Supplementary material

A.  TECHNICAL DETAILS

The Generalized Banach-Mazur theorem is a theorem of functional analysis, which states
that most well-behaved metric space can be subspaces of the space of continuous paths. It

was given by Banach (1932) and Kleiber and Pervin (1969).

Lemma A.1 (Banach-Mazur theorem) A separable metric space is isometric to a sub-
space of C1, the space of all real-valued continuous functions on the closed unit interval with

the supmetric.

According to this lemma, independence-zero equivalence property of Ball Covariance on
the metric space can be studied in Banach spaces since the isometric mapping preserves all
of the topological properties of the original space. To prove Theorem 2.1.1, we need the
following Lemma which is analogous to Corollary 5.8.2 in Bogachev (2007) to complete the
proof of case (a). The proof of this Lemma depends on the covering theorem (See Theorem

3.1 in Jackson and Mauldin (1999)).

Lemma A.2 Let 0 be a probability measure on a finite dimensional Banach space Q, C a
collection of non-degenerate closed balls, and Q¢ the set of their centers such that for every
v € Q¢ and every ¢ > 0, C contains a ball B(v,r) with v < €. Then, for every nonempty

open set Qo C Q, there is at most a countable collection of disjoint balls B; € C such that

UBicQ and 0((Qc nQu)\|J B;) =0.
j=1 3=1



Proof of Theorem 2.1.1: Without loss of generality, we prove the results only for w; =
we = 1.

Case (a): Let F4, Fu be the Sigma algebras on 2" and ¢/, and C4,Cs be the collections
of open sets on 2" and %/, respectively. In order to prove that BCov(X,Y) = 0 implies
0 = p® v, we need to prove that (A x B) = pn ®@ v(A x B) for A € Fyp,B € Fy. We

complete this proof by three steps:
Step 1: A = B,(x1,12) for 1 € S, 22 € 2 and B = B¢(y1,y2) for y1 € S,,y2 € ¥.

For (x1,11), (72, y2) € Sy, we have Q(Bp(l"h 172)><B<(y1, Y2)) = N(Bp($1, 952))><V(B<(yhy2))
when BCov(X,Y) = 0. Because Sp = S, x S,, we have 0(B,(z1,22) x Be(y1,v2)) =

,u(Bp(xl,:m)) X I/(B<<y1,y2)> for any 1,2, € S, and y1,y2 € S,.

Next, let r, = sup{p(x1,2’) : 2’ € S,NB,(x1,72)}. Since S,NB,(x1,z2) is a closed set and
p(x1,2') is a continuous function, there exists x, € S, N B,(z1, x2) such that r, = p(z1,z,).

Thus, we have

0(B,(x1,2) % B(y1,12)) = p(By(w1, 7)) x v(Be(y1,92)).

Since

Bp(il?bfw) X Bc(yb?h)

:(Bp(xlvxu) X BC(Z/L,%)) U ((Bp(xb@)\Bp(xbxu)) X BC(Z/h?ﬂ))

and

0< 9((Bp(x1,x2)\3p(x1,xﬂ)) X BC(yh?h)) < N(Bp(xla@)\Bp(xhxu)) =0,

we obtain that

0<Bp(xl’x2) X BC(?JI;W)) = Q(Bp(xl’xu> X BC(ylaﬁW))
= M(Bp($lv %))V(Bc(yl, Y2))

= u(B,(z1,29))v(Be(y1,y2))-

N}



Thus, for 1 € Sy, 2 € 27, y1,y2 € Sy, we have

0(B,(1,72) X Be(ya,y2)) = pu(By(a1, 22))v(Be(y1, y2))- (A1)
Repeat the above steps for v, (A.1) also holds for x; € S, 20 € Z,y1 € S,,y2 € ¥
Step 2: A€ Cqy and B € Cy.

For any A € C4, according to Lemma A.2, there exist as many as countable disjoint

closed balls Bf{ with centers located in S, such that

O A, SmA\UB% = 0.

7j=1

By the results in Step 2, we have

U ((1,92)) =Y _0(B x Be(yr, 1))

7=1
ZM yhy?))
7j=1

y1,y2))

Thus, we obtain that
0(A x Be(y1,y2)) = 0((AN Sy) x Be(yr, 42))

=0( B;" x Bc(yr,92)) +0((AN S\ BY) x Be(yr v2)

Jj=1 J=1
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Therefore, for any A € Cy,y1 € S,y € ¥, we have

0(A x Be(y1,92)) = (A (Be(y, y2))-

Repeat the above steps for v, we obtain that 6(A x B) = u(A)v(B) holds for all A € Cy
and B € Cy.

Step 3: A€ Fy and B € Fy.

Let
M(Cy):={A€ Fy :0(Ax B) =pu(A)v(B),B € Cx}.

Since M (Cy) is a Dynkin system and Cy is a m-system, we have M (Cy) O F4 . This means

that (A x B) = u(A)v(B) holds for all A € Fy, B € Cy.

Similarly, let
M(Cy) ={B € Fy :0(Ax B)=puA)v(B),Ac Fa}.

Since M(Cy») is a Dynkin system and Cy is a m-system, M(Cs») 2 Fy, which means that
0(A x B) = p(A)v(B) holds for all A € Fy, B € Fy. Therefore, we have 6 = 1 @ v.

Case (b): Let Pxy(x,y) be the function of the discrete measures 6((X,Y) = (z,y))
and Py (x), Py(y) be the discrete measures of the corresponding marginal distribution when
(x,y) is the discrete point of §. Similarly, let h(z,y) be the Radon-Nikodym derivative of 6
with respect to Gaussian measure and f(z), g(y) be the Radon-Nikodym derivatives of the

corresponding marginal distribution when (x,y) is the absolutely continuous point of 6.

If & # p ® v, then there exists one point (z,y) € 2 x # such that Pxy(x,y) #
Px(x2)Py(y) or h(z,y) # f(z)g(y). First, we will show that this point (z,y) can be chosen
in Syp. If (x,y) is the discrete point of 6 and (x,y) € S, which means that 0 = Px y(z,y) <

Px(x)Py(y), then we have (z,y) € S, x S,\Sg. Denote G as the Gaussian measure. By the



equality of
Z Pxy(z,y) +/ h(z,y)G(dz)G(dy)
(xvy)ESpXSV SHXSV

=1

S P@Pm+ Y P@)B(y)

(‘r)y)ese (Iuy)GSHXSV\SG

+ [ real)GanGia) + / o S @ C@a),

there exists another point (z*,y*) € Sy such that Pxy (z*,y*) > Px(z*) Py (y*) or h(z*,y*) >
f(z*)g(y*). Similar discussions can be done for (x,y) being absolutely case. Thus, we can

assume that Pxy(z,y) > Px(z)Py(y) or h(z,y) > f(z)g(y).

We first consider the case where (x,y) is the discrete point of 6,

BCov?*(X,Y)

> ) 2

{(z1,91):Px v (z1,91)>0} {(w2,y2):Px,y (w2,y2) >0}
(0 — @ v)*(By(z1,22) X Be(y1,y2)) Pxy (21, 41) Pxy (22, y2)
>(Pxy(z,y) — PX(x)PY(Z/))2PX,Y(37a y)Pxy(z,y)

>0.

Second, we consider the case where (z,y) is the continuous point of 6. According to
the assumption that the Radon-Nikodym derivative h(z,y) is continuous, we can find an
area B,(z,7') x Be(y,y/) (x # o',y # y') such that h(zy,y1) > f(z1)g(y1) for (z1,11) €
B,(z,2") x Be(y,y') if h(z,y) > f(x)g(y). Thus, we have

Bp(z1,22) X B¢ (y1,92)

0(B, (1, 72) x Belyn, ) = / Wz y)G(d)G (dy)

> [ e [ sty

Bp(v’f/‘hm) BC(y17y2)

= M(Bp(xl’ ZEQ))V(BC<y11 y2))



for every B,(x1,23) X Be(y1,y2) C B,(z,2') x Be(y,y'). Let A = {(z1,11) X (2,92) :
CB

Bp<xlax2> X BC(ylva) ( ') X Bc(yay')}, we have

BCov*(X,Y)
> /A[e — 1@V (By(x1,x2) X Be(y1,y2))0(day, dyr)0(dx2, dys)
= [ (01B,en22) = Belon. ) = By, a2 Belon. )

h(w1, Y1) W22, y2) G (dr1) G (dao) G (dy, ) G (dy2)

>0.

Combining the above conclusions, we obtain the result that BCov(X,Y) = 0 implies § =
nRu.
Proof of Proposition 2.2.1: Let W) = (X1,Y;) and Wy = (X3,Y5). We begin with
the right-hand side of the equation (1) in Proposition 2.2.1.
Egl)g,34565}/2,3456w1(X17 Xo)wa(Y1,Y5)
=E(675,34002,391 (X1, Xo)wa (Y1, Ya)) + E(675 3400 56w1 (X1, Xo)wa (Y1, Y2))
- 2E(5f§7345%/2735w1(X1, Xy)ws(Y1,Y2)).

Since

E(875,.54015 w1 (X1, X2)wa (Y7, Y2))
=EBlwi (X1, Xo)wa (Y1, Y2) B(675 5400,34| W1, Wo)]
=FEwi (X1, Xa)wa (Y1, Y2) E(675 5075 4015 3015 4| Wi, W2)]

=Ew1 (X1, Xo)wa (Y1, Y2) B(875 300 5| Wi, Wa),

B (875,34012,5601 (X1, Xa)ws (Y1, Y2))
=Ewi (X1, X2)wa(Y1, Y2) E (075 54610,56| W1, W2)]
= Ewi (X1, Xo)wa (Y1, Y2) E(675 3075 4015 5010.6| W1, Wa))]
)

:E[wl(Xlu XQ)WQ(K, }/2 E2<5fg73|Wh W2>E2(5¥2’3|W17 WQ)]?



and

E(5f§7345f2735w1 (X1, Xo)wa(Y7,Y2))
=Ew1 (X1, Xo)wa (Y1, Y2) B (8753401255 W1, Wo)]
=Elw1 (X1, Xo)wa (Y1, Y2) B (07,3015 4012, 3012,5| W1, Wa)]

=Elwi (X1, Xo)ws (Y, Ya) E (075 5010.5| Wi, Wa) E(875 5| W1, W) E(8Y, 5| W1, W),

we have
Effg,3456§%/2,3456w1 (X1, Xp)wa (Y1, Yz)
=E{wi (X1, Xo)wa (Y1, Ya) [B(675,5015,5 Wi, Wa) — E (035 3| Wr, Wa) E(815 5| Wi, Wa)]?}
=F{w (X1, Xo)wa (Y1, Y2)[P(X3 € B,(X1, Xs),Ys € Be(Yy, Ya)|[Wy, Wa)
— P(X3 € B,(X1, Xo)|Wy, Wa) P(Ys € Be(Y1,Ya))|[ W1, Wa)J*}
= [ 1 VP (Bylor,22) x Bl v)n (o1, 2 on, )0, )0, )
=BCov,(X,Y).
Proof of Proposition 2.2.2: With the conclusion of Proposition 2.2.1, applying the

Cauchy-Schwarz inequality to the left-hand side of the equation (2) in Proposition 2.2.2,

we have

BCov;,(X,Y) :E§£,3456W1 (X1, X2)5¥2,3456W2(Y17 )

< E(ES gase1 (X1, X2))2 (€ gaseton(V, Y2))?

=BCov,(X)BCov,(Y).

Obviously, we have &% 5456 = &l3456 When 0755 = 0), 3. Thus, the equality holds when

5f§73 = 5{273 and wl(Xl,XQ) = WQ(YLYQ).



Proof of Proposition 2.3.1: Because

BCov? 2(XY)
:% S (A - A, AT, (X, X o (V1Y)
.J._l
( z]k 7,], Z%kz(sm) n(Xi, Xj) w20 (Y3, Y5)
ij=1
( Zaij@ﬂ) 1 X, X))oV, Y))
ij=1
:% i < Z(SU’“ U’“Zdwl ijil +Z53k25wl25muz5wv
ig—
- ZnZ(SM J,cz(swz(sw)wm Xi, X )020(V, Y))
:% Z [511 kéu kéw l(sm i 5@ k(sw léz)juézj/v 25@] kéw k(sz)juéz; v]
i g keod =1
W10 (X, Xj) w2, (Y5, Y))
:% Xn: [5551@1513 w+ 055 ku(% I 2555@@? kv] W10 (Xi, Xj)w2,n (Y3, Y
id ke Lu=1

1
2—6(51 + Sy — 253),

where

51 = Z 5’§kl52;,klajl,n(xi7Xj) (Y3, Y5),
1,7,k,lu,v=1

S2 = Z 5i)j(}ku6i);,lv@1,n(Xi, X;)won(Yi, Y;),
1,5,k L u,v=1

S = Z 5;(j,ku62;,kvdjl,n(Xi7Xj) (Y3, Y5).

i:jzkzlyuﬂ):l



On the other hand, we verify that

Vo(X,Y)
1 ~ 1y X Y
:E Z Z <5ij7kl + 6@] wuv 51] ku 52] lv> (67,] Wt 61] uv 52] ku 51] lv)
4,5,k u,v=1
010 (Xi, Xj)wa n(Yi, V)
1 SN | .
:E Z 4 <451j klél] kT 45 i7, kldzj uv 851] ku(sz] kv) 1,n(Xi7 XJ) (Y;’ Y;)
4,5,k u,v=1

1
:ﬁ(Sl —f‘ SQ - 253)
Thus, the proof is completed.

Proof of Theorem 2.3.1: Since @y ,(x1,x2) and @a (Y1, y2) are the uniform estimators
of wy(zq,x2) and wy(yy, ya), we have
SUp @10 (21, T2) W20 (Y1, Y2) — wi (21, T2)wa2 (Y1, y2)| —— 0.
x1,22,Y1,Y2 n—00

Then

BCov? ,(X,Y)

s Y (X, X))o (Y, V)

4,5,k u,v=1

= 2wl (X X un(Y5,Y)

4,5,k u,v=1

1 .
+ ﬁ Z Si)g(',kluvéz'};,kluv (wl,n (Xl? XJ) ()/17 Y}) Wi (X“ Xj>w2(}/“ Y}))

i7j7k7l7u77}:1

Observe that
E(|&75 s156612,3156w1 (X1, X2)ws (Y1, Y2)]) < 4Ewi (X, Xo)ws(Y7,Y2) < o0,
E(£1§,34565¥2,3456w1 (X1, Xo)wa(Y7,Y3)) = BCOVZ(X’ Y)
and

1 R -
ﬁ Z i)j}kluvgzj/',kluv(wl,n(Xia X]) (}/;7 Y;) 1(Xi7 Xj)w2<Y;7 Y})) oo 0.
4,9,k u,v=1



According to Theorem 3 in Chapter 3 and Theorem 1 in Chapter 4 of Lee (1990), we obtain
that

BCov}, ,(X,Y) —— BCov,(X,Y), BCor. ,(X,Y) —— BCor(X,Y).

n—o0 n—oo

Proof of Theorem 3.1.1: According to the definition of BCov,,(X,Y) and the as-

sumptions of Theorem 3.1.1, we have

1 -
Bcovi,n (X7 Y) :ﬁ Z fi)j(',kluvgi}]/’,kluvwlﬁ(Xi? X]) (Y;7 Y})

i:jzkzlvuzvzl

6 Z ggykluvgz'};,kluvwl (Xi, Xj)wa (Y3, Y5)

4,5,k L u,v=1

op(1)
+ 26 Z ggj(',kluvg'};,kluv :

2,3,k L u,v=1

E(£1§,3456£¥2,3456w1 (X1, Xo)wa (Y7, Y2) (X1, Y7))
[(5f§ 34T 512 56 5f<2,35 - 6@,46)("}1()(17 X)|Xq]
E[(61, 34t 512 56 5}/2,35 - 5}/2,46)0*]2(}/17 Ya)|Y1]

=0.

Similarly, we can verify that E(&% 5456812 3456w1 (X1, X2)wa (Y1, ¥2)[ (X5, Y;)) = 0, where i =
2,...,6. This means that

E[@E(le ey W6)|(X17}/1) = (1'1, yl)] = 0.
On the other hand, we can verify that
Elp(Wh, ..., We)|(X5,Y3) = (3,53), (X4, Ya) = (24, 4)]
1
=51 % 4 % 41 X 2B[% 3156812, 345601 (X1, Xo)wa (Y1, Y2) (X3, Y3) = (w3, 3), (X4, Ya) = (24, 34))]
1
E{(fsfg 34T 512 56 552,35 - 55%,46)W1(X17X2>’(X37 Y3) = (w3,y3), (X4, Ya) = (T4, 94) }

{(5%/2 34T 512 ,56 5%/2,35 - 6%/2,46)(")2(}/17}/2”()(37}@) = (353, y3)7 (X4> Y4) = (5154794)}

10



Thus, =5 3k rwwmt SiyatunSip ki@t (Xi, Xj)wa(Y:, Y;) s a degenerate V statistic of order 1.

Then we have

o
1 d
X Y 2
n-=% E : fz‘j,kluvfz'j,MuvM(XiaXj)w2(Yz=YJ 3 Z)‘”Z“’
n n—oo
i,k Lup=1 =1

where Z, are independent standard normal random variables, )\, are the eigenvalues of the

symmetric function E[t)(Wy, ..., We)|Wy, Wa].

Similarly, we have

0p(1) X Y P
. 6 Z fij,kluvé-ij,kluv m 0.

ivjvkvlzuﬂ):l

Therefore,

nBCov? ,(X,Y) —— Z)\ zZ2.

n—o0

Proof of Theorem 3.1.2: Suppose that X and Y are dependent and satisfy the as-

sumptions of Theorem 2.1.1, we have BCov?2(X,Y) > 0 and

1
BCOV (X Y) % Z glj kluvgz] kluoW1 (XZ? XJ')WQ (Y;7 YVJ)

4,5,k u,v=1

0p(1)
+ 26 Z gz?j(',kluvgzg,kluv‘

i,j,k,l,u,v:l

Follow the notations in the proof of Theorem 3.1.1 and let ¢ (w) = E(Y (W, ..., We)|W; =

(A.2)

w) — BCov?(X,Y). The first term on the right-hand side of the equation (A.2) is a V

statistic with non-degenerate kernel 1)(W, ..., Ws), thus we have

d
\/ﬁ(ﬁ Z 57,] kluvgw kluvW1 (XZ? XJ)MQ(Y;? Y;) BCOV?J <X7 Y)) m N<O7 E)’
1,3,k L u,v=1

where ¥ = 36V ar(¢(W1)). Similarly, /n - o () D ik duoe L &b kioSi piuw CONVerges to 0 in

nb

probability. By Slutsky’s theorem, we obtain

Vi(BCov? (X, Y) — BCov2(X,Y)) —— N(0,%).

n—oo

Proof of Theorem 3.1.3: Suppose that X and Y are dependent and satisfy the assump-

tions of Theorem 2.1.1. We have lim,, BCOV (X Y) = ¢ > 0 almost surely according

11



to Theorem 2.1.1 and Theorem 2.3.1. Under the null hypothesis, Theorem 3.1.1 shows that

for the significance level «, there exists a constant ¢, such that

lim P(nBCov,,,(X,Y) > ¢,) = a.

n—0o0

Moreover, we have

lim P(nBCov,,,(X,Y) >c¢,) =1

n—oo

under the alternative hypotheses.

B.  SOME PROPERTIES FOR BALL COVARIANCE (CORRELATION)

This section adds some properties of Ball Covariance (Correlation) which are not listed in
the main body of the paper. If the conditions of Theorem 2.1.1 are not satisfied, we can
obtain the equivalence of independence in the equivalent distances. The equivalent distances
are deduced by the equivalent norms of the corresponding Banach spaces. In Banach space,
the equivalent norms of || - ||; and || - || means that there exist some constants ¢; and ¢y such

that c1]| - [+ < || - []2 < o - |-

Theorem B.1 Given two Banach spaces (2, p) and (#,() with the Schauder bases. De-
note their support sets by S, and S, respectively. Let 0 be a Borel probability measure on
X XY and (X,Y) be a B-valued random variable defined on a probability space such that
(X,)Y)~0, X ~p, andY ~v.

(1) If Sg = Z x %, then BCov,(X,Y) =0 if and only if 0 = p @ v.

(2) If So & X x %, we can correct Ball Covariance as

BCov2,(X. V) i= [0~ o v (Byfar.2) % Bl )
wi(z1, To)wa (Y1, y2)0s (w1, dyr)0s(dy, dys),

where ps and vs are two probability measures such that TV (us, ) < 6, TV (vs,v) <
§ and S,, = Z,S,, = % (TV denotes the total variation distance of probability

12



measures). Then BCOV?M;(X, Y') has the property of the equivalence of independence
and |BCov,, ;s — BCov, | < ¢.

Proof of theorem B.1: (1) It is worth noting that we can not obtain all Borel sets from
balls by using the operations of taking complements and at most countable disjoint unions
in arbitrary infinite-dimensional Banach space. However, it is proved that an arbitrary
infinite-dimensional Banach space with basis admits an equivalent norm such that any Borel
set can be obtained from balls by taking complements and countable disjoint unions in
Riss (2006). With the condition that Sy = 2~ x %, we have 0(B,(x1,72) X Be(y1,12)) =
w(By(z1, 29) ) (Be(y1,y2)) for all x1,29 € 2,41,y € #. This implies that 0(A x B) =
w(A)v(B) holds for all A € Qg , B € Qg, where Q4 , Qy denote the collection of closed
balls on 2" and %/, respectively. By repeating the last step of case (a) in Theorem 2.1.1 and
Theorem 1 in Riss (2006), we obtain the desired result.

(2) We can find a measure 65 such that TV (05,0) < 0 and Sy, = 2" x #. Specifically, we

can construct 65 that satisfies TV (6s,0) < ¢ by this way:

Let 05 = (0 4+ 60w )/ (1 + §), where 6y denotes Winner measure. Then we have

0 — 05| =10 — (0 + 66w)/(1+ )|
B 1)
14946

<.

|6 — Ow|

Thus, we can obtain that TV (6,05) < 6 and Sy, = & x ¥

Then Ball Covariance can be corrected as
BCov?,y(X,Y)i= [ 16~ n@ v(By(ar.2) x By, )
w1($1, $2)w2(y1792)95(d951, dy1)6’5(d$2, dy?)a

Following the arguments of case (a) in Theorem 2.1.1 and Theorem 1 in Riss (2006), we

can also verify that the new definition of BCov,, s(X,Y") still satisfies the property that

13



BCov,s(X,Y) = 0 if and only if § = p ® v for the equivalent distances of p and ¢ (We
still denote them as p and (). Moreover, according to the weak convergence of probability

measure, |[BCov,, 5(X,Y) — BCov,(X,Y)| < ¢ for V € > 0 when there exists a constant §

such that |§ — 65| < 0.

Next, we show that HHG can be derived from Ball Covariance with special weight in

form. Following the notations in Heller et al. (2013), we let

All Z .7 Z 62]]@ ij,k? A2,2<i7j) = Z ( 55;]4:)( 53]/]6)
k=1,k#1,5 k=1,k#i,j5

A12 Z ] Z 67,]k 7,] k) A2,1(i7j> = Z ( 51] k:)dz] k>
k=1,k#1i,5 k=1,k#i,j5

A (4,7) = Ava(i,7) + Aia(i, 7)),  As(i,7) = Ag1(4,7) + Az2(4, 7),
A~,1(i7j) = Al,l(i7j) + AQ,I(Z'7j)7 A,Q(laj) = A1,2(i7j) + AQ,Q(ivj)v

and the HHG statistic is defined as follows

A12 Z j)Az 1(Z ]) ALl(i,j)AQ’Q(i,j)]Z
-y Y @ A1 (6, ) Ao o)A A (irg)

i=1 j=1,j#i

Proposition B.1 If &y, = {A],,(1 = A,)} " and &y = {A};,(1 = AY,,)} ', BCovyy

1s asymptotically equivalent to HHG.

Proof of Proposition B.1: Since
Al,Q(iaj)AQ,l(iaj) - Al,l(iaj)AZQ(i)j)
=A21(1,7)[Ax1,. (4, 7) — A1 (i, J)] — A1 (4, 5)[A2,. (2, §) — A2.1(2, 7))
:AQ,I(iaj)A1,~(iaj) - Al,l(iaj)AQ,-<i7j)
=[A1(6,7) — A1, )] A1 (4,5) — A (i, 5)[n — 2 — Ay (4, 5)]

:A,l(l,])Al,@?j) - A1,1<i7j)(n - 2)?

we have

T — Z Z All Z ]) Al,(zaj) AJ(%])]Z/[AJ(LJ) A,Q(Zaj) A1,<Z7j) A27(7’7j>]
n—2 n—2 n-—2 n—2 n—2 n—2 n-—2

i=1 j=1,j#i
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Observed that Ay 1(i,7)/(n —2), A1.(4,5)/(n —2), A.1(i,7)/(n —2), As.(,75)/(n — 2),
A1(i,§)/(n — 2) are actually A, AKX AY. 1 — AX and 1 — AY; except that two points

2% 2,77 5,37

1,7 are not considered. Therefore, HHG and Ball Covariance is asymptotically equivalent.

For HHG, we can use Taylor expansion of the weight

1 1 1
= - (A7 (1= AF,) = (1 — ) + R,
Az?j(',n(]' - Az)](n) :uij(l - Nz‘j) M?j(l - Mz’j)z I 7 J J
1 1 1
= - (Afn(1 = AF,) = vig(1 = vig)) + Ry,
AL (L=AN)  vy(T—wvy)  vi(l—vy)2 " ’ ! !

where p;; = (X € B,(X;, X;)) and v;; = v(Y € B¢(Y;,Y;)). According to Elker et al.
(1979), Afj{n and A};n

2.3.1 and Theorems 3.1.1-3.1.3 can also hold for HHG. Similarly, the argument can hold for
BCova,(X,Y).

uniformly converge to p,;; and v;;, respectively. Thus, Theorem

The following proposition ensures that Ball Covariance remains invariance when the data

are under the appropriate transformation.

Proposition B.2 (Transformation invariance) If there exist maps g : 2~ — 2 and

h:% — % such that for all (x,y) and (2',y') in the support of 0, we have

p(g(x), 9(z") = ap(z,2'), C(h(y), My')) = bC(y,y)

and

(S
i
~—~
Q
~
8
~
K
—
E%\
N~—
N~—
Il
€
[l
—
8
H\
~
&
)
—
>
—~
<
SN~—
=
~—~
@\
SN—
N~—
Il

wa(y,y)

for some positive numbers a and b, then

BCov2(g(X),h(Y)) = BCov2(X,Y).

Proof of Proposition B.2: Let {(X;,Y;),i = 1,2,...,6} be i.i.d samples from 6. By the

condition of g and h, we have

I(p(9(X1), 9(X3)) < p(g(X1), 9(X2)) =I(ap(X1, X3) < ap(Xy, X3))

=1 (p(X1, X3) < p(X1, X3))
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and

I(C(h(Y1), h(Y3)) < C(h(Y), h(Y2)) = I(C(Y1,Y3) < (Y1, Y2)),

where I(+) is the indicator function. Furthermore,

X 56 h(Y Y X X h(Y Y
5%,3) = 512,37 512(,3) = 512,3: 5%,331 = 512,347 512(,34)1 = 512,34>
and
9(X)

_ gX fh(Y) _ SY
12,3456 — $12,3456> 12,3456 — $12,3456°

According to Proposition 2.2.1, we can obtain that

BCov2 (g(X), h(Y)) =B 5 hs6E 1 msswr (9(X), g(X)wa(h(Y), A(Y"))
:Egl)g,3456§¥2,3456w1 (X, X,)WQ(Y: Y/)

=BCov?(X,Y).
Remark B.1 The following are two examples of the appropriate transformations.

(1) when p,¢ are Euclidean distances, and wy(x1,T2) = wa(y1,y2) = 1, then for all constant

vectors aq, as, scalars by, by and orthonormal matrices Ci,Cy , we have
BCOVZ(CLl + blch, as + b202Y) = BCOVEJ(X, Y),
because

p(a1 + b1C’1X1, aq + blchQ) = b%(Xl — XQ)/Cqu(Xl — XQ) = b%p(Xl, Xg),
C(az + baCoY1, ag + by(CoYs) = b%(Yl —Y5)'CoCy(Yr — Ya) = b%C(Yl, Ys).

(2) when p,¢ are Mahalanobis distances and wi(x1,T2) = wa(y1,y2) = 1, then for all

constant vectors ay, as, scalars by, by and invertible matrices C1,Cy , we also have:

BCov2(a; + bC1 X, ay + by,CyY) = BCov2 (X, Y),

16



because

p(a1 + blOle, aq + blchg)
=b1(C1 (X1 — X,))'(C1ExC1) T (C1(X) — X3))
:b%p(XlaXQ)a

where Y x is the covariance matriz of X. Similarly,
C(ag 4+ b2C2Y1, ag + b ChYs) = b%C(Yh Ys).
We can see that the BCov,(X,Y) is rotation invariant when both p and ¢ are Euclidean
distances, and affine invariant when both p and ( are Mahalanobis distances.

The next proposition provides the analogous properties of BCov,, ,(X,Y) and BCor,, ,(X,Y)

to Proposition B.2.

Proposition B.3 If there exist maps g : & — 2 and h : % — % such that for all (z,y)
and (z',y') in the support of 0, we have

p(g9(x), 9(z") = ap(z,z'), C(h(y), My')) = bC(y,y)
and
W1n(g(x), g(2')) = Gra(a, 2), on(h(y), M(Y)) = Gonly,y)

for some positive numbers a and b, then we have the following properties

(1) BCov; ,(9(X),h(Y)) =BCov_ ,(X,Y).
(2) BCor? ,(9(X),h(Y)) =BCor? ,(X,Y).

(3) 0 < BCor,,(X,Y) < 1.

Proof of Proposition B.3: Properties of (1), (2) and (3) can be derived from the fact that

1 = X) h(Y) A .
BCovZ,(9(X),h(Y)) = — > humnbiimn@ia(Xi X))@ (YY)
4,5,k u,v=1
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9(X)  _ ¢x gh(Y) _¢Y

and the equations fij,kluv = Sijkluvr Sigkluv — Sigkluv:

In the following, we discuss some properties of BCor(X,Y).

Proposition B.4 BCor(X,Y) is an non-decreasing function of |y| when X and Y follow
the standard normal distributions with Cov(X,Y) = 7.

Proof of Proposition B.4: Define the bivariate normal density function as

1 2?2 — 2yzy + y?
xp(—
2(1—172)

BT

Thus, the Ball Covariance of binary normal distribution (X,Y) is given by

friz,y) ).

00 z1+|ze—z1|  py1+ly2—yi|
BC 2 X7Y = T, _ O; ; d d 2
ov(X.,Y) / [/x / (i 2,y) — F(0s 2, y)}dady

—oo0 Ja1—|zo—11| 1—ly2—y1]

f(% T, yl)f(% T2, 92)d$1d91d$2d92-

The derivative of BCov(X,Y) is given by

OBCov*(X,Y)

oy
oo pxitlre—z1| py1t+lye—yil
—2/ / / vz y) = fO;2,9) Hf (v 20, 1) f (5 22, y2)
—oo Jxi—|ze—z1| Jyi—|y2—y1]
zy(1+7%) — (2 + y*)y +v(1 — 7
f(vz,y) v+ 7) El—vz)p gl )dxdyd:cldyldmdyz
0o pxitlre—z|  pyitlyz—vi )
[ / {Fvi ) — F(0;,y)}dwdy]
—oo Jxi—|ze—z1| Jy1—|y2—y1]
w11 (L+92) = (2 +yi)y +v(1 -2
FOvsz, 1) f(y; 22, 42) 1 ) <(11723§12)7 7 7 )dxldyldxgdyg
0o pritlre—zi|  pyi+ly2—yi )
[ / {Fvi ) — F(0;,y)}dwdy]
—oo Jai—|ra—z1| Jy1—|y2—y1]
Toyo(1 + %) — (23 + y3)y + (1 — ~?
Jvio, y0) f(7; 22, 92) 22l +77) <(1i72y)22)7 i Cle] )dxldyld:vzdyz
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For any v > 0, we have
OBCov?*(X,Y)

O
22/ {fvszy) = fQOs2,9) Ff (s 01, 91) f (03 22, 2)
—o0 J By
ay(L4+72) — (@2 +y°)y +v(1 — 72
f(viz,y) i ) El _73;)37 il ! )d$dyd$ldyld$2d92
z1+|ze—z1|  pyitly2—y1| )
" / [ / / (F () — F(0; 2, y) ydady] £ (v 21, 50) £ (; 22, )
By Jxi1—|za—x1| Jy1—|y2—u1]
1 2\ (.2 2 1 —~2
1y (1 +9°) — (@i + i)y + (1 — )dgvldyldwly2
(1—192)2
r1t+|ze—z1|  pyitly2—yil )
+/[/ | |/ | |{f(v;x,y)—f(();:c,y)}dxdy] JOvio, y10) f(7; 22, 92)
By Jx1—|ro—x1 Y1—|Y2—Y1
1 2\ _ 2 2 1— 2
zay2(1 4+ 77) ((1332 +29)2)’Y+’Y( Y )dmd%dmdyz > 0.
-

where By, By and Bj are, respectively, given by

By ={z1 —|zy—m| <z <z +|re — 21|, y1 — ly2 — 1| <y <y + |ly2 — w1l}

N{7*(z +y)* < min(—(1 — 7%) log(1 — 7*) — 2vay, yay(1 ++°) + v (1 — )},
142

By ={4* (21 — y)® < (1= 91 +49°(1 =)},

+ 72

1
By ={47*(z2 — y2)® < (1— ") 2ys + 4921 — )}

Thus, BCov(X,Y) is a monotonically non-decreasing function of « for v > 0. Similarly, we
can prove that BCov(X,Y) is the monotonically non-increasing function of -y for v < 0. The
result also holds for BCor(X,Y) since BCov(X, X) and BCov(Y,Y') are not functions of .
Thus, BCor(X,Y) is an non-decreasing function of |y|. The relationship of Ball Correlation,

distance correlation and Pearson correlation in binary normal case is shown in Figure 1.

From Proposition 2.2.2, we have BCor(X,Y) = 1 when 0753 = d},5. The following

proposition tells us that the opposite result can also be concluded.

Proposition B.5 If BCor(X,Y) = 1 holds, then there exists a map f : X —— % which
satisfies that for all (X,Y),(X1,Y1),...,(Xe, Ys) in the support of 0, we have 6@73 = (5}/273
and Y = f(X) for 0-a.e.
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Figure 1: Ball Correlation, distance correlation and Pearson correlation 42 in the binary

normal case

Proof of Proposition B.5: If the equality of (2) in Proposition 2.2.2 holds, then there

exists a nonzero real number ¢, such that

X Y
512,3456 = C512,3456 a.c.

That is
(%,34 + ‘%,56 - 5@,35 - 6%,46 = 0(5%/2,34 + 5}/2,56 - 5%/2,35 - 5%/2,46)
for all (X;,Y;),i = 1,...,6 in the support of . Because 6 is non-degenerate, we can put

(Xlayl) = (X37}/E’>) = (X57}/:5)7 (X47}/21) = (X67}/6) to deduce that
55(2,4 + 55;6 —1- 55(2,4 = 0(5}/2,4 + 5%/2,6 —1- 5}/2,4)‘

Thus, we can obtain that 655 — 1 = ¢(d56 — 1) for all (X1,Y1),(X2,Y3), (X6, Ys) in the
support of #. Because both d{5 and 4}, 4 only take values on {0,1}, we obtain that if
0156 = 1 then 07, 4 = 1; if 075 5 = 0 then 4}, 3 = 0, and we can also obtain that ¢ = 1 at the
same time. Therefore, we have 03 s = 01, for all (X1,V1), (X3,Y2), (X, Ys) in the support
of 6. That is

X6 € B,(X1,Xs) < Y € Be(Y1,Ys)
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for all (X1,Y7),(Xs,Ys), (X6, Ys) in the support of 6. If there exist two different points
(X,Y),(X,Y”) in the support of §, then X € B,(X, X) leads to Y’ € B;(Y,Y). That means
Y’ =Y. Similarly, we can obtain that if Y7 = Y5 then X; = X5. Thus, we can reach the
conclusion that if the equality of (2) in Proposition 2.2.2 holds, then there exists a one-to-one

map f: 2 — %, such that Y = f(X) for #-a.e.

Remark B.2 According to Proposition 2.5 in Lyons (2013), dcor(X,Y) = 1 iff p(X1, Xz) =
«((Y1,Y2) a.e. for some ¢ > 0. The condition 6755 = 0)y3 is weaker than p(Xi,X5) =

c((Y1,Ys) if the former can be derived from the latter condition.

If Y = f(X) a.e, where the function f satisfies that ((f(X), f(X')) = cp(X, X") holds

for all (X,Y) in the support of 0 and some positive number ¢, then we have

I(C(Y1,Y3) < ((V1,Y2)) =1(C(f(X1), f(X3)) < C(f(X1), f(X2)))
=I(cp(X1, X3) < ep(Xy, X2))

=1(p(X1, X3) < p(Xy, X))

According to Proposition B.5 and Remark B.2, the condition of BCor(X,Y) = 1 is weaker
than that of decor(X,Y) = 1. To a certain extent, this implies that Ball Correlation may have

better performance in detecting the strong relationships compared to distance correlation.
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