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    Table 1. Manipulation of stress tolerance using enzymatic ROS scavengers 

Transgene 

product 

Origin Transgenic plant Promoter Stress assayed Results References 

APX Cyanidioschyzon 

merolae 

Arabidopsis (chloroplast) CaMV 35S Heat Higher pigment contents, lower 

membrane oxidative damage. 

[1] 

 

APX Suaeda salsa Arabidopsis (chloroplast) CaMV 35S High light Higher photosynthetic activity 

and pigment contents, lower 

membrane oxidative damage 

[2] 

APX Pea Tobacco (chloroplast) CaMV 35S UVC radiation Lower membrane oxidative 

damage, better growth (shoot, 

root fresh weight and length), 

higher germination rates 

[3] 

APX Eggplant Rice (cytosol) Ubiquitin 1 Flood Higher pigment contents, better 

growth (coleoptile and root 

length) 

[4] 

Cu/ZnSOD Rice Rice (chloroplast) CaMV 35S Salt Better growth (height), higher 

germination rates 

[5] 

FeSOD Arabidopsis Alfalfa (chloroplast) CaMV 35S Winter survival Higher photosynthetic activity [6] 

Cu/ZnSOD Rubber tree Rubber tree (cytosol) CaMV 35S Drought Higher photosynthetic activity, 

better growth (height), increased 

survival rates 

[7] 

Cu/ZnSOD Peanut Tobacco (cytosol) CaMV 35S Drought - Salt Higher pigment contents, lower 

membrane oxidative damage, 

increased germination and 

survival rates 

[8] 

Cu/ZnSOD Jatropha curcas Arabidopsis (cytosol) CaMV 35S Salt Lower membrane oxidative 

damage, better growth (rosette 

area, number of leaves, root 

length), higher germination rates 

[9] 



MnSOD Wheat Canola (mitochondria) CaMV 35S Al - Oxidative 

(MV) 

Higher pigment contents, lower 

membrane oxidative damage, 

better growth (root length) 

[10] 

APX - 

Cu/ZnSOD 

Pea - Cassava Sweet potato 

(chloroplast) 

SWPA2  Chilling Higher photosynthetic activity [11] 

APX - 

Cu/ZnSOD 

Pea - Cassava Sweet potato 

(chloroplast) 

SWPA2 Salt Higher photosynthetic activity 

and pigment contents, better 

growth (total fresh weight, root 

length) 

[12] 

APX - 

Cu/ZnSOD 

Pea - Spinach Tobacco (cytosol) CaMV 35S 

(2X) 

Drought Higher photosynthetic activity [13] 

APX - 

Cu/ZnSOD 

Pea - Spinach Plum (cytosol) CaMV 35S Salt Lower membrane oxidative 

damage 

[14] 

APX - 

Cu/ZnSOD 

Cassava Cassava (cytosol) CaMV 35S - 

p54/1.0 

Chilling Higher pigment contents, lower 

membrane oxidative damage. 

[15] 

APX - 

Cu/ZnSOD 

(2X) 

Pea - Spinach Plum (cytosol) CaMV 35S Drought Higher photosynthetic activity, 

better growth (height, leaf area) 

[16] 

APX - 

Cu/ZnSOD - 

DHAR 

Pea - Pea - Human Tobacco (chloroplast) CaMV 35S Salt Better growth (shoot and root 

dry weight) 

[17] 

 

APX - 

Cu/ZnSOD - 

codA 

Pea - Cassava - 

Arthrobacter 

globiformis 

Potato (chloroplast) SWPA2 Drought - Salt Higher photosynthetic activity 

and pigment contents, better 

growth (total dry weight) 

[18] 

APX - 

Cu/ZnSOD - 

NDPK2 

Pea - Cassava - 

Arabidopsis 

Potato (chloroplast) SWPA2 Heat Higher photosynthetic activity, 

decreased wilting 

[19] 

Cu/ZnSOD - 

CAT 

Cassava Cassava (cytosol, 

peroxisome) 

CaMV 35S Chilling - Drought Lower membrane oxidative 

damage 

[20] 

 



MnSOD - 

GR 

Tobacco - 

Escherichia coli 

Tobacco (chloroplast) Prrn  Photooxidation - 

UVB radiation 

Higher photosynthetic activity 

and pigment contents, lower 

membrane oxidative damage 

[21] 

MDHAR Arabidopsis Tobacco (cytosol) CaMV 35S Salt - Osmotic - 

Oxidative (ozone)  

Higher photosynthetic activity [22] 

DHAR Arabidopsis Arabidopsis 

(mitochondria) 

CaMV 35S 

(2X) 

Heat - High light Higher pigment contents, lower 

membrane oxidative damage. 

[23] 

DHAR Arabidopsis Potato (cytosol) CaMV 35S 

(2X) 

Drought - Salt - 

Oxidative (MV) 

Higher pigment contents, lower 

membrane oxidative damage, 

better growth (shoot length) 

[24] 

 

MDHAR - 

DHAR 

Brassica rapa Arabidopsis (cytosol) SWPA2 Freezing Higher pigment contents, better 

growth (fresh weight), higher 

survival rate 

[25] 

DHAR - GR Rice - E. coli Tobacco (chloroplast) Prrn Chilling - Salt Higher photosynthetic activity 

and pigment contents, better 

growth rates 

[26] 

GR E. coli Populus tremula x 

Populus alba (chloroplast 

and cytosol) 

CaMV 35S 

(2X) 

Photoinhibition - 

Oxidative (MV) 

Higher photosynthetic activity [27] 

 

GST Pear Tobacco (cytosol) CaMV 35S Drought - Salt Lower membrane oxidative 

damage, higher survival rates 

[28] 

Tau GST Orange Tobacco (cytosol) CaMV 35S Osmotic - Salt Better growth (root length) [29] 

GST - GR E. coli Tobacco (chloroplast) Prrn Chilling - Salt Higher photosynthetic activity 

and pigment contents, better 

growth rates 

[26] 

CAT1 Wheat Arabidopsis 

(peroxisome) 

CaMV 35S Osmotic - Salt - 

Oxidative (H2O2) 

Better growth (leaf area, fresh 

weight) 

[30] 

CAT1 - GST Suaeda salsa Rice (NR) CaMV 35S Cd - Heat Higher pigment contents, lower 

membrane oxidative damage, 

[31] 



better growth (shoot fresh and 

dry weight) 

GPX Mouse Tomato (cytosol, 

apoplast) 

CaMV 35S Mechanical Better growth (stem length) [32] 

Prx Arabidopsis Tall fescue (chloroplast) CaMV 35S Heat Higher photosynthetic activity, 

lower membrane oxidative 

damage 

[33] 

Prx Arabidopsis Potato (chloroplast) SWPA2, 

CaMV 35S 

Heat Higher photosynthetic activity [34] 

AKR1 Rice Tobacco (cytosol) CaMV 35S Heat Higher photosynthetic activity, 

lower membrane oxidative 

damage 

[35] 

AKR1 Pseudomonas spp. Rice, tobacco (cytosol) Rubisco 

small subunit 

Induced ageing - 

Seed deterioration 

Increased seed viability and 

vigor 

[36] 

ALDH Arabidopsis Arabidopsis (chloroplast) CaMV 35S Drought - Salt Lower membrane oxidative 

damage 

[37] 

ALDH 2B8 Grapevine Arabidopsis 

(mitochondria) 

CaMV 35S Salt Higher pigment contents, lower 

membrane oxidative damage, 

better growth (root length) 

[38] 

ALDH 12A1 Cleistogenes 

songorica 

Alfalfa (mitochondria) CaMV 35S Drought - Salt Higher photosynthetic activity 

and pigment contents, lower 

membrane oxidative damage, 

better growth (total height and 

fresh weight) 

[39] 

Glyoxalases 

I and II 

Brassica juncea - 

Pennisetum 

glaucum 

Tomato (cytosol) CaMV 35S Salt Higher pigment contents, lower 

membrane oxidative damage, 

increased survival rates 

[40] 

Abbreviations: 2X: double copy of the gene or promoter; AKR1: aldo-keto reductase 1; ALDH: aldehyde dehydrogenase; APX: ascorbate peroxidase; CaMV 35S: cauliflower 

mosaic virus 35S promoter; CAT: catalase; codA, gene encoding choline oxidase; DHAR: dehydroascorbate reductase; GPX: glutathione peroxidase; GR: glutathione 

reductase; GST: glutathione S-transferase; MDHAR: monodehydroascorbate reductase; MV: methyl viologen; NDPK2: nucleoside diphosphate kinase; p54/1.0: vascular 

promoter; Prrn: constitutive 16S rRNA promoter; Prx: 2-Cys peroxiredoxin; Rubisco: ribulose 1,5-bisphosphate carboxylase/oxigenase; SOD: superoxide dismutase; SWPA2: 

sweet potato peroxidase promoter; NR: not reported. Parentheses in the Transgenic plant column indicate the location where the transgenic product was targeted. 



Table 2. Stress tolerance of genetically modified plants with altered levels of non-enzymatic ROS scavengers 

Transgene 

product 

Compound Origin Transgenic 

plant 

Promoter Stress 

assayed 

Results References 

GDP-mannose 3', 

5'-epimerase 

ASC Tomato Tomato 

(cytosol) 

CaMV 35S Chilling - Salt 

Oxidative 

(MV) 

Higher pigment contents, lower 

membrane oxidative damage, 

better growth (total fresh weight, 

root length), increased survival 

and germination rates 

[41] 

GalUR ASC Strawberry Potato 

(cytosol) 

CaMV 35S Salt Better growth (total height) [42] 

GalUR ASC Strawberry Tomato 

(cytosol) 

CaMV 35S Chilling - Salt Higher pigment contents, lower 

membrane oxidative damage, 

better growth (total fresh 

weight), increased survival rates 

[43] 

Myoinositol 

oxygenase-L-

gulono-1,4-

lactone oxidase 

ASC Rat - 

Arabidopsis 

Arabidopsis 

(cytosol) 

CaMV 35S Chilling - Heat 

- Salt 

Reduced pigment contents, 

better growth (rosette diameter, 

inflorescence height, total dry 

weight), higher germination 

rates 

[44] 

Phosphomannose 

isomerase I 

ASC Brassica 

campestris 

Tobacco 

(cytosol) 

CaMV 35S Salt Higher germination rates [45] 

OxR ASC Arabidopsis Arabidopsis 

(ER) 

CaMV 35S Osmotic - Salt -  

Oxidative 

(H2O2) 

Better growth (root length) [46] 

GS Glutathione E. coli Populus 

tremula x 

Populus alba 

(cytosol) 

CaMV 35S 

(2X) 

Photoinhibition 

- Oxidative 

(MV) 

Lower photosynthetic activity [27] 

GS Glutathione Rice Rice Cc1 Oxidative 

(MV) – Natural 

paddy field 

conditions 

Lower membrane oxidative 

damage. Improved grain yield 

and biomass in paddy field 

[47] 



γGCL Glutathione E. coli Tobacco 

(chloroplast) 

CaMV 35S 

(2X) 

High light Lower photosynthetic activity [48] 

γGCL Glutathione Arabidopsis Arabidopsis 

(chloroplast) 

rd29 Drought - Salt Better growth (root length), 

higher germination rates, 

increased survival rates 

[49] 

γGCL Gluathione Brassica juncea Rice Rab21 Oxidative 

(MV).-.Salt 

Lower membrane oxidative 

damage, higher chlorophyll-

fluorescence. Increased grain 

yield in paddy field 

[50] 

γGCL Gluathione Rice Rice Rab21 Oxidative 

(MV).-.Salt 

Lower membrane oxidative 

damage, higher chlorophyll-

fluorescence, better germination 

rates. Improved biomass in 

paddy field 

[51] 

γGCL-GS Glutathione Streptococcus 

thermophilus 

Tobacco 

(chloroplast 

and cytosol) 

CaMV 35S Oxidative 

(MV) 

Lower membrane oxidative 

damage, better growth rates 

[52] 

γ-Tocopherol 

methyltransferase 

α-Tocopherol Arabidopsis Brassica 

juncea 

(chloroplast) 

CaMV 35S Osmotic - Salt Reduced membrane oxidative 

damage 

[53] 

Prephenate 

dehydrogenase -

Hydroxyphenyl 

pyruvate 

dioxygenase 

Tocotrienol Yeast - 

Arabidopsis 

Tobacco 

(chloroplast) 

H4748 Chilling - High 

light 

Higher photosynthetic activity, 

reduced membrane oxidative 

damage 

[54] 

β-Carotene 

ketolase 

Ketocarotenoids Haematococcus 

pluvialis 

Carrot 

(chloroplast) 

CaMV 35S UVB radiation Higher pigment contents, better 

growth (total fresh weight), 

decreased wilting 

[55] 

β-Carotene 

hydroxylase 1 

Carotenoids Mulberry Mulberry 

(chloroplast) 

CaMV 35S Drought - Heat 

- Osmotic - Salt 

Higher photosynthetic activity 

and pigment contents, reduced 

membrane oxidative damage 

[56] 



Carotenoid 

cleavage 

dioxygenase 

Carotenoids Saffron Arabidopsis 

(ER) 

CaMV 35S Osmotic - Salt Better growth (root length, total 

fresh weight), increased survival 

rates 

[57] 

Lycopene ciclase Lycopene Salicornia 

europea 

Arabidopsis - 

Nicotiana 

benthamiana 

(chloroplast) 

CaMV 35S Salt Higher photosynthetic activity 

and pigment contents, increased 

survival rates 

[58] 

Isoflavone 

reductase-like 

gene 

Flavonoids Rice Rice 

(chloroplast) 

AIPC Oxidative 

(MV) 

Higher photosynthetic activity, 

reduced chlorosis 

[59] 

Flavanone 3-

hydroxilase 

Flavonoids Lycium chinense Tobacco (ER, 

cytosol) 

CaMV 35S Drought Higher photosynthetic activity, 

lower membrane oxidative 

damage 

[60] 

Pyridoxine 

oxidases 1 and 2 

Vitamin B6 Arabidopsis Arabidopsis 

(cytosol) 

CaMV 35S Oxidative 

(MV, 1O2) 

Lower membrane oxidative 

damage, better growth (leaf area), 

higher germination rates  

[61] 

Isoprene synthase Isoprene White poplar Tobacco 

(plastids) 

CaMV 35S Heat - 

Oxidative 

(ozone) 

Higher photosynthetic activity [62] 

N-Acetylserotonin 

O-

methyltransferase 

Melatonin Malus zumi Arabidopsis 

(cytosol) 

CaMV 35S Drought Lower membrane oxidative 

damage, better growth (total fresh 

weight, lateral root numbers) 

[63] 

Serotonin N-

acetyltransferase 

Melatonin M. zumi Arabidopsis 

(mitochondria) 

CaMV 35S Drought Better growth (total fresh weight, 

lateral root numbers) 

[64] 

P5CS Proline Moth bean Wheat 

(cytosol) 

AIPC  Drought Higher photosynthetic activity, 

lower membrane oxidative 

damage 

[65] 

P5CS Proline Moth bean Swingle 

citrumelo 

(cytosol) 

CaMV 35S Drought Higher photosynthetic activity [66] 



P5CS Proline Moth bean Sugarcane 

(cytosol) 

AIPC  Salt Higher photosynthetic activity, 

lower membrane oxidative 

damage 

[67] 

codA Glycinebetaine Arthrobacter 

globiformis 

Potato 

(chloroplast) 

SWPA2 Drought - Salt Higher photosynthetic activity, 

better growth (total fresh 

weight) 

[68] 

codA Glycinebetaine A. globiformis Potato 

(chloroplast) 

SWPA2 Drought Higher photosynthetic activity 

and pigment contents, lower 

membrane oxidative damage 

[69] 

codA Glycinebetaine A. globiformis Alfalfa 

(chloroplast) 

SWPA2 Drought - Salt Higher pigment contents, lower 

membrane oxidative damage, 

increased survival rates 

[70] 

codA Glycinebetaine A. globiformis Sweet potato 

(chloroplast) 

SWPA2 Drought Lower membrane oxidative 

damage 

[71] 

codA Glycinebetaine A. globiformis Poplar 

(chloroplast) 

SWPA2 Chilling - 

Drought - Salt 

Higher photosynthetic activity, 

lower membrane oxidative 

damage 

[72] 

TPSP  Trehalose E. coli Rice (cytosol) Ubiquitin 1 Chilling - 

Drought - Salt 

Higher photosynthetic activity, 

better growth (root and shoot 

length), increased survival rates 

[73] 

TPSP Trehalose Yeast Arabidopsis 

(cytosol) 

CaMV 35S - 

rd29A 

Drought - 

Freezing - Heat 

- Salt 

Increased survival rates [74] 

Galactinol 

synthases 1 and 2 

Galactinol, 

raffinose 

Arabidopsis Arabidopsis 

(cytosol) 

CaMV 35S Chilling - Salt Higher photosynthetic activity, 

lower membrane oxidative 

damage 

[75] 

Abbreviations: 2X: double copy of the gene or promoter; ABA: abscisic acid; AIPC: ABA-inducible promoter; ASC: ascorbate; codA: gene encoding choline oxidase; CaMV 

35S: cauliflower mosaic virus 35S promoter; Cc1: cytochrome c promoter; ER: endoplasmic reticulum; GalUR: d-galacturonic acid reductase: γGCL: γ-glutamylcysteinyl 

ligase; γGCL-GS: bifunctional γ-glutamylcysteinyl ligase-glutathione synthetase enzyme; GS: glutathione synthetase; H4748: duplicated promoter from the Arabidopsis 

histone gene; MV: methyl viologen; OxR: stress-responsive gene; P5CS: ∆1-pyrroline-5-carboxylate synthetase; Rab21: stress-inducible promoter; rd29: stress-inducible 

promoter; SWPA2: stress-inducible peroxidase promoter; TPSP: trehalose-6-phosphate synthase–trehalose-6-phosphatase. Parentheses in the Transgenic plant column indicate 

the location where the transgenic product was targeted. 



  



 



 

 

 

Table 3. Engineering stress tolerance by manipulating dissipative and avoidance mechanisms 

 

Transgene 

product 

Origin Transgenic          

plant 

Promoter Stress assayed Results       References 

PTOX Arabidopsis Tobacco 

(chloroplast) 

CaMV 35S 

(2X) 

High light - Low 

light 

Decreased photosynthetic 

activity 

[76] 

AOX Rice Rice 

(mitochondria) 

Ubiquitin 1 Heat Better growth (shoot length) [77] 

AOX Tobacco Tobacco 

(mitochondria) 

CaMV 35S Drought  Higher photosynthetic 

activity 

[78] 

UCP Tomato Tomato 

(mitochondria) 

CaMV 35S Heat Higher photosynthetic 

activity and pigment 

contents, lower membrane 

oxidative damage, better 

growth (dry and fresh 

weight) 

[79] 

GOX Rice Rice (peroxisome) CaMV 35S Heat - High light Higher photosynthetic 

activity 

[80] 

Glyoxylate 

aminotransferase 

Arabidopsis Lemna minor 

(peroxisome) 

CaMV 35S Salt Higher photosynthetic 

activity, lower membrane 

oxidative damage 

[81] 

Fld Anabaena PCC 

7119 

Tobacco 

(chloroplast) 

CaMV 35S Chilling - Drought - 

Heat - High light 

Higher photosynthetic 

activity and pigment 

contents, lower membrane 

oxidative damage, reduced 

leaf bleaching 

[82, 83] 

Fld Anabaena PCC 

7119 

Agrostis 

stolonifera 

(chloroplast) 

CaMV 35S Drought - Heat - 

Nitrogen starvation  

Higher pigment contents, 

lower membrane oxidative 

damage, higher nitrogen 

content 

[84] 

FNR Pea Tobacco 

(chloroplast) 

CaMV 35S Chilling - High light Higher photosynthetic 

activity and pigment 

contents, lower membrane 

oxidative damage 

[85] 

FNR - Fld Anabaena PCC 

7119 

Tobacco 

(chloroplast) 

CaMV 35S Oxidative stress 

(MV) 

Higher photosynthetic 

activity, lower membrane 

[86, 87] 



 

 

 

 

 

 

 

 

 

 

 

oxidative damage and ROS 

accumulation  

MDH Apple Apple (cytosol) CaMV 35S Chilling - Salt Higher photosynthetic 

activity 

[88] 

MDH Maize Arabidopsis 

(chloroplast) 

CaMV 35S Salt Higher photosynthetic 

activity and pigment 

contents, lower membrane 

oxidative damage, better 

growth (total fresh and dry 

weight) 

[89] 

Ferritin Alfalfa Tobacco 

(chloroplast) 

Rubisco small 

subunit 

Chilling Higher photosynthetic 

activity and pigment 

contents 

[90] 

Ferritin Wheat Wheat 

(chloroplast) 

Ubiquitin 1 Heat Higher photosynthetic 

activity, lower membrane 

oxidative damage 

[91] 

Ferritin Banana Banana 

(chloroplast) 

CaMV 35S Excess iron Higher photosynthetic 

activity, lower membrane 

oxidative damage 

[92] 

Fe-chelatase Bradyrhizobium 

japonicum 

Rice (cytosol) Ubiquitin 1 Osmotic - Salt Higher photosynthetic 

activity and pigments 

contents, lower membrane 

oxidative damage 

[93] 

Solanesyl 

diphosphate 

synthase 

Arabidopsis Arabidopsis (ER) CaMV 35S High light Higher photosynthetic 

activity, lower membrane 

oxidative damage 

[94] 



 

 

 

 

 

 

Abbreviations: 2X: double copy of the gene or promoter; AOX: mitochondrial alternative oxidase; CaMV 35S: cauliflower mosaic virus 35S promoter; ER: 

endoplasmic reticulum; Fld: flavodoxin; FNR: ferredoxin-NADP(H) oxidoreductase; GOX: glycolate oxidase; MDH: NADPH-dependent malate dehydrogenase; MV: 

methyl viologen; PTOX: plastid terminal oxidase; Rubisco: ribulose 1,5-bisphosphate carboxylase/oxygenase; UCP: mitochondrial uncoupling protein. Parentheses in 

the Transgenic plant column indicate the location where the transgenic product was targeted. 

 

  



Abbreviations: CaMV 35S: cauliflower mosaic virus 35S promoter; mFiMV: fig mosaic virus promoter; Grx: glutaredoxin; MSR: methionine sulfoxide reductases; MV: methyl 

viologen; NTR: NADPH-dependent thioredoxin reductase; PpsbA: constitutive chloroplast promoter; PPP1: pathogen-inducible promoter; Prrn: constitutive 16S rRNA 

 

 

Table 4. Improving stress tolerance by engineering reductive repair systems 

Transgene 

product 

Origin Transgenic plant Promoter Stress assayed Results       References 

Trx H Tobacco Tobacco (chloroplast) PPP1  Oxidative (MV) Lower ROS accumulation [95] 

Trx F, Trx M Tobacco Tobacco (chloroplast) Prrn, PrrnG10L, 

PpsbA 

Chilling - High light 

- Oxidative (MV) 

Higher photosynthetic activity and 

pigments contents, lower membrane 

oxidative damage 

[96] 

Trx M2 Arabidopsis Arabidopsis 

(chloroplast) 

CaMV 35S Salt Better growth (total fresh weight, 

root length) 

[97] 

NTR Arabidopsis Arabidopsis (cytosol) CaMV 35S Drought Higher pigment contents, better 

growth (total fresh weight), 

increased survival rates 

[98] 

Grx 5 Pteris 

vittata 

Arabidopsis (plastid) mFiMV  Heat Lower membrane oxidative damage [99] 

Grx S17 Arabidopsis Tomato (cytosol) CaMV 35S Heat Higher photosynthetic activity and 

pigment contents, lower membrane 

oxidative damage, better growth 

(total fresh and dry weight) 

[100] 

MSR A4.1 Rice Rice (chloroplast) Actin 1 Salt Higher photosynthetic activity, 

lower membrane oxidative damage, 

decreased wilting 

[101] 

MSR A4 Arabidopsis Arabidopsis 

(chloroplast) 

CaMV 35S Osmotic - Salt Better growth (root length) [102] 

MSR B2 Pepper Tomato (cytosol) CaMV 35S Oxidative (MV) Higher pigment contents, lower 

membrane oxidative damage 

[103] 



promoter; PrrnG10L: Prrn fused to the leader region of the bacteriophage T7 gene 10; Trx: thioredoxin. Parentheses in the Transgenic plant column indicate the location where 

the transgenic product was targeted. 
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