SUPPLEMENTARY MATERIAL

Two new compounds from the marine sponge derived fungus Penicillium chrysogenum

Xiao Han ^{a,b}, Pinglin Li ^{a,b}, Xiangchao Luo^{a,b}, Dan Qiao^{a,b}, Xuli Tang^{c,*} and Guoqiang Li^{a,b.*}

^a School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China

^b Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China

^c College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China

*Corresponding author.

E-mail address: tangxuli@ouc.edu.cn, liguoqiang@ouc.edu.cn

Two new compounds (1 and 2) were isolated from the marine sponge derived fungus *Penicillium chrysogenum* by using various column chromatography techniques. Their structures were elucidated by extensive analysis of spectroscopic data and quantum chemical calculation. Compound 1 exhibited moderate activity against PTP1B with 2.95 \pm 0.97% at the concentration of 30 μ mol·L⁻¹.

Keywords: Marine sponge; Fungus; Penicillium chrysogenum; PTP1B activity

List of content

Table S1. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) data for compound **1**

Table S2. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) data for compound **2**

Figure S1. Key COSY and HMBC correlations of compound 1 and 2

Figure S2. The experimental CD and calculated ECD spectrum of

compound 1 and 2

Figure S3. HRESIMS spectrum of compound 1

Figure S4. ¹H NMR spectrum of compound 1 in CDCl₃

Figure S5. ¹³C NMR spectrum of compound 1 in CDCl₃

Figure S6. HSQC spectrum of compound 1 in CDCl₃

Figure S7. HMBC spectrum of compound 1 in CDCl₃

Figure S8. HRESIMS spectrum of compound 2

Figure S9. ¹H NMR spectrum of compound 2 in CDCl₃

Figure S10. ¹³C NMR spectrum of compound 2 in CDCl₃

Figure S11. HSQC spectrum of compound 2 in CDCl₃

Figure S12. HMBC spectrum of compound 2 in CDCl₃

Figure S13. NOE spectrum of compound 2 in CDCl₃

Position	$\delta_{ m H}$, mult. (J in Hz)	$\delta_{ m C}$, Type
1		202.4, s
2		81.3, s
3		198.9, s
4		123.8, s
5	7.35, s	136.7, d
6		104.8, s
7		173.1, s
8	7.42, dd (14.3, 10.2)	144.1, d
9	6.41, d (14.7)	116.9, d
10	6.35, d (15.3)	130.6, d
11	6.29, m	141.9, d
12	1.93, d (5.4)	19.0, q
13	1.55, s	30.1, q
14	1.99, s	15.7, q
OH-2	5.43, s	
OH-7	3.49, s	

Table S1¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) data for compound 1

Table S2 ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) data for compound 2

Position	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{ m C}$, Type
1		204.9, s
2	4.45, dd (12.5, 8.7)	64.4, d
3	2.24, m	40.5, d
	3.24, dd (11.2,	
4	6.2)	34.0, t
	3.02, t	
5	1.25, d (6.5)	17.5, q
6-NH	5.67, s	
7		170.9, s
8	2.08, s	23.4, q

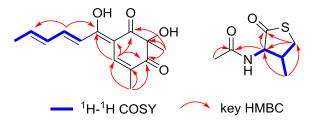


Figure S1 Key COSY and HMBC correlations of compound 1 and 2

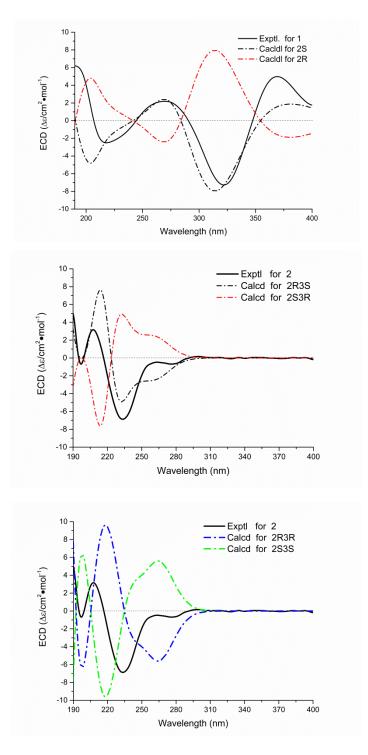


Figure S2 The experimental CD and calculated ECD spectrum of compound 1 and 2

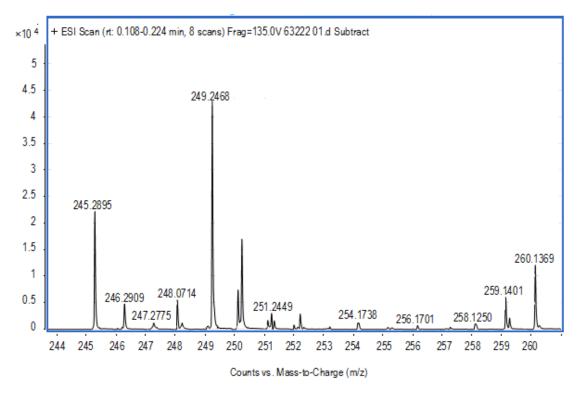


Figure S3 HRESIMS spectrum of compound 1

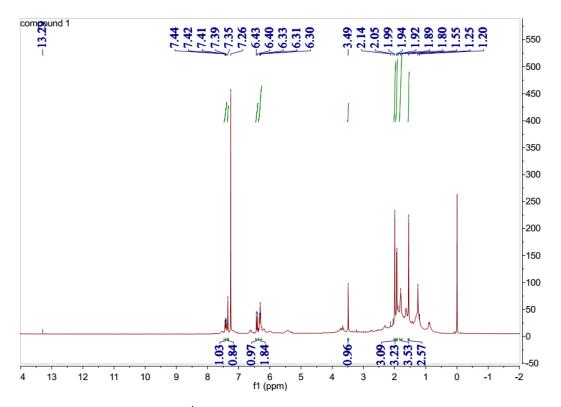


Figure S4 ¹H NMR spectrum of compound 1 in CDCl₃

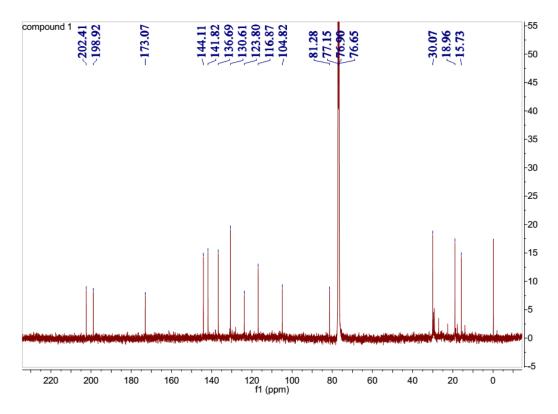
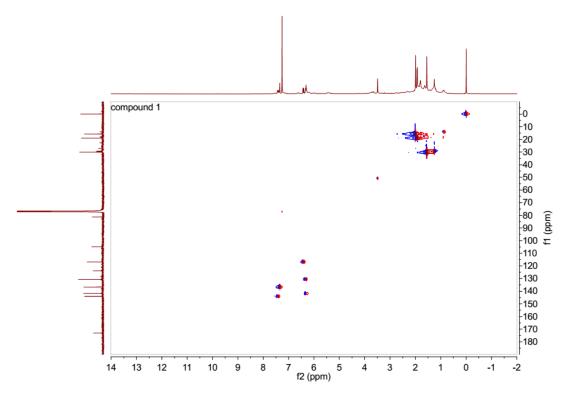
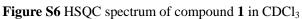




Figure S5 ¹³C NMR spectrum of compound 1 in CDCl₃

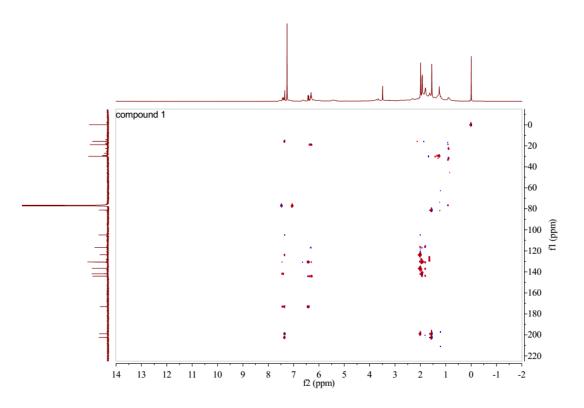


Figure S7 HMBC spectrum of compound 1 in CDCl₃

Figure S8 HRESIMS spectrum of compound 2

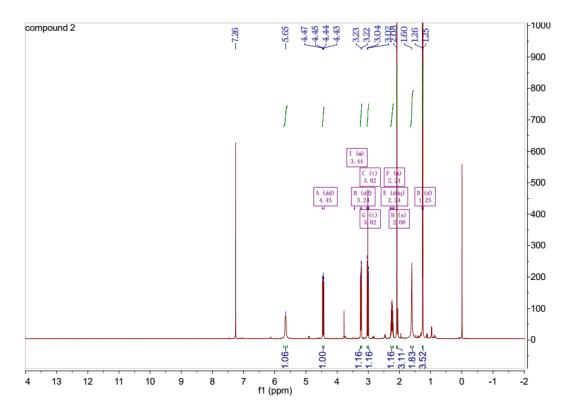


Figure S9 ¹H NMR spectrum of compound 2 in CDCl₃

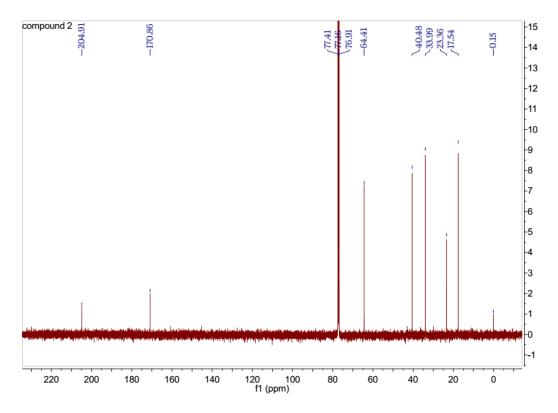


Figure S10¹³C NMR spectrum of compound 2 in CDCl₃

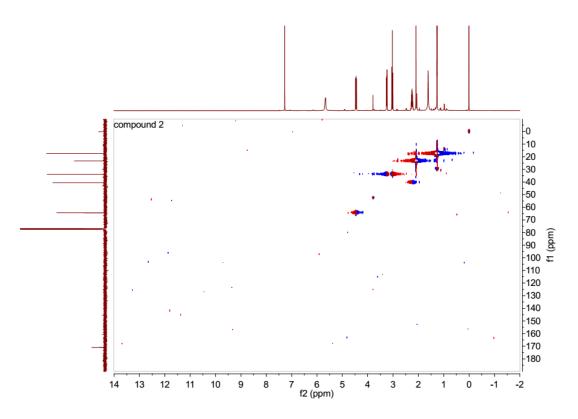
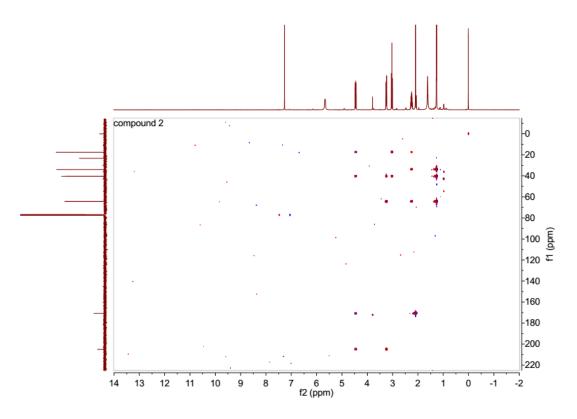
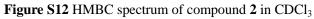




Figure S11 HSQC spectrum of compound 2 in CDCl₃

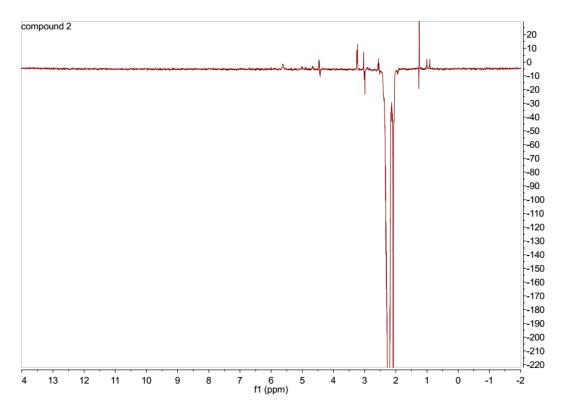


Figure S13 NOE spectrum of compound 2 in CDCl₃