SUPPLEMENT TO: “A NEW CLASS OF CHANGE POINT TEST
STATISTICS OF RENYI TYPE”

LAJOS HORVATH, CURTIS MILLER, AND GREGORY RICE

ABSTRACT. This supplement contains the proofs of the results in the main paper, as well as
multivariate generalizations of Theorem 2.1. Generalizations to Rényi type statistics defined
with asymmetric trimming are also developed. We provide the details of the consistency of

the variance estimators defined in Section 5 of the main paper.

APPENDIX A. PROOFS OF MAIN RESULTS

A.1. Proof of Theorem 2.1. First we note that under H
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Lemma A.1. If Assumptions 2.1-2.2 hold, then we have
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and
T t T/2 T
max g es] < max E es| + E es| + g es| .
tp<t<T/2 tp<t<T/2
s=t+1 s=1 s=1 s=T/2+1
By Assumption 2.2 we have
t t
max g es] < max E es —oWri(t)|+ 0 max |Wry(u)l
tp <t<T/2 | 4= tp <t<T/2 | 4= tp<u<T/2

and
t

> ey —oWra(t)

s=1

max
1<t<T/2

— 0p(T").

By the scale transformation of the Wiener process

sup |Wri(z)] 272 qup |W (u)].

0<z<T 0<u<l1

Thus we get that

t T/2
— 1/2 _ 1/2
tng}J{“/z ;es Op(T"*) and ;es Op(T7).
Similarly,
T
> e =0p(1"?)
s=T/2+1
Thus we conclude
T
1
= o =O0p(T71/?
T 2| 2o, | 7 OrT)

and therefore (A.2) follows Assumption 2.1. Similar arguments can be used to prove (A.3).

O

Lemma A.2. [If Assumptions 2.1-2.2 hold, then we have

¢ T
1/2 1 1/2 1 D
t ma; — t max —_— e — omax(&q,&9),
( T tTStS?]{"/Q t ;es T T/2<t<T—tp|T — S;1 * ) <£1 52)

where & and & are defined in Theorem 2.1.
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Proof. Tt follows from Assumption 2.2 that

2]

1
A4 £1/2 sup  —— E es —oWri(x
( ) T tr<a<T/2 LxJ £ 71( )

1
=0Op 1/ sup —a"
(T tr<a<t/2 2]

= Op(ty %) = 0p(1)
by Assumption 2.1 and similarly

(A.5) tlT/ > sup

1
_— =op(1).
T/2<e<T—tr T — U?J P< )

T
Z es — oWro(T — x)

s=lz|+1

Since the Wiener processes Wy, and Wy are independent for all 7', the asymptotic inde-
pendence in Lemma A.2 follows from (A.4) and (A.5). By symmetry, we need to show only

that

D

1
1/2 2o

t sup
" <oty |2

WT71($)

where ¢ is defined above Theorem 2.1. By the scale transformation of the Wiener process
W(y) '

Y

D

2 2

1
—Wri(ytr)

Wra (I) ytr

1
sup —
tp<ae<T/2 T

sup
1<y<T/(2tr)

sup
1<y<T/(2tr)

where W denotes a Wiener process. Since by Assumption 2.1, T/ty — oo, elementary

arguments give that

w W w
sup ﬂ‘ — sup ’ﬂ' a.s. and sup ‘ ) 2 £,
1<y<T/(2tr) Y 1<y<oo Yy 1<y<oo Yy
completing the proof of the lemma. U
Proof of Theorem 2.1. It follows immediately from Lemmas A.1 and A.2. O

A.2. Proof of Theorems 3.1, 3.2, and 3.3. Proof of Theorem 3.1. It follows from Gérecki
et al. (2016) that
Tl/QHBT = Boll = Op(1),
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where B3, denotes the common coefficient vector under Hj. Using the definition of the
residuals é; we get

i 1 T d 1 T 1 1 T T A
It follows from Assumptions 2.1, 2.2 and 3.1 that

t T

1 1
tTSIPSa]zEtT ; ;XS B T——t s:t+1X8 = OP(1)7
and therefore
1o R !
1/2 - s - _ 1/2y _
02, (1% 7 o m) 0 B = onlr/m ) = ntt)
OJ
Proof of Theorem 3.2. Goérecki et al. (2016) proved that
(A.6) TV2)|67 — 6| = Op(1).
Hence using a two term Taylor expansion with Assumption 3.4 we conclude
£ 1< 1
7 tTSIY{ISa%(—tT ; Z s T—1t ©
s=1 s=t+1
th/? 1 ¢ 1 1= 0
e [ S e (1 e
1 ! 1
- = h(xs,60) | (80— 67)|+0p (372 ) .
T—tszt;ae (s °)> (60 = 6r)\+ P(T T
Using again Assumption 3.4 with (A.6) we get that
1~ 0 1 @ !
1/2 - - _ = —0.)|=
(S0 3 o) oot
The result now follows from Theorem 2.1. 0

Proof of Theorem 3.3.
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It follows from Assumptions 3.1 and 3.6 that for all § € ©,

(A7) % > my(0) = Emg(6), a.s.

By the mean value theorem for all ,60" € ©, we have that for some v € (6,6'),

(A8) ma(6) — my(0')] = \ﬁmm

_p < o

where according to Assumption 3.6 EM; < co. Putting together (A.7) and (A.8) and using

the assumption that © is compact, we get that

— 0, a.s.,

which yields that

Or — 0y, a.s.

Again by the mean value theorem we have that

1 <& X 1 <& . 1<~ 0
T ;mt(eT) — 7 ;mt(é’o) = (0 — QO)f ; %mt(VT)v

where vy satisfies g — 6| < |07 — 6p|. By Assumption 3.6, we have that

ligm(é)—wl?gm(@) a.s
T 00 " ag O T

Hence by Assumption 3.7, we get that

(A.9) 07 — 6o = Op(T~Y/?).

Applying Assumptions 2.1, 3.7 and (A.9), we get that
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(A.10) t;ﬂ max

tp<t<T—tp

%Z(mt(e}) — mt(eo))| = op(1),

T

1 A
T3 > (my(0r) — mq(60))

s=t+1

(A.11) t;/Z max

tr<t<T—tp

= 0p<1).

Indeed by the mean value theorem, we have that

with v, € (A7, 6p), and (A.9) and (A.10) imply that

= OP(1>7

max
tp<t<T—tr

1~ 0
P g
s=1

which establishes (A.10). (A.11) follows similarly. Now the result follows from (A.10),

(A.11), Assumption 3.7, and Theorem 2.1.

A.3. Proof of Theorems 4.1-4.3. Since the change in mean occurs at time t* we have

that
t + T t " T
(A.12) T2 (Z X.o— ZX) =712 (Z €= = Ze) — zT,
s=1 s=1 s=1 s=1
where
T3P2HT —t9)A if 1<t <t
T =
T324(T —)A if " <t<T
and

1 ¢ R 1 ¢ R
1/2 12
(Al?)) tT (z E 1 X, — m Xs) = tT (; E 1 €s — ﬁ E 65) — U1,
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where
T
t;/QT SA 1<t
(A14) Uy, = b N
tl/QtA, if t*<t<T.

Proof of Theorem 4.1. It follows from (A.12) that

t T

t
Zes_fzes

s=1 s=1

max |z p| — max T7-'/2
1<t<T 1<t<T

t

" T
;GS+T;GS )

and therefore (4.1) from the main text and Condition 4.1 imply (4.2) of the main paper.

< Ap < max |z.p| + max T2
1<t<T 1<t<T

Similarly,
t T
- IE] P
tr SHST b7 [ve] I 2 T—t o
s=1 s=t+1
1o 1 «
1/2 1/2
< < - -
Stp Drs tTglglga:ﬁ{—t tp <t<T—tr tr t Zes T—t e
s=1 s=t+1

Hence (4.3) of the main paper follows from Theorem 2.1 and Condition 4.2. g

Lemma A.3. If (4.4) from the main paper holds, then we have that

1/v
(A.15) R e Zes Op((log T)/")
and
1 d 1/v
- s=t*

Furthermore, for all x > 0 we have

t*
1 1/2 Cx
(A.17) P {t* maX e 7T 1 E es > A } e

s=t
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and

t

1 —1/2 Cx
: . § < =
(A.18) P {t*—i—r%%i%T ra——— es > A } <=

s=t*

with some constant c,.

Proof. With e =ep_511,1 < s <t"and é; =0,s > t* we have

t* t

1 1
max ——————— E €s| = max —-= E és| < max E 3
1<t<er (1% —t + 1)1/2 - | 1<e<er ¢1/2 - I T 1<u<logt* eu— 1<t<eu tl/2 B
S= S=
< max e V2 max E €| .
1<u<log t* ev—1<t<et

By the the maximal inequality of Billingsley (1968) (cf. also Corollary 3.1 of Méricz et al.

v
) < 0161“7/2

with some constant ¢;. Hence Markov’s inequality yields for all x > 0 that

o7/2 18t t v e
>xp < — e " E max e < =logT
Y 1 Z eu—lgtgeu Z s - qv g

u=0 s=1

(1982)) we have

t

>

s=1

(A.19) E < max

e“_1§t§6“

t*

>

s=t

1
P{m e

with ¢y = ¢1€”/2, completing the proof of (A.15). Similar arguments yield (A.16).
Following the proof of (A.15) we have

t*

D e

s=t

1

max ——— < max e~ max
I<t<t—At* —t+1

" log A<u<logt* ev—1<t<eu

3

Combining (A.19) with Markov’s inequality we have

= logt* t v
- E e " E max E €
eu—1 <t<eu

u=log A s=1

Z € ul//2 - xl/14*1//2

u=log A

+*

o>

s=t

‘t

1
P max ————
1<t<t*—At* —t+1

Hence the proof of (A.17) is complete and similar arguments give (A.18). O
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Proof of Theorem 4.2. We can assume without loss of generality that A > 0. It follows from

Lemma A.3 that

t*

>

s=t

T

>

s=1

-t

+ T3/2

(A.20) max (t* — t)71/? {

1<t<t*

} = Op((log T)'/7).

We note that there is a constant ¢; > 0 such that z 7 — 2.7 > ¢ (t* —H)AT12if 1 <t < 1,
and therefore for all ¢, we have
(A.21) limsup max (TY%(zp — zpe 1) + co(t™ — 1)?(log T)Y7) = —o0,

T—00 1<t<t*—ty

where t; = (logT)/A?. Next we observe that
t ;T ¢ e T
PIRRE DIR D BEEE D BRE
s=1 s=1 s=1 s=1
t ;T t* o T
-, (Sx g - (S pye) o

s=1 s=1 s=1

>—$}:O

T—o00 1<t<t*—t,

(A.22) lim P{ max

Hence it follows from (A.20)—(A.22) that t*A% — oo implies

t " T t* + T
;Xs_fs_les ;XS_T;XS

T—soo 1<t<t*—t;

lim sup P { max

for all z > 0.

Let to1 = C'/A% We note that by (A.17) for all C' > 2

t*

>

s=t

1 _
lim P{ max —— > atcll/2}: 0.
a—co tr—t1<t<to, t* —t + 1 ’

It is easy to see that for all @ and ¢; > 0

lim sup max (até@(t* —t) — 1 (t" — t)A) <0,

Csoo  t*—t1<t<t*—tc
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if A = O(1). (Similar argument can be used when A — o0.) Similarly to (A.22) we have
that

(A.23)

lim liminf P max

t " T
C—oo0 T—o0 {t*tlﬁtﬁt*tcyl SX_:XS - TZ_:XS
t* o T
T et (ZX "ZX> (ZX —;Z)ﬂ) }:1'

Thus we obtain that
;L
Sl
s=1

satisfies |ty — t*|I{tr < t*} = Op(A~2?). Similarly to (A.24) we have

T
t —t* 5
(A.24) t*H<1ta<XT o { Z | T e Zes } = Op((logT)'7").
s=t* s=1
Elementary arguments give that
(A.25) s —ar > (E—t)AT 32 if "<t <T.

Let to = (T(log T)/(At*))?. Tt follows from (A.25) that
(A.26) limsup max (TY2(z0 — ze1) + c3(t — t*)/*(log T)?) = —c0

Tooo t*Hta<t<T

for all ¢3 > 0. Putting together (A.24) and (A.26) we conclude

t " T t* o T
;XS—T;X ;Xs—?;)(s >—x}:0

for all z > 0. Let tco = (T/(At*))?. Using (A.18) we conclude that for all C' > 0

> oztl/Q} 0.

—-1/2
T— 00 t*+to<t<T

limsupP{ max T '/?

t

>

s=t*

1
lim lim sup P{ max

=00  T_yng t*+to o <t<t*+to t —t*
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Elementary arguments give that for C sufficiently large

| v, SN
hirnfolipt*f@?g@ (2t = zee) + alt =)t 57) 0.

Similarly to (A.22) and (A.23) we have

t " T
ZXS_?;XS

s=1

t t a £
- t*+tcgl§)ét*+tz (Z Xs = T ;Xs> B (; X = T ;XS) }: L

lim liminf P max
Cs00 T—00 b p <E<t*+to

s=1 s=1

s=1

. T \?
S n > *) )
b — | [{Er > "} = Op ((At*) )

t ;T
Xs— = X

Thus we conclude

Hence

= max

C—oo T—oo t* —to,1 <t<t*+tc.o

lim liminf P { max

}:1.

t* + T
= - €s+_ €5+T1/22* =1

for all C' > 0. It follows from Assumption 2.2 and the stationarity of e;, —00 < s < 0o that

Also,

t* . T

Zes — %Zes — Tl/zzt,T
1

S= s=1

lim P { max

T—00 t*—to <t<t*+tco

for all C' >0
t* 1 t T
t*_trglagtét* Ztes =0Op (K) and t*gtrggitw Z; es| = Op (At*) )

Using again Assumption 2.2 and ¢* /T — 0 we conclude

1 (& &
\/t_*<265—f263> a oN,
s=1

s=1

where A/ denotes a standard normal random variable. The result in Theorem 4.2(i) is now

provemn, sice

LT 1y
Je \ar T A ‘
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We note that

¢ T
. 1 | s
TlglgoP{DT = sup <—¥ § et 3 E es +tp |Ut,T|>} =1,

tr<t<T—tr s=1 s=t+1

where v, r is defined in A.14. We write

tp<t<T—tr t

t T
1 1 _
sup (—— d etz D e +tT1/2|vt,T> — A = max{Gr,1, Gra},
=1

where

and

1< R
GT72 = sup (—g es + T——t Z €s + t;l/QUt7T> ,

tr<t<T—tr s=1 s=t+1

with 0, r = |v | — tlT/Q\A]. It follows from the proof of Lemma A.1 that t;/ZGT,l = tlT/2GT73 +

op(1), where

.
tr<t<t |

t
1 —1/2_
Grsz = sup (—; E es—f-tTl/QUt,T) .

The assumptions of Theorem 4.2(ii) imply that

12 A
Burl = 0 (TT"> —o(1),
1/2

and therefore tlT/QGT,g = 1, maxy<i<tr —% 22:1 es +op(1). Using the proof of Theorem 2.1

max
tr<t<t*

we obtain that

t
1
t1T/2 max —¥2652>U sup W(u),
s=1

tr<t<tr 0<u<1

where W (u) is a standard Wiener process. Also, by Theorem 2.1, we have that
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t2 sup (——Z i Z >:0p(1),

<t <ot

s:t+1
and
1 < 1
A27 t1/2 su —= P es | = Op(1).
( ) 2t*§t§1’131*tT t Szl r-t 5;1 ot

Since v, p < 0 for all ¢, we have that

(A.28) t1/2 sup (——Zes Z es +1~ 1/27)tT> = op(1).

tr<t<2t s=t+1

Again due to the assumptions of Theorem 4.2(ii) we have that supy.<;<p ;. U7 — —00 as

T — oo, and therefore by (A.27) we have

t T
1 1
1571/2 sup (—; E es + T g €s + tlT/QvtT) i> —00,

2t* <t<T—tr s—1 s=t+1

as 1" — oo. Hence

t T
1 1
P {t;/QGT72 = sup t;«/Q (—g E €s + T——t E es + t;/QUt7T) } =1.

ety s=1 s=t+1
It now follows from (A.28) that tl/ 2G’T,2 = op(1), from which the result follows. O

Proof of Theorem 4.3. 1t follows from the definition of the residuals in equation (3.1) of the

main text that

t* T
1 R 1 .
Pl 26
s=1 s=t*+1
* T * T T T
1 1 1 A 1 A
=% s TP g Z s+< s) (/8(1)_/8T>_<T_t* Z Xs) (B2) — Br)
s= s=t*+1 s=1 s=t*+1
and
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by Theorem 3.1. Using Assumption 3.1 one can verify that

£ T VE m)

By = Tﬁ(l) + T

,3(2)+OP(T T

Hence Assumption 3.1(ii) yields

" T T T
1 . 1 N
TlT/Q (t_* sz> (Bay — Br) — (T e Z XS) (B2 — Br)
s=1 s=t*+1

t1/2 {Xo By — BT) _ ig(ﬁ@) — ﬁT)} (1+o0p(1)),

so the result follows from Assumption 4.1(ii). O

APPENDIX B. MULTIVARIATE GENERALIZATION OF THEOREM 2.1

Consider a stationary sequence of random vectors X; € R? that satisfies which

(Bl) Xt:’,l;—i—Et, 1§t§T7

where Fe; = 0, and

Y= nthO ECOV (; £;, Ze]> ,

which we assume is well defined and invertible. We let || - || denote the Euclidean norm in

R?. We consider the asymptotic properties of D7 defined by

1) ’ 1)

DE=  sup xJZ sz 51 L%JZX zx ,

rsesTtr j=lel+1 j=le)+1

i.e. Dr is the square root of the trimmed maximally selected quadratic form based the

difference between the averages of X;.

Assumption B.1. t7 = oo and tr/T — 0, as T — oc.
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In order to establish the limit distribution of Dy under Assumption B.1, we require a rate
in the weak convergence of the partial sum process of the €;’s, which we quantify with the

following assumption:

Assumption B.2. There are two independent sequences of standard d—dimensional Wiener

processes {Wr1(x),0 <z <T/2} and {Wra(z),0 <z <T/2} such that

]

(B.2) 133%(/23@ D e = SVPWr(x)|| = Op(1)
- s=1
and
T
. —K _ y1/2 . _
(B.3) e (T =) _%:Hes SYVEW (T — )| = Op(1)

with some 0 < k < 1/2.

Theorem B.1. Under these assumptions, we have that
t%r/2DT B max (&, &2),
where &1, & are independent and each have the same distribution as
¢2 sup W),
0<z<1

where W (z) is a standard d-dimensional Brownian motion.

B.1. Proof of Theorem B.1. Evidently under (B.1), the statistic Dy does not depend on p,

and hence we may assume without loss of generality that Dy is defined by

1 1 r : 1 1 r
D2 = sup — Y g gi| TN — ) g €;
T <a<roi \ 2] ; 7T~ | j:%ﬂ ! Ed ; TT— |z j:%ﬂ ’
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It follows then that

(B.4)
& 1 ! : 1 & 1 .
sup — ) Ej— g | T a2 s €i
tr<e<T—tr \ [Z] ; b T a] j%—&-l ’ [z] ; bl j%J:Jrl ]
= maX(VTJ, VT’Q)
where
& 1 r : R 1 -

Vi1 = sup T o €j D & T €|, and

tr<a<t/a \ 2] ; © T el j=%J:+1 ] L] ; b T lel j:%J:H ]

|z T T L] T

1 1 L1 1
VT’QI sup m;ej—T_—m Z €; by EZEj_T——m,_Z €j

T/2<z<T—tr =241

Lemma B.1. If Assumptions B.1 and B.2 hold, then we have

1 [z] B 1 lz]
(B.5) trVry = tr tTgsa?ngﬂ m ; g | = 1 m ; gj | +op(1)
and
1 T T » 1 T
(B.6) trVpa=tr T/2§qu§pT—tT T 2] j:§+1 gl X T_—MFEH g; | +op(1).

-
Proof. Let Vi, = supy, <,<7/2 (LTIJ Z}gl sj) »-t (ﬁ Z]LZJI €j>. It follows that

1 T A
(i 2 o) (WZ)‘

\Vra— V5[ <2 sup

tr<z<T/2 j=|z]+1
-
- 1 XT: AT XT: .
tr<a<t/2| \ T — Ed j=[z]+1 ! T — |z j=|z]+1 ’
== 2E1 + EQ.

The Cauchy-Schwarz inequality implies that
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L)
1
B7)  E<[5 My sw Z |l e
tr<a<T)?2 Ly 1 R K R
L)
<=t sup €|l sup ,
=", s 7y LZ i, e 572 Z e
Where || - ||, denotes the operator norm of a matrix. We first aim to bound the second term

on the right hand side of the last line. We have for this term that

1 a 2 a
sup —Zsj < — sup Zr-:j.
tTSJJST/Q T - LxJ j:LZJ+1 tTSmST/Q j:LIJ+1
By the triangle inequality it follows that
T lz] T/2 T
sup Z € sup Zsj Zej + Z Eill-
tr<e<T/2||; 7)) tT<x<T/2 = i=Tja
Again using the triangle inequality, we obtain that
Ed ]
sup ZEJ sup Zsj SVAPWoro(z) ||+ sup ||V Wopo(2)|.
tr<a<T/2 tp<a<T/2 tr<a<T/2
By Assumption B.1,
Ed
sup Zé’j — EI/QWT’Q(ZL‘) = Op(TH),
tr<a<7/2|| ;5
and by the scale transformation of the Brownian motion,
sup || SV Wo(x)||= Op(T?).
tTSIST/Q
It follows similarly from Assumption B.1 that
T/2 T
ZEJ Op(T"?), and Z g;||= Op(T"?),
J=T/2+1
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= Op(T~%?). We now turn to bounding the

and therefore sup;, < <7/ xJ Z; 2] +1EJ
third term on the last line of (B.7). We have for this term by applying Assumption B.1, the

triangle inequality, and the scale transformation of the Brownian motion that

] =]
sup gill < sup — €; — EI/QWTQ x)||[+ sup 21/2WT2
tr<ostpo|| 2] & Z ’ tTgxgm Ed ; ! (@) tr<ost/2 7] (@)
]
1 1 Wra(y)
< — sup e — YV2Woo(z)||[+ max IR RAELLIL 2N
tr " tr<a<ry2 [2]" ; ’ r2() 1<y<T/(2tr) ¢}/ y

1 1 _
:Op (ﬁ—i_ﬁ) OP( 1/2).

tr t

It now follows that t7E; = Op((t7/T)"?) = op(1). One may obtain by similar means that
trEy = op(1), from which (B.5) follows. The proof of (B.6) follows similar lines, and so we

omit the details.

Lemma B.2. If Assumptions B.1 and B.2 hold, then we have

=] T =]
max( tTffpr(mZ%) < JZEJ)

B (T—lm 3 €j> El(T—ltxJ 3 €j>) 5 o max(&;, &),

T/2<a<T—tp j=|a)+1 j=lz]+1

where & and & are defined in Theorem B.1.

Proof. We first aim to show that

[z T 1 [z]
tTiﬁé’T/z( Z) (LwJZs])

1/2 T 1/2
—  sup (E—WTl(x)> 21<27WT71($))‘:OP(1),

(B8)  tr

tr<a<T/2
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and

1 T T 1 1 T
(B.9) tr T/2<Sa}l<%tT<T_ 2] Z sj> P (T— 2] Z €j>

j=|z]+1

1/2 T 1/2
— sup (Z WT2($)> Z_1<ETWT,2($)>':OP(1)-

T/2<x<T—tp

Towards establishing (B.8), we note that the left hand side is bounded above by

|z T L] 1/2 T 1/2
(1) = (e -(Grween) = (o)

which by the triangle inequality is less than or equal to

21/2 T
(S (59

lz] T 1/2
(ﬁZs) ( Zej E WT1( )>|:1G1+G2-

J=1

tr sup
tr<z<T/2

tr sup
tr<z<T/2

+ir sup

tp<a<T/2

For the first summand we have by the Cauchy-Schwarz inequality that

tp sup
tr<ax<T/2

1 & L
(B8 Byme) = (m2€j>|

21/2

LJZg] R 7(‘75)

]
sup g
tr<osrpo|| 2] & Z ’

<tr||X7lop  sup
tr<a<T/2

It now follows as in the proof of Lemma B.1 that

= Op(ty "), and  sup Op(t _1/2),

Zsy
tT<ar;<T/2

sup
tp<z<T/2
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from which we obtain that G; = Op(t';_l/ ) = op(1). A parallel argument shows that
G9 = op(1), which implies (B.8), and by the same argument one can establish (B.9). Now

we aim to show that

21/2 T 21/2 D
tr sup | —Wrpi(z)| S 7—Wri(z) | = &, T — .
tr<a<t/2\ 7] Ed

By simple matrix algebra and the scale transformation of the Brownian motion, we have

that

21/2 T . 21/2
t su —Wri(x X —Wor(z
’ tTngpT/Q |z] 7.1(7) 2] 71(2)

2
W
=ty sup —T’l(x)
typ<az<T/2 |z
2
Wri(t
— ¢ max T,1(T?J)
1<y<T/(2tr) try
2 2
B Wri(y)| b Woa(y)
= max - - )
1<y<T/(2tr) Y 1<yoo Yy

as T — oo. A simple calculation shows that {W;(y)/y :y € [1,00)} 2 {Wo.1(1/y) 1y €

[1,00)}, and so we have that

-
21/2 21/2
tr sup (—WTl(J?)) »! (—WTl(x)> = &1

tr<e<t/2\ 7] |7

A similar argument gives that

T
21/2 21/2
tT sup (—WT,Q(JZ)) 2_1 (—WTQ(ZL‘)) 2) 52,

T/2<a<T—tr |z]

where & and & are independent, which proves the result.

Proof of Theorem B.1. It follows immediately from Lemmas B.1 and B.2. ([l
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APPENDIX C. ASYMMETRIC TRIMMING
One can obtain similar results as Theorem 2.1 in the case when Dr is defined with asymmetric
trimming.
The asymptotic distribution of tlT/ *Dr is established by means of the following, somewhat

more general, result. Let sp be a sequence satisfying the following assumption.

Assumption C.1. sy — oo and sp/T — o0 as T — 0.

Let
(C.1) ro = min(tr, sr)
and define
. rr . T_T .
(€2 M = =

The limit distribution will be expressed in terms of the random variable

(C.3) {= sup [W(u),

0<u<l1

where {WW(u),0 < u < 1} denotes a Wiener process.

Theorem C.1. If Hy, the conditions of Theorem 2.1, Assumption C.1 hold, then, asT — oo,

we have
i’ RN 1 d D / /
T 1/2 1/2
——  max |- Xy — —— Xs| — max ,7Y
O tp<t<T—sr |t ; ST ¢ = s (776,77 6),

where &1,& are independent and each have the same distribution as & defined in (C.3).

We can also formulate our results in terms of more generally weighted CUSUM processes.

Let

1 LT 1 Tu] &
o —T T*l/?
Fr(r) = ;T Ty sup u(l —u) Z X, — T ;Xs ,

tT/TS’U,Sl—ST/T
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where 7 satisfies 1/2 < 7 < co. The limit distribution of Fr(7) will be given in terms of the

distribution of the random variable

(C.4) E(r) = sup u" W (u)].

0<u<l

We note that by the law of iterated logarithm at zero for the Wiener process, the random

variable £(7) is finite a.s. for all 1/2 < 7 < c0.

Theorem C.2. If Hy and Assumptions B.1-C.1 hold, and 1/2 < T < oo, then, as T — oo,

we have

Fr(r) B max(y] 6(r), 7 2e(r)),

where &1(T),&(T) are independent and they have the same distribution as &(T).

We can also formulate our results in terms of more generally weighted CUSUM processes.

Let

[Tu| T
I, T—1/2
Fr(r)=-T"r su u(l —wu)) E X5 — EXS,
LI SR

where 7 satisfies 1/2 < 7 < co. The limit distribution of Fr(7) will be given in terms of the

distribution of the random variable

(C.5) E(1) = sup u” MW (u)|.

0<u<1

We note that by the law of iterated logarithm at zero for the Wiener process, the random

variable £(7) is finite a.s. for all 1/2 < 7 < c0.

Theorem C.3. If Hy and Assumptions B.1-C.1 hold, and 1/2 < 7 < oo, then, as T — oo,

we have

Fr(r) B max(y] 6(r), v e(r)),

where & (1), &(T) are independent and they have the same distribution as ().
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To prove Theorem C.3, we write under H, that

|Tu] T
C.6 sup u(l —u)) X, — — max(Ur., Ur,
( ) tT/Tgugl_tT/T Z ; 1 2)
where
[Tu) T
_ | Tu
Uri1=  sup w(l —w))™ " e, — — esl

o tT/TSusuz( ( ) ; T ;

and
[Tu] T

Urs = sup (w(l—wu))™" Z LTU Z

1/2<u<l—s7/T =1 o—1

Lemma C.1. If Assumptions B.1-B.2 hold, and 1/2 < T < oo, then we have that

tp/T<u<1/2

[Tu]
(C.7) T_Tt;_l/zUTJ =T "ty Y2 sup (u(l —u))™" Z es| +op(1)
tr/T<u<1/2 |
and
T
(C.8) T U= sup (u(l—w)T| D e +op(l).
1/2<u<l—sp/T s=|Tu)+1
Proof. Let
[Tu]
U = sup  (u(l —u)) es| —Ural,

o tT/TSusuz Z o

then we get
LTU . . 1
Uria < sup  (u(l-— Z <27 Zes sup  u .

tp/T<u<1/2

We showed in the proof of Lemma B.1 that

(C.9) z: = Op(T"?)

and therefore

Op(Tl/z(tT/T)liT), if 1<7<
Uria =

Op(T"?), if 1/2<7<1.

23
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Since by Assumption B.1 we have
T 2TV (1 ) T)T = (tp)T)Y? =0, if 1< 7 < o0

and

T ATV = (4T 0, if 1/2<7 <1

implying

T_Tt;_l/QUT’Ll = Op(]_).

Hence (C.7) is proven and the same arguments give (C.8).

Lemma C.2. If Assumptions B.1, B.2 and 1/2 < 7 < oo hold and
(ClO) ET/ZfT — 0Q,

then we have that

Proof. By Assumption B.2 we have

t;71/2 sup a7

tr<e<tr

= Op(l)tFI/2 sup z"7 =op(1).

trp<a<tp

Z es —oWr ()
s=1

By the scale transformation of the Wiener process we have

T—1/2 -7 —T
tp % sup @ TT|Wra(a)] sup y T [W(y)l,

tr<z<tr 1<y<tr/tr

D

where W is a Wiener process. It is easy to see that as T' — oo

sup  y T |W(y)| —  sup yT[W(y)| as. and sup aT|W(x)| 2 &(7),

1<y<tr/tr 1<y<oo 1<y<oo

completing the proof of the lemma.
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Lemma C.3. We assume that Assumptions B.1-B.2 are satisfied and 1/2 < 7 < oo. If
(C.10) holds,

(C]_l) t_T/T—>O, tT/gT — 0 and §T/T—>0,

then we have

T—1/2 [Tu] 12 [Tu]
C.12 sup w(l —u))™ " es| = L sup w T es| +op(1
( ) 1" tT/TSUSl/Q( ( >) ; 1 tp/T<u<tr/T ; ( )
and
[Tu]
(C.13) T sup (w1 —w) T Z es
1/2<u<l—tp/T par
T
= T_Tt;_l/2 sup (1—u)"" Z es| +op(1).
17§T/T<u§178T/T SZLTUJ+1
Proof. Tt follows from Lemma C.2 that
[Tu]
—T T—1/2 —T s T—
T sup  (u(l—w) Y e = Opl(tr/Er) ) = 0p(1)
tT/TS'uSl/Q s=1
and by the mean value theorem
|Tu] [Tu]
T’Tt;_I/2 sup ‘(u(l —u)) " — u’T‘ Z es| = O(l)T’Tt;_l/2 sup w7 Z €s
tT/TSUSfT/T s—1 tT/TSUSZT/T s—1
[Tu]
<Oi) Tt sup wTT Z es
tr/T<u<tr/T s—1

= Op(l).

The result in (C.13) can be proven along the lines of that of (C.12) and therefore the proof

is omitted. O
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Lemma C.4. If Assumptions B.1-B.2, (C.11) and (C.10) hold, then we have that

[Tu) T
T sup wT es|, T T2 sup (1—u)"" es
( T tT/TS’quT/T Szl T 1-57/T<u<l—sp/T Z

B omax(§1(7), (7)),

where &1(7) and & () are defined in Theorem C.3.

Proof. 1t follows from Assumption B.2 that

[T
T sup w7 Zes =77 sup 2 To|Wra (%) + op(1)
tT/Tgung/T s—1 tr<x<tr
and
T
T sup (1—u)" Z es
1-57/T<u<l—sp/T s=|Tu|+1
T—1/2 -
=t sup (T —x) "o|Wra(z)|
T—s5p<x<T—sr
= OP(l).

The asymptotic independence now follows from the independence of the Wiener processes

and the asymptotic distribution is an immediate consequence of Lemma C.2. 0

Proof of Theorem C.3. The result is an immediate consequence of Lemmas C.1-C.4. O

APPENDIX D. ESTIMATION OF THE LONG RUN VARIANCE: PROOF OF THEOREMS 5.1

AND CONSISTENCY OF ESTIMATORS DEFINED IN (5.4)

In this section we provide justification of the Theorem 5.1, and establish the consistency of
the estimators defined in (5.4). We begin with Theorem 5.1.

Proof of Theorem 5.1. Elementary arguments show that under Hy we have

T i -
~ o 2 1 €. 1 2 1
(D.1) Té%, = ; e? —te; — (T —t)ér_,, with & = - ; e, and ép_; = - S;I es.
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The approximations in Assumption B.2 with the Darling—Erdés (1956) yields

2
_ 1
(B2 S e = e (ﬁ 2 ) = Op(loglogT)
== == s=1
and
(D.3) nax, (T —t)e5_,| = Op(loglog T).

By the ergodic theorem,

1
(D.4) TZ@? — o° a.s.,

completing the proof of (5.1). Observing that (D.1) holds true under H4 when t = t*, we
get immediately (5.2) from (D.2)—(D.4). O

We now turn to (5.4) from the main paper, in which we use the following assumption:

Assumption D.1. The sequence e;—00 < s < 00 is a Bernoulli shift, i.e. there is measurable
function f such that e; = f(es,65-1,...), where g,, —00 < s < oo are independent and

identically distributed random variables in some measurable space. In addition,

FEey =0, Eleg|” < oo with some v > 2,

and
1 _ :
(E |esm — e5]")"" = O(m™) with some ~ > 1,
where em = f(€s,65-1, s Esmm» Exmos—m—1 Enms—m—2, - - -) and &; ;, are independent and

identically distributed copies of gq.

Theorem D.1. If Assumption D.1 holds with v > 4 moments, and Assumptions 5.1, 5.2
hold, then the estimator 67, defined by (5.4) satisfies (5.1) and (5.2).

Lemma D.1. Suppose Assumption D.1 is satisfied with v > 4, and Assumptions 5.1, 5.2
hold.
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(i) If Hy holds, then we have

1sier Tl— 1 ;eg = ee| = op(l)
and
T-1 ¢ = )
max 2 K (ﬁ) 77 ; €s€s+e — Yei| = op(l).
(ii) If Ha holds, then we have
1<, .
T Z e; — Jeur| = op(1)
s=1
and
T-1 ’ | T )
; K <E) T——E 321 €sCstt — Vetr| = 0P(1)~

Proof. First we note that Assumption B.2 and (4.4) hold under the conditions of the Lemmas
(cf. Aue et al. (2014)). Under Hy we have for all 0 </ <t <T —/{and T

(D.5)
T—¢ t—4 t—4 t

(T — 5)%,15 = Z 6363+4 — ét Z Cst¢ — ét Z €Cg + (t — E)é? — ét Z €s+2
s=1 s=1 s=1 s=t—l+1

t T—t T—t
~ - < < ~2
— Er_y E es +leer_y — ep_y E €s — Ep_y E espe + (T —0—t+1)éq_,
s=t—{(+1 s=t+1 s=t+1
Tt

= E €s€si¢+ Peg1+ ...+ Deto-
s=1

(We used }; = 0.) We have similar expressions for 1 <t < fand T — £ <t <T.
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By the maximal inequality of Méricz et al. (1982) we have for all = > 0 that

1 t t
P<{ max —— E e zy < P{ max e D2 max E es| >
eL1<t<T t1/2 1<i<log T ei-1<t<es
s={+1 s=0+1
log T t v
<z E e~ DP2E max g €
- ei—1<t<es
i=1 - s=(+1
logT
< 7 E :67(171)1//261611//2
i=1

< cox " 1ogT,

with some constants ¢; and co. Hence, there is constant ¢z such that for all £ and T

t

D e

s=l+1

(D.6) E max L

1/
1<t<T t1/2 < c3(logT)™".

We showed that Assumption B.2 yields

1/2
(D.7) max. t1/2 Zes Op((loglogT)™~).
Using (D.7) we conclude
-1
s ) Kt/ Zw

t

D,

s=1

max TZ K(¢/h)

— Op((loglog 7)) " K (¢/h)

1

= Op(h(log T)"/"(loglog T)"?),

1
max —-—
— 1<t<T t1/2

1 -/
_/Z s+4
t

2 e

s=0+1

/\
I /\

N

1
max —-=
r+1<t<T t1/2

~
Il

since by Assumption 5.1 and (D.6) we have via Markov’s inequality

t

2

T-1 1
Z K ﬁ/ £+1<t<T t1/2
(=1 s=0+1

es| = Op(h(log T)Y7).
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Thus we have

T-1
(D.8) max > K(E/h)|pesi| = Op(h(log T)""(loglog T)'/2).
=
Similar arguments give
T-1
(D.9) max K(0/h)|pesil = Op(h(log )" (loglog T)"/?), i=2,4,5,7,8
=1
and
T-1
(D.10) max 2 K(/h)|pesi| = Op(hloglogT), i=3,6,9.

It follows from (D.5) and (D.8)—(D.10) that

~

T—¢

E €s€syr — Vet
=1

Following the arguments leading to (D.11) one can verify that

D11 ST K

1

_ h 1/v 1/2
T Jhax =0Op (T(logT) (loglogT') :

o~
Il

-1 Tt
. h 1/p 1/2
(D.12) ;K (/h) jggixé ;esesH — el = Op <T(logT) (loglogT)
and
T T—¢ b
Al = v 1/5 1/2
(D.13) ZlK b/h) = “n;gtﬁT Zlesew Yue| = Op (T(logT) (loglog T) )

The result of Lemma D.1(i) is an immediate consequence of (D.11)—(D.13).

The same arguments give the proof of Lemma D.1(ii). 0

Proof of Theorem D.1. The assumptions of the Theorem are stronger than those in Theorem

1 of Liu and Wu (2010),

T
%;e?—FQZK (%) ﬁzeseﬁgiaz

Hence (5.1) and (5.1) follow immediately from Lemma D.1. O
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