
Web Appendix to ‘Univariate versus multivariate surrogate
endpoints in the single-trial setting.’

Part I

Proof of Lemma’s 1 and 2.
Proof of Lemma 1. In the following Lemma 1 will be proven.

1. R2
H is invariant by bijective transformations of ∆T and ∆S

The result follows from the fact that the mutual information I (∆T, ∆S) is invariant by bijective transforma-
tions of ∆T and ∆S.

2. 0 ≤ R2
H ≤ 1

It is a direct consequence of R2
H = maxt

[
corr

(
∆T, t

′
∆S
)]2

.

3. R2
H = 0 if and only if σ∆Sk∆T = 0 for all r = 1, 2 . . . p

Given that Σ−1
∆S is positive-definite it follows from expression (4) in the manuscript that R2

H = 0 if and only
if Σ∆S∆T = 0. Moreover Σ∆S∆T = 0 if and only if σ∆Sr∆T = 0 for all r = 1, 2 . . . p.

4. R2
H = 1 if and only if there exists a deterministic relationship between ∆T and ∆S.

From R2
H = maxt

[
corr

(
∆T, t

′
∆S
)]2

it is clear that R2
H = 1 if and only if there exists a t∗.
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Proof of Lemma 2. In the following Lemma 2 will be proven.

Notice that for every vector t ∈ Rp there exists a t0 = (t, 0)′ ∈ Rp+1 so that corr
(

∆T, t
′
∆S
)
= corr

(
∆T, t

′
0∆S∗

)
.

Consequently,

R2
H = maxt∈Rp [corr (∆T, t′∆S)]2 = maxt0∈Rp+1 [corr (∆T, t′0∆S∗)]

2 ≤ maxt∗∈Rp+1 [corr (∆T, t′∗∆S∗)]
2 = R2

H∗
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Part II

Case study analysis using the R package
Surrogate

1 The dataset: the transPAT microbiome intervention study

Data from the transPAT experiment (Ruiz et al., 2017) are used to illustrate the multivariate surrogate eval-
uation methodology. TransPAT is an animal study that was conducted to evaluate the influence of an an-
tibiotic treatment on the immune system (Immunoglobulin A level, IgA level) and the microbiome of an
animal. The microbiome is composed of a wide variety of operational taxonomic units (OTUs), which
are essentially proxies for microbial species. The transPAT dataset contains information of N = 15 germ-
free mice that received cecal contents of a donor mouse. The cecal contents of the donor mouse was ei-
ther exposed (experimental treatment) or not exposed (control treatment) to a tylosin pulse. A total of
n = 7 and n = 8 mice received the experimental and the control treatments, respectively. The relative
abundance of a total of 67 OTUs was assessed at day 12 of the experiment. In the current analysis, it
will be evaluated whether the individual causal treatment effect on the relative abundance of one or more
of the 67 OTUs at day 12 of the experiment (∆S1, ∆S2, ..., ∆S67) is predictive for the individual causal
treatment effect on IgA level at day 20 of the experiment (∆T). The data are available on github (see
https://github.com/blaser-lab/Paper-Ruiz-2017).

2 The multivariate individual causal association (R2
H)

The function ICA.ContCont.MultS() in the Surrogate package allows for computing the individual causal
association (ICA) in the setting where both the true and surrogate endpoints are Continuous normally dis-
tributed variables, and where Multiple Surrogates are considered. This function computes the multivariate
individual causal association (R2

H) following the procedure that was detailed in Van der Elst et al. (2018).
The function requires the user to specify the following arguments:

• M= : the number of multivariate individual causal association (R2
H) values that have to be sampled by

the algorithm. Default M=500.

• N= : the number of patients/subjects in the dataset.

• Sigma= : the variance-covariance matrix Σ of the true and surrogates endpoints in both treatment
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groups (i.e., T0, T1, S10, S11, ..., Sp0, Sp1).

Σ =



σT0T0 σT0T1 σT0S10 σT0S11 σT0S20 σT0S21 · · · σT0Sp0 σT0Sp1

σT0T1 σT1T1 σT1S10 σT1S11 σT1S20 σT1S21 · · · σT1Sp0 σT1Sp1

σT0S10 σT1S11 σS10S10 σS10S11 σS10S20 σS10S21 · · · σS10Sp0 σS10Sp1

σT0S11 σT1S11 σS10S11 σS11S11 σS11S20 σS11S21 · · · σS11Sp0 σS11Sp1

σT0S20 σT1S20 σS10S20 σS11S20 σS20S20 σS20S21 · · · σS20Sp0 σS20Sp1

σT0S21 σT1S21 σS20S21 σS11S21 σS20S21 σS21S21 . . . σS21Sp0 σS21Sp1
...

...
...

...
...

...
. . .

...
...

σT0Sp0 σT1Sp0 σS10Sp0 σS11Sp0 σS20Sp0 σS21Sp0 . . . σSp0Sp0 σSp0Sp1

σT0Sp1 σT1Sp1 σS10Sp1 σS11Sp1 σS20Sp1 σS21Sp1 . . . σSp0Sp1 σSp1Sp1


. (1)

The unidentifiable covariances in Σ should be given the value NA.

• G= : a vector of values that should be considered for the unidentified correlations. Default G=seq(-1,
1, by=0.00001).

• Seed= : the seed to be used in the analysis (for reproducibility).

• Show.Progress= : a logical indicator that can be used to request visual feedback regarding the progress
of the algorithm in finding R2

H values. When Show.Progress=TRUE is used, 1% done..., 2% done..., etc
is shown in the R console when the function is running. This option is mainly useful when 4 or more
surrogates are being considered in the analysis, because finding positive definite Σ (which are needed
to compute R2

H) can take a very long time when the dimensionality of Σ is high (see Van der Elst et al.,
2018).

Identification of subset of good surrogates A hierarchical approach with forward selection was used to
identify the best set of surrogates. To this end, univariate analyses were conducted for each of the p = 67
candidate surrogates. The candidate univariate surrogate that had the highest median R2

H was retained. In
the second step, multivariate analyses were conducted that included the first identified candidate surrogate
combined with a second one (i.e., one of the p − 1 = 66 remaining OTUs). Again, for the 66 analyses
conducted, the bivariate surrogate that led to the highest median R2

H was retained. This procedure was
repeated until ∆S had a median R2

H ≥ 0.90. The so-obtained final vector of surrogates included S1 = OTU
44, S2 = OTU 1 and S3 = OTU 59, with variance-covariance matrix:

Σ =



176.7790691375 NA 0.0936263266 NA −1.5311587825 NA 0.0000404661 NA
NA 11.8330574635 NA −0.0002432784 NA −0.4853893940 NA −0.0018366108

0.0936263266 NA 0.0000621257 NA −0.0006507995 NA −0.0000002111 NA
NA −0.0002432784 NA 0.0000002061 NA 0.0000572090 NA 0.0000002735

−1.5311587825 NA −0.0006507995 NA 0.0238066268 NA −0.0000025912 NA
NA −0.4853893940 NA 0.0000572090 NA 0.0487158192 NA 0.0002031266

0.0000404661 NA −0.0000002111 NA −0.0000025912 NA 0.0000000065 NA
NA −0.0018366108 NA 0.0000002735 NA 0.0002031266 NA 0.0000008971


.

The following code can be used to request a surrogacy analysis for the transPAT case study, using all three
surrogates and the default options of the ICA.ContCont.MultS() function (runtime about 2 hours):
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# First define the Sigma matrix for T and S_1 = OTU 44, S_2 = OTU 1 and S_3 = OTU 59
> Sigma <- matrix(data=c(
1.767791e+02, NA, 9.362633e-02, NA, -1.531159e+00, NA, 4.046615e-05, NA,
NA, 11.8330574635, NA, -2.432784e-04, NA, -4.853894e-01, NA, -1.836611e-03,
9.362633e-02, NA, 6.212567e-05, NA, -6.507995e-04, NA, -2.111307e-07, NA,
NA, -0.0002432784, NA, 2.060978e-07, NA, 5.720905e-05, NA, 2.734616e-07,
-1.531159e+00, NA, -6.507995e-04, NA, 2.380663e-02, NA, -2.591242e-06, NA,
NA, -0.4853893940, NA, 5.720905e-05, NA, 4.871582e-02, NA, 2.031266e-04,
4.046615e-05, NA, -2.111307e-07, NA, -2.591242e-06, NA, 6.545024e-09, NA,
NA, -0.0018366108, NA, 2.734616e-07, NA, 2.031266e-04, NA, 8.970605e-07
), nrow=8)

# Conduct the analysis
> ICA_S1S2S3 <- ICA.ContCont.MultS(Sigma = Sigma, N=15)

The fitted object ICA_S1S2S3 of class ICA.ContCont.MultS contains the results. The names() function can
be applied to the fitted object to obtain a list of the components in this object:

> names(ICA_S1S2S3)

# Generated output:

"R2_H" "Corr.R2_H" "Lower.Dig.Corrs.Sigma" "Call"

These components contain the following information:

• R2_H= : the R2
H values, computed as detailed in Van der Elst et al. (2018).

• Corr.R2_H= : the R2
H values correspond to the coefficient of determination of a multiple regression

model in which ∆T is regressed on ∆S1, ∆S2, ..., and ∆Sk. As a consequence, R2
H can never decrease

when additional surrogates are added to the existing ones. One could argue that this property of R2
H is

less desirable, because a more parsimonious model (i.e., a model that uses less surrogates) may be pre-
ferred over a less parsimonious model (i.e., a model that uses more surrogates) if both models explain
about the same amount of variance in ∆T. In addition, the sample coefficient of determination of a
regression model is a positively biased estimate of the population coefficient of determination (Cohen
et al., 2003). This bias is small when only a small number of surrogates is used and when the sample
size is large, but it becomes more substantial when these conditions are not fulfilled. Several proposals
have been made to correct for this bias (Yin and Fan, 2001). The often-used Wherry’s equation makes

the correction 1−
(
1− R2

H
) N − 1

N − K− 1
, with N = the sample size and K the number of surrogates. The

Corr.R2_H component contains the R2
H that use the latter correction.

• Lower.Dig.Corrs.Sigma= : A data.frame that contains the matrix of the identifiable and unidentifi-
able correlations in Σ (lower diagonal elements) that were used to compute R2_H and Corr.R2_H in
each of the runs. This information is useful to e.g., identify the subset of R2

H values that are in line
with certain biologically plausible constraints. For example, one can select the subset of R2

H for which
r(T0, T1) < 0 based on this information.
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• Call= : the function call.

For example, the first 10 bias-corrected R2
H values (contained in the Corr.R2_H component of the fitted

ICA_S1S2S3 object) can be obtained using the command:

> ICA_S1S2S3$Corr.R2_H[1:10]

# Generated output:
[1] 0.8290846 0.7874177 0.8902235 0.9099270 0.8971906
0.8983485 0.9026660 0.8296100 0.8840793 0.8849449

The results can be explored by applying the summary() and plot() functions to the fitted object:

> summary(ICA_S1S2S3)

# Generated output:

Function call:

ICA.ContCont.MultS(M = M, N = 15, Sigma = Sigma, Show.Progress = TRUE)

# Uncorrected R2_H results summary
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Mean R2_H: 0.9097 (0.0481) [min: 0.7508; max: 0.9986]
Mode R2_H: 0.9344

Quantiles of the distribution:

5% 10% 20% 50% 80% 90% 95%
0.8240214 0.8402335 0.8666881 0.9182989 0.9521223 0.9672257 0.9812187

# Bias-corrected R2_H results summary
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Mean adjusted R2_H: 0.8851 (0.0612) [min: 0.6829; max: 0.9982]
Mode adjusted R2_H: 0.9165

Quantiles of the distribution:

5% 10% 20% 50% 80% 90% 95%
0.7760273 0.7966608 0.8303303 0.8960168 0.9390648 0.9582873 0.9760965
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> plot(ICA_S1S2S3, xlim=c(0,1))

# Generated output:
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The first part of the output of the summary() function shows descriptives of the R2
H values. It can be seen

that the mean, median, and mode of R2
H are high with values 0.910, 0.918, and 0.934, respectively. Further,

the impact of the unverifiable assumptions on the results is small, i.e., the range of R2
H values is quite

narrow and equals [0.751, 0.999]. The second part of the output of the summary() function provides the
same descriptives for the bias-corrected R2

H . As can be seen, the bias-corrected R2
H values are slightly below

those of R2
H (as expected), but the results for both metrics are very similar and the qualitative conclusions

are identical.

By default, the plot() function provides a histogram of the bias-corrected R2
H values. A similar plot for the

uncorrected R2
H values can be obtained using the R2_H=TRUE argument in the plot() function call. Another

useful plot option is Labels=TRUE, which adds the percentages of ICA values that fall within the different
bins of the histogram. For example, a histogram of the R2

H values with labels can be obtained using the
following command:
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> plot(ICA_S1S2S3, R2_H=TRUE, Labels = TRUE, ylim=c(0, 0.35))

# Generated output:
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Considering a subset of the three surrogates In the analysis above, a multivariate analysis with three
surrogates were used. It is straightforward to consider only one or two of the available surrogates in the
analysis by respecifying Σ. To conduct the analyses using all possible combinations of the available surro-
gates (i.e., S1, S2, S3, S1 + S2, S1 + S3, S2 + S3, and S1 + S2 + S3), the following commands can be used:

# S1 alone
> Sigma_T_S1 <- Sigma[c(1:4), c(1:4)]
> ICA_S1 <- ICA.ContCont.MultS(Sigma = Sigma_T_S1, N=15)

# S2 alone
> Sigma_T_S2 <- Sigma[c(1,2,5,6), c(1,2,5,6)]
> ICA_S2 <- ICA.ContCont.MultS(Sigma = Sigma_T_S2, N=15)

# S3 alone
> Sigma_T_S3 <- Sigma[c(1,2,7,8), c(1,2,7,8)]
> ICA_S3 <- ICA.ContCont.MultS(Sigma = Sigma_T_S3, N=15)
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# S1, S2
> Sigma_T_S1S2 <- Sigma[c(1,2,3,4,5,6), c(1,2,3,4,5,6)]
> ICA_S1S2 <- ICA.ContCont.MultS(Sigma = Sigma_T_S1S2, N=15)

# S1, S3
> Sigma_T_S1S3 <- Sigma[c(1,2,3,4,7,8), c(1,2,3,4,7,8)]
> ICA_S1S3 <- ICA.ContCont.MultS(Sigma = Sigma_T_S1S3, N=15)

# S2, S3
> Sigma_T_S2S3 <- Sigma[c(1,2,5,6,7,8), c(1,2,5,6,7,8)]
> ICA_S2S3 <- ICA.ContCont.MultS(Sigma = Sigma_T_S2S3, N=15)

# S1, S2, S3
> ICA_S1S2S3 <- ICA.ContCont.MultS(Sigma = Sigma, N=15)

The results of these analyses can be summarized in a plot that shows the medians (small circles) and the
ranges (blue lines) of the R2

H values in the different scenarios:

# Make empty plot field
> plot(x=c(.5:9.5), y=rep(0, times=10), col=0, ylab=" ", xaxt="no",
+ xlab="Surrogates used", ylim=c(0, 1))
> mtext(expression(paste("Median (and range) ", R[H]^2)), side=2, line = 2)

# Add results for S1
> segments(x0 = 1, x1 = 1, y0 = min(ICA_S1$R2_H),
+ y1 = max(ICA_S1$R2_H),
+ col="blue", lwd=1); points(x=c(1), y=median(ICA_S1$R2_H), lwd=2)
# Add results for S2
> segments(x0 = 2, x1 = 2, y0 = min(ICA_S2$R2_H),
+ y1 = max(ICA_S2$R2_H),
+ col="blue", lwd=1); points(x=c(2), y=median(ICA_S2$R2_H), lwd=2)
# Add results for S3
> segments(x0 = 3, x1 = 3, y0 = min(ICA_S3$R2_H),
+ y1 = max(ICA_S3$R2_H),
+ col="blue", lwd=1); points(x=c(3), y=median(ICA_S3$R2_H), lwd=2)

# Add verticle grey line
> segments(x0 = 4, x1 = 4, y0=0, y1=1, col="grey", lty=3)

# Add results for S1 + S2
> segments(x0 = 5, x1 = 5, y0 = min(ICA_S1S2$R2_H),
+ y1 = max(ICA_S1S2$R2_H),
+ col="blue", lwd=1); points(x=c(5), y=median(ICA_S1S2$R2_H), lwd=2)
# Add results for S1 + S3
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> segments(x0 = 6, x1 = 6, y0 = min(ICA_S1S3$R2_H),
+ y1 = max(ICA_S1S3$R2_H),
+ col="blue", lwd=1); points(x=c(6), y=median(ICA_S1S3$R2_H), lwd=2)
# Add results for S2 + S3
> segments(x0 = 7, x1 = 7, y0 = min(ICA_S2S3$R2_H),
+ y1 = max(ICA_S2S3$R2_H),
+ col="blue", lwd=1); points(x=c(7), y=median(ICA_S2S3$R2_H), lwd=2)

# Add verticle grey line
> segments(x0 = 8, x1 = 8, y0=0, y1=1, col="grey", lty=3)

# Add results for S1 + S2 + S3
> segments(x0 = 9, x1 = 9, y0 = min(ICA_S1S2S3$R2_H),
+ y1 = max(ICA_S1S2S3$R2_H),
+ col="blue", lwd=1); points(x=c(9), y=median(ICA_S1S2S3$R2_H), lwd=2)
# Add labels X-axis
> axis(1, at=c(1, 2, 3, 5, 6, 7, 9), cex.axis=.8,
+ labels = c("S1", "S2", "S3", "S1+S2", "S1+S3", "S2+S3", "S1+S2+S3"))

# Generated output:
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As can be seen, the ranges of the estimated R2
H values were very wide in the univariate setting, and their

median R2
H relatively low. For example, in the univariate analysis in which S2 was used as a surrogate,

the median R2
H equalled 0.280 and its range was [0.001, 0.959]. These results can be obtained by using the

following command:

> summary(ICA_S2)

# Generated output:

Function call:

ICA.ContCont.MultS(N = 15, Sigma = Sigma_T_S2)

# Uncorrected R2_H results summary
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#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Mean R2_H: 0.3369 (0.2582) [min: 0.0000; max: 0.9587]
Mode R2_H: 0.0812

Quantiles of the distribution:

5% 10% 20% 50% 80% 90% 95%
0.007002998 0.022066935 0.073900620 0.279684511 0.598672586 0.703471548 0.805695627

# Bias-corrected R2_H results summary
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Mean adjusted R2_H: 0.2859 (0.2780) [min: 0.0000; max: 0.9555]
Mode adjusted R2_H: 0.0105

Quantiles of the distribution:

5% 10% 20% 50% 80% 90%
-0.069381386 -0.053158685 0.002662206 0.224275627 0.567801247 0.680661667

95%
0.790749137

# Request plot of R2H
> plot(ICA_S2, xlim=c(0,1), R2_H = TRUE, Corr.R2_H = FALSE)

# Generated output:
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The best prediction of ∆T was obtained when all three surrogates were used, with median R2
H = 0.918

and range [0.751, 0.999] (see output shown above). Notice that even though S2 and S3 had limited value
as univariate surrogates, the use of these two surrogates led to a substantial increase in R2

H when considered
jointly with S1. This shows that S2 and S3 contain useful information that is not captured by S1, and it
supports the claim that the use of multivariate surrogates can be a route to ameliorate the problems of
finding a good surrogate.

3 The multivariate adjusted association

The function AA.MultS in the Surrogate package can be used to compute the Adjusted Association (AA)
in the Multiple-Surrogate setting. The multivariate adjusted association γ2

∆ is defined as the treatment-
corrected squared multiple correlation between T and its best linear predictor based on the treatment-
corrected S1, S2, ..., and Sk (for details, see Van der Elst et al., 2018). The AA.MultS function requires the
following arguments:

• Sigma_gamma= : the variance-covariance matrix of the residuals of regression models in which the true
and surrogate endpoints are regressed on the treatment, referred to as Σγ.

• N= : the number of patients in the dataset.

For the transPAT case study, the variance-covariance matrix of the residuals is:
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Σγ =


93.4608449102 0.0467089011 −0.9736034172 −0.0007668859
0.0467089011 0.0000311512 −0.0003008816 0.0000000116
−0.9736034172 −0.0003008816 0.0327815216 0.0000857586
−0.0007668859 0.0000000116 0.0000857586 0.0000003877

.

Using the AA.MultS function, the multivariate adjusted association in which S1, S2 and S3 are considered
can now be computed with the command:

# First define the Sigma_gamma matrix
> Sigma_gamma <- matrix(data = c(
93.4608449102, 4.670890e-02, -9.736034e-01, -7.668859e-04,
0.0467089011, 3.115116e-05, -3.008816e-04, 1.163247e-08,
-0.9736034172, -3.008816e-04, 3.278152e-02, 8.575864e-05,
-0.0007668859, 1.163247e-08, 8.575864e-05, 3.877270e-07
), nrow=4)

# Conduct the analysis
> AA_S1S2S3 <- AA.MultS(Sigma_gamma = Sigma_gamma, N = 15, Alpha = .05)

The results can be examined by applying the summary() function to the fitted AA_S1S2S3 object:

> summary(AA_S1S2S3)

# Generated output

Function call:

AA.MultS(Sigma_gamma = Sigma_gamma, N = 15, Alpha = 0.05)

# Uncorrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Multivariate AA Standard Error CI lower limit CI upper limit
0.8862 0.0618 0.7650 1.0000

# Bias-corrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Adjusted multivariate AA Standard Error CI lower limit CI upper limit
0.8552 0.0773 0.7036 1.0000

The first part of the output of the summary function provides the estimated multivariate adjusted associa-
tion and its 95% confidence interval, i.e., 0.886 [0.765, 1.000]. As was also the case with R2

H , the second part
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of the output provides the bias-corrected multivariate adjusted association, which was similar and equalled
0.885 [0.704, 1.000].

Considering a subset of the available surrogates In the above analysis, all three surrogates were used.
It is straightforward to consider less than three surrogates by simply respecifying the appropriate Σγ. For
example, γ2

∆ using S1 and S3 as surrogates can be obtained using the commands:

# Conduct the analysis
> Result <- AA.MultS(Sigma_gamma = Sigma_gamma[c(1,2,4), c(1,2,4)],
N = 15, Alpha = .05)

# Generated output:
> summary(Result)

Function call:

AA.MultS(Sigma_gamma = Sigma_gamma[c(1, 2, 4), c(1, 2, 4)], N = 15,
Alpha = 0.05)

# Uncorrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Multivariate AA Standard Error CI lower limit CI upper limit
0.7663 0.1181 0.5349 0.9978

# Bias-corrected multivariate Adjusted Association
# Fisher Z 95%-based confidence interval (N = 15)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Adjusted multivariate AA Standard Error CI lower limit CI upper limit
0.7274 0.1342 0.4643 0.9905

4 Conclusion

In conclusion, the univariate analyses based on R2
H and γ2

∆ indicated that no ‘good’ surrogate could be
established for T. However, when all three surrogates were considered in the analysis, the R2

H and γ2
∆

values were high. These results fully support the claim that the use of multivariate surrogates can be a
useful strategy to identify ‘good’ surrogates.
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Part III

An additional simulation study.

To further explore the impact of adding an extra surrogate on the obtained R2
H , an additional simulation

study was conducted where the focus is on bivariate setting S = (S1, S2). A total of four scenarios were
considered. These are detailed below.

1. Scenario 1: all identifiable correlations between the surrogates and the true endpoint, and between the
surrogates themselves are low and equal 0.3. Assumed correlation structure:

T0 T1 S10 S12 S20 S21
T0 1.0
T1 - 1.0
S10 0.3 - 1.0
S11 - 0.3 - 1.0
S20 0.3 - 0.3 - 1.0
S21 - 0.3 - 0.3 - 1.0

Note. ‘-’ refers to unidentifiable correlations for which no restrictions are set.

2. Scenario 2: same as scenario 1, but the identifiable correlations between S1 and T in both treatment
conditions now equal 0.8. Assumed correlation structure:

T0 T1 S10 S12 S20 S21
T0 1.0
T1 - 1.0
S10 0.8 - 1.0
S11 - 0.8 - 1.0
S20 0.3 - 0.3 - 1.0
S21 - 0.3 - 0.3 - 1.0

3. Scenario 3: same as scenario 1, but the identifiable correlations between S2 and T in both treatment
conditions now equal 0.8. Assumed correlation structure:

T0 T1 S10 S12 S20 S21
T0 1.0
T1 - 1.0
S10 0.3 - 1.0
S11 - 0.3 - 1.0
S20 0.8 - 0.3 - 1.0
S21 - 0.8 - 0.3 - 1.0

4. Scenario 4: same as scenario 1, but the identifiable correlations between S1 and T and between S2 and
T in both treatment conditions now equal 0.8. Assumed correlation structure:
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T0 T1 S10 S12 S20 S21
T0 1.0
T1 - 1.0
S10 0.8 - 1.0
S11 - 0.8 - 1.0
S20 0.8 - 0.3 - 1.0
S21 - 0.8 - 0.3 - 1.0

In the simulations, the impact of adding additional surrogates on R2
H (in particular its range) was examined.

R2
H was estimated using the sensitivity-based approach that was proposed in Van der Elst et al. (2018). The

function ICA.ContCont.MultS() of the Surrogate package (for details, see Section 2 of Part II of this Web
Appendix) was used to conduct the analysis with M = 500 runs of the algorithm.

Results Figure 1 shows histograms of R2
H using S1 alone (top panels) and using both S1 and S2 (bottom

panels) in all four scenarios. Table 1 shows summary statistics of R2
H in the different analyses.

In scenario 1, all identifiable correlations were low. As expected, most of the R2
H values were low as well

and ICA spanned nearly the entire unit interval in both the univariate and bivariate analyses.

In scenario 2, S1 had a relatively strongly correlation with T (i.e., r = 0.80) and S2 had a low correlation with
T (i.e., r = 0.30). The results show that most of the obtained R2

H values are relatively high in the analysis
where S1 is used (see Figure 1, top panel, 2nd column), but the range of ICA is very large. When S2 is
added in the analysis, the R2

H is not substantially affected (see Figure 1, top panel, 2nd column). This result
indicates that the addition of a new candidate surrogate that is not strongly correlated with T does not lead
to a substantial reduction of the range of R2

H (i.e., no reduction in uncertainty).

In scenario 3, S1 had a low correlation with T (i.e., r = 0.30) and S2 had a high correlation with T (i.e.,
r = 0.80). Here the results show that most of the R2

H values are low in the analysis where S1 is used (see
Figure 1, top panel, 3rd column) and ICA nearly spans the entire unit interval. Adding S2 as an additional
surrogate substantially increases R2

H (see Figure 1, top panel, 3rd column), but the range of ICA remains
large and spans nearly the entire unit interval.

Finally, in Scenario 4, both S1 and S2 were relatively highly correlated with T (i.e., r = 0.80). The results
show that R2

H is high when S1 is considered alone, but the range of ICA is wide as well. Importantly, adding
another candidate surrogate S2 which is relatively highly correlated to T leads to a strong reduction in the
range of R2

H . Indeed, all R2
H are now at least 0.75, and thus it can be concluded that ∆S is a relatively good

surrogate for ∆T in all realities that are compatible with the identifiable correlations.
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Table 1: Simulation study results. Descriptives of R2
H for the analyses where only S1 and both S1 and S2

were considered.

Scenario Surrogates used Mean Median Sd Min Max
1 S1 0.226 0.139 0.230 0.000 0.957

S1+S2 0.349 0.301 0.240 0.000 0.994

2 S1 0.622 0.669 0.226 0.000 0.996
S1+S2 0.665 0.705 0.216 0.013 0.997

3 S1 0.226 0.139 0.230 0.000 0.957
S1+S2 0.688 0.726 0.185 0.027 0.986

4 S1 0.622 0.669 0.226 0.000 0.996
S1+S2 0.981 0.989 0.024 0.750 1.000
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