA remains large and spans nearly the entire unit interval.

Finally, in Scenario 4, both  $S_1$  and  $S_2$  were relatively highly correlated with *T* (i.e., r = 0.80). The results show that  $R_H^2$  is high when  $S_1$  is considered alone, but the range of ICA is wide as well. Importantly, adding another candidate surrogate  $S_2$  which is relatively highly correlated to *T* leads to a strong reduction in the range of  $R_H^2$ . Indeed, all  $R_H^2$  are now at least 0.75, and thus it can be concluded that  $\Delta S$  is a relatively good surrogate for  $\Delta T$  in all realities that are compatible with the identifiable correlations.





| Scenario | Surrogates used | Mean  | Median | Sd    | Min   | Max   |
|----------|-----------------|-------|--------|-------|-------|-------|
| 1        | S1              | 0.226 | 0.139  | 0.230 | 0.000 | 0.957 |
|          | S1+S2           | 0.349 | 0.301  | 0.240 | 0.000 | 0.994 |
|          |                 |       |        |       |       |       |
| 2        | S1              | 0.622 | 0.669  | 0.226 | 0.000 | 0.996 |
|          | S1+S2           | 0.665 | 0.705  | 0.216 | 0.013 | 0.997 |
|          |                 |       |        |       |       |       |
| 3        | S1              | 0.226 | 0.139  | 0.230 | 0.000 | 0.957 |
|          | S1+S2           | 0.688 | 0.726  | 0.185 | 0.027 | 0.986 |
|          |                 |       |        |       |       |       |
| 4        | S1              | 0.622 | 0.669  | 0.226 | 0.000 | 0.996 |
|          | S1+S2           | 0.981 | 0.989  | 0.024 | 0.750 | 1.000 |
|          |                 |       |        |       |       |       |

Table 1: Simulation study results. Descriptives of  $R_H^2$  for the analyses where only  $S_1$  and both  $S_1$  and  $S_2$  were considered.

#### References

- Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2003). *Applied multiple regression/correlation analysis for the behavioral sciences. Third edition.* New Jersey: Lawrence Erlbaum Associates.
- Van der Elst, W., Alonso, A. A. A., Geys, H., Bijnens, L., Meyvisch, P., Sengupta, R., and Molenberghs, G. (2018). Univariate versus multivariate surrogate endpoints in the single-trial setting.
- Ruiz, V. E. *et al.* (2017). A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. *Nature Communications* **8**, 1–14.
- Yin, P., and Fan, X. (2001). Estimating *R*<sup>2</sup> shrinkage in multiple regression: A comparison of different analytical methods. *The Journal of Experimental Education*, 69, 203–224.