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Study areas 

Two regions are involved in the present study: CNC (35°–42.5°N, 110°–117.5°E) and SSA 

(2.75°–19.75°N, 17.75°W–51.75°E) (Figure S1). 

CNC refers to a zone comprising Beijing city, Tianjin city, Hebei province, Shanxi 

province, and Inner Mongolia autonomous region, and is characterized by cold temperate, 

temperate, and warm temperate zones from north to south, and as a transitionary zone 

through semi-humid, semi-arid, and arid climate areas, in turn, from southeast to northwest, 

occasioning large climate differences (Guo et al. 2013). CNC is positioned in the central part 

of eastern China and at the northern limit of the East Asian summer monsoon region (Ren, Lu, 

and Xiao 2004). 

For SSA, studies over a part or the entire area have examined the rainfall variability in 

various seasons and on different time scales (Bader 2003; Paeth et al. 2017). Additionally, the 

drought mechanisms have been examined over the region, owing to the dependency of the 

region’s economy on agricultural activities (Wang et al. 2014). SSA’s summer rainfall is 

organized through the West African monsoon, featuring large-amplitude, multi-decadal 

variability throughout the 20th century (Dong and Sutton 2015). The area is a semi-arid 

transition zone between the arid to hyper-arid Sahara and humid tropical Africa (Brooks 

2004). 

Correlation coefficient significance test 

The significance of correlation coefficients after removing the auto-correlation by 

determining the effective degrees of freedom is tested. The effective degrees of freedom is 

applied to show the significance level as follows: 

∗ = ( )( ( ) ( ))( ) ( )  , 

where N, N*, rxx(d ) and ryy(d ) represent the sample size, effective degrees of freedom and 



autocorrelation of each SST modes and the NAO and precipitation time series, respectively, 

taking into account the low-frequency variability of the time series (Bretherton et al. 1999; Li 

et al. 2016). The Student’s t-test is applied for the significance of the correlations using the 

formula 

= √ − 2 × √1 −  

where R represents the correlation coefficient between the two time series. 

The covariance between the leading precipitation variability of SSA and CNC is assessed 

and presented in Table S2. Significant correlation coefficients between PCs of CNC and SSA 

are found. 
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Figure S1. The distribution of climatic precipitation (average 1951−2010, units: mm/month) 

over (a) SSA and (b) CNC. 

   



 

 

Figure S2. Annual cycle of precipitation in SSA and CNC using different datasets. 

   



 

 

Figure S3. Time series of PCs of CNC (blue line) and SSA (black line). The red and dashed 

red lines indicate the references and extremes values, respectively. Panels (a) to (d) are the 

PC1s, PC2s, PC3s, and PC4s of the precipitation variability, respectively.  

 



 

Figure S4. Time series of the decadal precipitation anomalies over SSA and CNC, as well as 

the (a) AMO, (b) NAO, and (c) PDO indices. 



 

Figure S5. Shifts in PCs of SSA via cumulative sum chart. The deviation of the blue lines 

from the references and located between the limit lines (red) show the origins of the shifts 

observed. Significant shifts are shown as red points. Panels (a) to (d) correspond to PC1 to 

PC4, respectively. 

   



 

 

Figure S6. The same as Figure S5, but for CNC. 

   



Table S1. Station data in CNC. 

No STN_ID STN_NAME Longitude (°E) Latitude (°N) 
1 CHM00054916 YANZHOU 116.850 35.567 
2 CHM00054823 JINAN 117.050 36.600 
3 CHM00054725 HUIMIN 117.533 37.500 
4 CHM00054511 CHM00054511 116.283 39.933 
5 HUIMIN, CH ANYANG 114.400 36.050 
6 CHM00053772 TAIYUAN 112.550 37.783 
7 CHM00053463 HOHHOT 111.683 40.817 

 

Table S2. Correlation coefficients between PCs of SSA and CNC. The values in bold indicate 

the correlation coefficient passing statistically significant test at the 0.05 level. 

 PC1 PC2 PC3 PC4 
Corr (CNC, SSA) −0.65  −0.03  0.34 0.23  

 

 

Table S3. Shift years identified in the decadal variability of precipitation. The first and 

second rows for each region (SSA and CNC) indicate positive (+) and negative (−) shifts, 

respectively. 

 PC1 PC2 PC3 PC4 

SSA + 1997 1978, 1992 1979, 2003  1963, 1991, 2009 

− 1986 1990, 2002 1973, 1990 1973, 1998 

CNC + 1983 1983, 1999 1983 1994 

− 1993 1979, 1989 1974 1985, 1997,  2005 

 

 


