The Scaled Uniform Model Revisited Supplementary Online Materials

Micha Mandel

The Hebrew University of Jerusalem, Jerusalem, Israel

March 19, 2019

This document provides a simple proof for Proposition 1. The result is a direct corollary of Equations (9) and (10) of Kagan and Malinovsky (2013). However, the following constructive proof explains why this happens.

Proposition 1. Suppose that (T(X), A(X)) is a minimal sufficient statistic for θ and that A(X) is ancillary. Let $\hat{\theta}$ be an estimator and θ_0 be a value in the parameter space Θ such that (i) $E_{\theta_0}(\hat{\theta} \mid A) = \theta_0$ almost surely, (ii) $\operatorname{Var}_{\theta_0}(\hat{\theta}) < \infty$, and (iii) $\operatorname{Var}_{\theta_0}(\hat{\theta} \mid A)$ is non-degenerate. Then $\hat{\theta}$ is not a global UMVUE.

Proof. Suppose that A is ancillary with density f_A and that $E_{\theta_0}(\hat{\theta} \mid A) = \theta_0$ almost surely. Let $\hat{\theta}_c = c(A)\hat{\theta}$ be a new estimator, where c(A) satisfies $E\{c(A)\} = 1$ and $E\{c^2(A)\} < \infty$. Then

$$E_{\theta_0}(\hat{\theta}_c) = E_{\theta_0}\{c(A)E_{\theta_0}(\hat{\theta} \mid A)\} = E_{\theta_0}\{c(A)\theta_0\} = \theta_0,$$
(1)

having variance

$$\operatorname{Var}_{\theta_0}(\hat{\theta}_c) = E_{\theta_0} \{ \operatorname{Var}_{\theta_0}(\hat{\theta}_c \mid A) \} + \operatorname{Var}_{\theta_0} \{ E_{\theta_0}(\hat{\theta}_c \mid A) \}$$

$$= E_{\theta_0} \{ c(A)^2 \operatorname{Var}_{\theta_0}(\hat{\theta} \mid A) \} + \theta_0^2 \operatorname{Var} \{ c(A) \}.$$
 (2)

It then follows that

$$\operatorname{Var}_{\theta_0}(\hat{\theta}_c) - \operatorname{Var}_{\theta_0}(\hat{\theta}) = E_{\theta_0}[\{c(A)^2 - 1\}\operatorname{Var}_{\theta_0}(\hat{\theta} \mid A)] + \theta_0^2 \operatorname{Var}\{c(A)\}.$$
 (3)

If $\operatorname{Var}_{\theta_0}(\hat{\theta} \mid A)$ is non-degenrate, there exist constants $v_1 < v_2$ and non-null events \mathcal{A}_1 and \mathcal{A}_2 such that $\operatorname{Var}_{\theta_0}(\hat{\theta} \mid A) < v_1$ on \mathcal{A}_1 and $\operatorname{Var}_{\theta_0}(\hat{\theta} \mid A) > v_2$ on \mathcal{A}_2 . For any $\epsilon > 0$ consider the estimator $\hat{\theta}_{c_{\epsilon}}$, where

$$c_{\epsilon}(A) = \begin{cases} 1 + \epsilon/P(\mathcal{A}_1) & \text{on } \mathcal{A}_1 \\ 1 - \epsilon/P(\mathcal{A}_2) & \text{on } \mathcal{A}_2 \\ 1 & \text{on } \overline{\mathcal{A}_1 \cup \mathcal{A}_2} \end{cases}$$

Write $V_a = \operatorname{Var}_{\theta_0}(\hat{\theta} \mid A = a)$. For $c = c_{\epsilon}$, the first term on the right-hand side of (3) becomes

$$\int_{\mathcal{A}_1} \{\epsilon^2 / P^2(\mathcal{A}_1) + 2\epsilon / P(\mathcal{A}_1)\} V_a f_A(a) da + \int_{\mathcal{A}_2} \{\epsilon^2 / P^2(\mathcal{A}_2) - 2\epsilon / P(\mathcal{A}_2)\} V_a f_A(a) da + \int_{\mathcal{A}_2} \{\epsilon^2 / P^2(\mathcal{A}_1) + \epsilon^2 / P^2(\mathcal{A}_2)\} \operatorname{Var}_{\theta_0}(\hat{\theta}) + 2\epsilon (v_1 - v_2),$$

where the inequality follows from the definition of v_1 and v_2 and the fact that $\operatorname{Var}_{\theta_0}(\hat{\theta}) = \int_{\mathbb{R}} V_a f_A(a) da \geq \int_{\mathcal{A}_k} V_a f_A(a) da$ for k = 1, 2. The second term on the right-hand side of (3) is readily calculated as

$$\theta_0^2 \{ \epsilon^2 / P(\mathcal{A}_1) + \epsilon^2 / P(\mathcal{A}_2) \},$$

so the difference of variances is bounded by

$$\operatorname{Var}_{\theta_0}(\hat{\theta}_{c_{\epsilon}}) - \operatorname{Var}_{\theta_0}(\hat{\theta}) < \epsilon^2 \left[\frac{\operatorname{Var}_{\theta_0}(\hat{\theta}) + \theta_0^2 P(\mathcal{A}_1)}{P^2(\mathcal{A}_1)} + \frac{\operatorname{Var}_{\theta_0}(\hat{\theta}) + \theta_0^2 P(\mathcal{A}_2)}{P^2(\mathcal{A}_2)} \right] + 2\epsilon (v_1 - v_2).$$
(4)

Since $v_1 - v_2 < 0$ and $\operatorname{Var}_{\theta_0}(\hat{\theta}) < \infty$, Equation (4) shows that there is a small enough ϵ such that $\operatorname{Var}_{\theta_0}(\hat{\theta}_{c_{\epsilon}}) - \operatorname{Var}_{\theta_0}(\hat{\theta}) < 0$, and thus $\hat{\theta}$ cannot be a UMVUE. Therefore, a necessary condition for a conditional unbiased estimator to be a global UMVUE is that, for all $\theta \in \Theta$, $\operatorname{Var}(\hat{\theta} \mid A)$ be almost surely constant.

References

 Kagan, A. M., and Malinovsky, Y. (2013), "On the Nile problem by Sir Ronald Fisher," *Electronic Journal of Statistics*, 7, 1968-1982.