#### **Supporting Information**

#### Synthesis and *in vitro* Biological Evaluation of Novel Thymidine Analogs Containing 1*H*-1,2,3-Triazolyl, 1*H*- Tetrazolyl, and 2*H*-Tetrazolyl Fragments

Elena A. Popova<sup>a</sup>, Gayane K. Ovsepyan<sup>a</sup>, Aleksandra V. Protas<sup>a</sup>, Elena B. Erkhitueva<sup>a</sup>, Marina K. Kukhanova<sup>b</sup>, Yana L. Yesaulkova<sup>c</sup>, Vladimir V. Zarubaev<sup>c</sup>, Galina L. Starova<sup>a</sup>, Roman V. Suezov<sup>d,e</sup>, Alexei V. Eremin<sup>e,f</sup>, Vladimir A. Ostrovskii<sup>e</sup>, Rostislav E. Trifonov<sup>a</sup>

<sup>a</sup>Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia, e-mail: popova\_e\_a@bk.ru;
<sup>b</sup>Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova st., Moscow, 119991, Russia;
<sup>c</sup>Saint Petersburg Pasteur Institute, 14 Mira st., Saint Petersburg, 197101, Russia;
<sup>d</sup>Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., Saint Petersburg, 194064, Russia;
<sup>e</sup>Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky pr., Saint Petersburg, 190013, Russia;
<sup>f</sup>Peter the Great St. Petersburg Polytechnic University, 29 Polytechnic st., Saint Petersburg, 195251, Russia

#### Contents

| 1. | NMR spectra of compounds          | 2  |
|----|-----------------------------------|----|
| 2. | Mass spectra of compounds         | 30 |
| 3. | Crystal structure of compound 10d | 40 |
| 4. | Anti-HIV activity                 | 45 |

## 1. NMR spectra of compounds



Fig. S1. <sup>1</sup>H NMR spectrum of 1-(prop-2-yn-1-yl)-1H-tetrazole (8a), 400 MHz, CDCl<sub>3</sub>.



Fig. S2. <sup>13</sup>C{H} NMR spectrum of 1-(prop-2-yn-1-yl)-1H-tetrazole (8a), 101 MHz, CDCl<sub>3</sub>.



Fig. S3. <sup>1</sup>H NMR spectrum of 5-methyl-1-(prop-2-yn-1-yl)-1H-tetrazole (8b), 400 MHz, CDCl<sub>3</sub>.



**Fig. S4.** <sup>13</sup>C{H} NMR spectrum of 5-methyl-1-(prop-2-yn-1-yl)-1H-tetrazole (**8b**), 101 MHz, CDCl<sub>3</sub>.



**Fig. S5.** <sup>1</sup>H NMR spectrum of ethyl 2-(1-(prop-2-yn-1-yl)-1H-tetrazol-5-yl)acetate (**8c**), 400 MHz, CDCl<sub>3</sub>.



**Fig. S6.** <sup>13</sup>C{H} NMR spectrum of 2-(1-(prop-2-yn-1-yl)-1H-tetrazol-5-yl)acetate (8c), 101 MHz, CDCl<sub>3</sub>.



**Fig. S7.** <sup>1</sup>H NMR spectrum of ethyl 2-(2-(prop-2-yn-1-yl)-2H-tetrazol-5-yl)acetate (**9c**), 400 MHz, CDCl<sub>3</sub>.



**Fig. S8.** <sup>13</sup>C{H} NMR spectrum of ethyl 2-(2-(prop-2-yn-1-yl)-2H-tetrazol-5-yl)acetate (**9c**), 101 MHz, CDCl<sub>3</sub>.



**Fig. S9.** <sup>1</sup>H NMR spectrum of N,N-dimethyl-2-(1-(prop-2-yn-1-yl)-1H-tetrazol-5-yl)acetamide (8d), 400 MHz, CDCl<sub>3</sub>.



**Fig. S10.** <sup>13</sup>C{H} NMR spectrum of N,N-dimethyl-2-(1-(prop-2-yn-1-yl)-1H-tetrazol-5-yl)acetamide (**8d**), 101 MHz, CDCl<sub>3</sub>.



**Fig. S11.** <sup>1</sup>H NMR spectrum of N,N-dimethyl-2-(2-(prop-2-yn-1-yl)-2H-tetrazol-5-yl)acetamide (**9d**), 400 MHz, CDCl<sub>3</sub>.



**Fig. S12.** <sup>13</sup>C{H} NMR spectrum of N,N-dimethyl-2-(2-(prop-2-yn-1-yl)-2H-tetrazol-5-yl)acetamide (**9d**), 101 MHz, CDCl<sub>3</sub>.



**Fig. S13.** <sup>1</sup>H NMR spectrum of 5-phenyl-2-(prop-2-yn-1-yl)-2H-tetrazole (**9e**), 400 MHz, DMSO-d<sub>6</sub>.



Fig. S14. <sup>13</sup>C{H} NMR spectrum of 5-phenyl-2-(prop-2-yn-1-yl)-2H-tetrazole (9e), 101 MHz, DMSO-d<sub>6</sub>.



Fig. S15. <sup>1</sup>H NMR spectrum of 1-(prop-2-yn-1-yl)-5-(o-tolyl)-1H-tetrazole (8f), 400 MHz, CDCl<sub>3</sub>.



**Fig. S16.** <sup>13</sup>C{H} NMR spectrum of 1-(prop-2-yn-1-yl)-5-(o-tolyl)-1H-tetrazole (**8f**), 101 MHz, CDCl<sub>3</sub>.



Fig. S17. <sup>1</sup>H NMR spectrum of 2-(prop-2-yn-1-yl)-5-(o-tolyl)-2H-tetrazole (9f), 400 MHz, CDCl<sub>3</sub>.



**Fig. S18.** <sup>13</sup>C{H} NMR spectrum of 2-(prop-2-yn-1-yl)-5-(o-tolyl)-2H-tetrazole (**9f**), 101 MHz, CDCl<sub>3</sub>.



**Fig. S19.** <sup>1</sup>H NMR spectrum of 5-(4-nitrophenyl)-1-(prop-2-yn-1-yl)-1H-tetrazole (**8g**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S20.** <sup>13</sup>C{H} NMR spectrum of 5-(4-nitrophenyl)-1-(prop-2-yn-1-yl)-1H-tetrazole (**8g**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S21.** <sup>1</sup>H NMR spectrum of 5-(4-nitrophenyl)-2-(prop-2-yn-1-yl)-2H-tetrazole (**9g**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S22.** <sup>13</sup>C{H} NMR spectrum of 5-(4-nitrophenyl)-2-(prop-2-yn-1-yl)-2H-tetrazole (**9g**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S23.** <sup>1</sup>H NMR spectrum of 1-((2R,4S,5S)-4-(4-((1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10a**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S24.** <sup>13</sup>C{H} NMR spectrum of 1-((2R,4S,5S)-4-(4-((1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10a**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S25.** <sup>1</sup>H NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-methyl-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10b**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S26.** <sup>13</sup>C NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-methyl-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10b**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S27.** <sup>13</sup>C{dept} NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-methyl-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10b**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S28.** HMQC NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-methyl-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10b**).



**Fig. S29.** <sup>1</sup>H NMR spectrum of ethyl 2-(1-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-tetrazol-5-yl)acetate (**10c**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S30.** <sup>13</sup>C{H} NMR spectrum of ethyl 2-(1-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-tetrazol-5-yl)acetate (**10c**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S31.** <sup>1</sup>H NMR spectrum of ethyl 2-(2-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-2Htetrazol-5-yl)acetate (**11c**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S32.** <sup>13</sup>C{H} NMR spectrum of ethyl 2-(2-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-2H-tetrazol-5-yl)acetate (**11c**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S33.** <sup>1</sup>H NMR spectrum of 2-(1-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-tetrazol-5-yl)-N,N-dimethylacetamide (**10d**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S34.** <sup>13</sup>C{H} NMR spectrum of 2-(1-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-tetrazol-5-yl)-N,N-dimethylacetamide (**10d**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S35.** <sup>1</sup>H NMR spectrum of ((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-2H-tetrazol-5-yl)-N,N-dimethylacetamide (**11d**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S36.** <sup>13</sup>C{H} NMR spectrum of ((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-2H-tetrazol-5-yl)-N,N-dimethylacetamide (**11d**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S37.** <sup>1</sup>H NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-phenyl-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11e**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S38.** <sup>13</sup>C NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-phenyl-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11e**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S39.** <sup>13</sup>C{dept} NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-phenyl-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11e**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S40.** HMQC{ $^{1}H-^{13}C$ } spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-phenyl-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11e**), DMSO-d<sub>6</sub>.



**Fig. S41.** <sup>1</sup>H NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10f**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S42.** <sup>13</sup>C NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10f**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S43.** <sup>13</sup>C{dept} NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10f**), 101 MHz, DMSO-d<sub>6</sub>.



Fig. S44. HMQC $\{^{1}H^{-13}C\}$  NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (10f), DMSO-d<sub>6</sub>.



**Fig. S45.** <sup>1</sup>H NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11f**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S46.** <sup>13</sup>C NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11f**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S47.** <sup>13</sup>C{dept} NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11f**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S48.** <sup>1</sup>H NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10g**), 400 MHz, DMSO-d<sub>6</sub>.



**Fig. S49.** <sup>13</sup>C NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10g**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S50.**  ${}^{13}C{dept}$  NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10g**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S51.** <sup>1</sup>H NMR spectrum (DMSO- $d_6$ ) of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11g**), 400 MHz, DMSO- $d_6$ .



**Fig. S52.** <sup>13</sup>C NMR spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11g**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S53.** <sup>13</sup>C NMR {dept} spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11g**), 101 MHz, DMSO-d<sub>6</sub>.



**Fig. S54.** HMQC{ $^{1}H-^{13}C$ } NMR spectrum (DMSO- $d_6$ ) of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11g**).



## 2. Mass spectra of compounds

**Fig. S55.** Mass spectrum of 1-((2R,4S,5S)-4-(4-((1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10a**).



**Fig. S56**. Mass spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-methyl-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10b**).



**Fig. S57**. Mass spectrum of ethyl 2-(1-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-tetrazol-5-yl)acetate (**10c**).



**Fig. S58**. Mass spectrum of ethyl 2-(2-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-2H-tetrazol-5-yl)acetate (**11c**).



**Fig. S59**. Mass spectrum of 2-(1-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-1H-tetrazol-5-yl)-N,N-dimethylacetamide (**10d**).



**Fig. S60**. Mass spectrum of 2-(2-((1-((2S,3S,5R)-2-(hydroxymethyl)-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl)-1H-1,2,3-triazol-4-yl)methyl)-2H-tetrazol-5-yl)-N,N-dimethylacetamide (**11d**).



**Fig. S61**. Mass spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-phenyl-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11e**).



**Fig. S62**. Mass spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10f**).



**Fig. S63**. Mass spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(o-tolyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**11f**).



**Fig. S64**. Mass spectrum of 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-((5-(4-nitrophenyl)-1H-tetrazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (**10g**).

# 3. Crystal structure of compound 10d

| Identification code                         | 10d                                                  |
|---------------------------------------------|------------------------------------------------------|
| Empirical formula                           | $C_{19}H_{28}N_{10}O_6$                              |
| Formula weight                              | 492.51                                               |
| Temperature/K                               | 100(2)                                               |
| Crystal system                              | orthorhombic                                         |
| Space group                                 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>        |
| a/Å                                         | 4.72153(19)                                          |
| b/Å                                         | 15.4366(7)                                           |
| c/Å                                         | 31.4484(12)                                          |
| α/°                                         | 90                                                   |
| β/°                                         | 90                                                   |
| γ/°                                         | 90                                                   |
| Volume/Å <sup>3</sup>                       | 2292.09(16)                                          |
| Ζ                                           | 4                                                    |
| $\rho_{calc}g/cm^3$                         | 1.427                                                |
| $\mu/\text{mm}^{-1}$                        | 0.109                                                |
| F(000)                                      | 1040.0                                               |
| Crystal size/mm <sup>3</sup>                | 0.2 	imes 0.2 	imes 0.1                              |
| Radiation                                   | MoKα ( $\lambda = 0.71073$ )                         |
| $2\Theta$ range for data collection/°       | 6.556 to 54.998                                      |
| Index ranges                                | $-6 \le h \le 4, -19 \le k \le 20, -40 \le l \le 40$ |
| Reflections collected                       | 17747                                                |
| Independent reflections                     | 5228 [ $R_{int} = 0.0566$ , $R_{sigma} = 0.0492$ ]   |
| Data/restraints/parameters                  | 5228/0/322                                           |
| Goodness-of-fit on F <sup>2</sup>           | 1.040                                                |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0462, wR_2 = 0.1113$                        |
| Final R indexes [all data]                  | $R_1 = 0.0521, wR_2 = 0.1153$                        |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.50/-0.30                                           |
| CCDC number                                 | 1846759                                              |

Table S1. Crystal data and structure refinement for 10d

**Table S2.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **10d.** U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x        | у          | Z         | U(eq)   |
|------|----------|------------|-----------|---------|
| O2   | -4171(5) | 6660.5(12) | 109.5(5)  | 19.2(4) |
| O3   | 1927(4)  | 6125.1(12) | 1784.3(5) | 15.5(4) |
| O4   | -2706(4) | 5022.3(12) | 2106.6(6) | 18.3(4) |
| 01   | 2034(4)  | 7960.8(12) | 1012.3(6) | 20.3(4) |
| O5   | 1239(5)  | 6107.5(12) | 4008.3(6) | 22.9(5) |
| O1S  | -2194(6) | 5566.5(15) | 3336.8(8) | 38.6(6) |

| N3  | 1467(5)  | 7132.0(13) | 2687.7(6)  | 13.3(5) |
|-----|----------|------------|------------|---------|
| N2  | -730(5)  | 6854.5(14) | 1272.5(6)  | 13.5(5) |
| N6  | 3894(5)  | 8038.7(14) | 3921.6(6)  | 14.5(5) |
| N4  | 2319(5)  | 7914.5(14) | 2553.7(7)  | 16.3(5) |
| N7  | 2175(5)  | 8733.9(14) | 3892.1(7)  | 18.1(5) |
| N5  | 3994(5)  | 8227.1(15) | 2853.8(7)  | 18.0(5) |
| N1  | -1032(5) | 7275.8(14) | 566.8(6)   | 14.5(5) |
| N9  | 1345(6)  | 8049.3(16) | 4489.1(7)  | 21.5(5) |
| N8  | 655(6)   | 8735.1(16) | 4234.7(7)  | 22.6(5) |
| N10 | 4029(6)  | 5256.8(15) | 4425.1(8)  | 22.3(5) |
| C4  | -3135(6) | 6683.6(16) | 470.3(7)   | 13.4(5) |
| C1  | 234(6)   | 7405.0(17) | 957.8(8)   | 14.3(5) |
| C14 | 3372(6)  | 7626.5(17) | 4288.2(8)  | 16.0(5) |
| C3  | -3929(6) | 6097.7(16) | 809.2(8)   | 13.5(5) |
| C2  | -2676(6) | 6204.5(16) | 1190.5(8)  | 13.0(5) |
| C8  | -342(6)  | 6560.1(16) | 2427.9(8)  | 13.0(5) |
| C12 | 4200(6)  | 7640.3(17) | 3171.7(8)  | 13.9(5) |
| C16 | 3185(6)  | 6023.8(18) | 4272.8(8)  | 18.1(6) |
| C6  | 511(6)   | 6917.9(17) | 1698.7(7)  | 13.7(5) |
| C9  | 1493(6)  | 5850.7(16) | 2219.0(7)  | 13.4(5) |
| C11 | 2611(6)  | 6933.4(17) | 3069.9(8)  | 16.8(6) |
| C13 | 5848(6)  | 7826.5(18) | 3570.9(8)  | 16.7(5) |
| C10 | 192(6)   | 4965.3(18) | 2228.6(9)  | 18.2(6) |
| C15 | 4739(6)  | 6818.8(17) | 4439.1(8)  | 18.1(6) |
| C5  | -6062(6) | 5403.1(17) | 724.9(8)   | 16.3(6) |
| C7  | -1674(6) | 7035.9(17) | 2052.5(7)  | 13.8(5) |
| C17 | 6191(7)  | 5181(2)    | 4759.7(10) | 28.3(7) |
| C1S | -3633(9) | 4767(2)    | 3295.7(11) | 42.5(9) |
| C18 | 2660(8)  | 4453.8(19) | 4302.8(11) | 31.5(8) |
|     |          |            |            |         |

**Table S3.** Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **10d**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | <b>U</b> 11 | $\mathbf{U}_{22}$ | <b>U</b> 33 | <b>U</b> 23 | <b>U</b> 13 | <b>U</b> 12 |
|------|-------------|-------------------|-------------|-------------|-------------|-------------|
| O2   | 29.0(11)    | 18.5(10)          | 10.0(8)     | 0.9(7)      | -5.2(8)     | 1.9(9)      |
| O3   | 17.1(9)     | 22.0(9)           | 7.5(8)      | 0.1(7)      | 1.0(7)      | 3.2(8)      |
| O4   | 15.4(10)    | 14.1(9)           | 25.4(10)    | -1.3(8)     | -2.0(8)     | -1.8(8)     |
| 01   | 24.2(11)    | 21(1)             | 15.7(9)     | 2.5(7)      | 0.1(8)      | -7.8(9)     |
| O5   | 30.9(12)    | 19.4(10)          | 18.5(9)     | 0.1(8)      | -3.0(9)     | -0.7(9)     |
| O1S  | 43.4(15)    | 39.8(13)          | 32.8(12)    | 15.7(11)    | -15.1(12)   | -16.5(12)   |
| N3   | 15.8(12)    | 15(1)             | 9.2(9)      | -0.2(8)     | 0.1(9)      | -2.0(9)     |
| N2   | 16.7(12)    | 16.9(11)          | 7.1(9)      | 0.7(8)      | -0.9(9)     | -3.1(9)     |
| N6   | 18.3(12)    | 14.1(10)          | 11.2(10)    | -0.2(8)     | -5.1(9)     | -0.5(9)     |
| N4   | 21.9(12)    | 15.1(11)          | 11.9(10)    | 0.1(8)      | -3.5(9)     | -2(1)       |
| N7   | 22.4(13)    | 14.7(10)          | 17.2(10)    | -1.6(9)     | -6(1)       | 2.3(10)     |

| N5  | 22.7(13) | 19.1(11) | 12.1(10) | -0.2(9)  | -4(1)    | -2.9(10)  |
|-----|----------|----------|----------|----------|----------|-----------|
| N1  | 20.5(12) | 14.6(10) | 8.4(9)   | 3.8(8)   | 0.0(9)   | -2.5(9)   |
| N9  | 23.6(13) | 23.1(12) | 17.6(11) | -1.3(9)  | -0.9(10) | 1.7(10)   |
| N8  | 25.8(14) | 21.3(12) | 20.6(11) | -2.4(9)  | -3.6(11) | 3.3(11)   |
| N10 | 27.0(14) | 19.3(12) | 20.8(12) | 4.6(9)   | 7.4(11)  | 4.4(10)   |
| C4  | 16.8(13) | 13.8(12) | 9.6(10)  | -0.2(9)  | -0.4(10) | 2.8(10)   |
| C1  | 16.5(13) | 14.4(12) | 11.9(11) | 0.6(9)   | 2.1(11)  | 1(1)      |
| C14 | 18.5(14) | 16.3(13) | 13.3(12) | -2.4(10) | -3.2(11) | -1.5(11)  |
| C3  | 14.6(13) | 15.3(12) | 10.6(11) | 0.6(9)   | 0.3(10)  | 1.8(10)   |
| C2  | 12.5(13) | 14.8(12) | 11.7(11) | 1.4(9)   | 2.5(10)  | -1.2(10)  |
| C8  | 13.3(13) | 16.3(13) | 9.3(11)  | 0.4(9)   | -1.6(10) | -2(1)     |
| C12 | 13.4(13) | 17.0(12) | 11.3(11) | -0.3(9)  | -0.2(10) | 0.9(10)   |
| C16 | 23.8(15) | 20.3(13) | 10.2(11) | 1.5(10)  | 7.7(11)  | 2.1(12)   |
| C6  | 16.6(13) | 15.3(12) | 9.1(11)  | -1.0(9)  | -2.4(10) | -0.9(10)  |
| C9  | 13.8(13) | 18.5(12) | 8.0(11)  | 1.0(9)   | -2(1)    | 0.5(10)   |
| C11 | 23.2(15) | 17.2(12) | 9.9(11)  | 1.8(10)  | -2.1(11) | -2.7(11)  |
| C13 | 17.2(14) | 22.7(13) | 10.2(11) | -0.6(10) | -1.3(10) | -4.1(11)  |
| C10 | 14.8(13) | 18.6(14) | 21.2(13) | 1.6(11)  | -2.2(11) | 0.5(11)   |
| C15 | 19.5(14) | 20.3(14) | 14.5(12) | 4.1(10)  | -1.1(11) | 1.9(11)   |
| C5  | 16.1(13) | 17.3(13) | 15.6(12) | -1.4(10) | -1.6(11) | -0.8(10)  |
| C7  | 14.4(13) | 17.2(12) | 10.0(11) | -0.9(9)  | -0.8(10) | 0.7(10)   |
| C17 | 29.5(17) | 28.0(16) | 27.4(15) | 12.7(12) | 4.6(14)  | 9.4(14)   |
| C1S | 55(2)    | 44(2)    | 29.2(17) | 4.6(15)  | 1.7(18)  | -12.5(19) |
| C18 | 43(2)    | 16.6(14) | 34.9(17) | 0.7(12)  | 13.0(16) | 1.5(14)   |
|     |          |          |          |          |          |           |

## Table S4. Bond Lengths for 10d.

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| O2   | C4   | 1.236(3) | N1   | C4   | 1.383(3) |
| O3   | C6   | 1.420(3) | N1   | C1   | 1.382(3) |
| O3   | C9   | 1.446(3) | N9   | N8   | 1.366(3) |
| O4   | C10  | 1.424(3) | N9   | C14  | 1.320(4) |
| O1   | C1   | 1.220(3) | N10  | C16  | 1.338(3) |
| O5   | C16  | 1.246(3) | N10  | C17  | 1.471(4) |
| O1S  | C1S  | 1.415(4) | N10  | C18  | 1.450(4) |
| N3   | N4   | 1.341(3) | C4   | C3   | 1.447(3) |
| N3   | C8   | 1.475(3) | C14  | C15  | 1.482(4) |
| N3   | C11  | 1.353(3) | C3   | C2   | 1.347(3) |
| N2   | C1   | 1.382(3) | C3   | C5   | 1.495(4) |
| N2   | C2   | 1.385(3) | C8   | C9   | 1.543(4) |
| N2   | C6   | 1.466(3) | C8   | C7   | 1.526(3) |
| N6   | N7   | 1.349(3) | C12  | C11  | 1.362(4) |
| N6   | C14  | 1.340(3) | C12  | C13  | 1.505(3) |
| N6   | C13  | 1.475(3) | C16  | C15  | 1.523(4) |
| N4   | N5   | 1.323(3) | C6   | C7   | 1.528(4) |

| N7 | N8  | 1.295(3) | C9 | C10 | 1.499(4) |
|----|-----|----------|----|-----|----------|
| N5 | C12 | 1.352(3) |    |     |          |

## Table S5. Bond Angles for 10d.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C6   | O3   | C9   | 111.40(18) | N9   | C14  | N6   | 108.1(2)   |
| N4   | N3   | C8   | 122.6(2)   | N9   | C14  | C15  | 125.4(2)   |
| N4   | N3   | C11  | 111.3(2)   | C4   | C3   | C5   | 119.5(2)   |
| C11  | N3   | C8   | 126.0(2)   | C2   | C3   | C4   | 117.7(2)   |
| C1   | N2   | C2   | 122.1(2)   | C2   | C3   | C5   | 122.8(2)   |
| C1   | N2   | C6   | 118.8(2)   | C3   | C2   | N2   | 123.1(2)   |
| C2   | N2   | C6   | 118.9(2)   | N3   | C8   | C9   | 109.6(2)   |
| N7   | N6   | C13  | 120.1(2)   | N3   | C8   | C7   | 112.3(2)   |
| C14  | N6   | N7   | 109.1(2)   | C7   | C8   | C9   | 104.1(2)   |
| C14  | N6   | C13  | 130.8(2)   | N5   | C12  | C11  | 108.9(2)   |
| N5   | N4   | N3   | 106.5(2)   | N5   | C12  | C13  | 121.7(2)   |
| N8   | N7   | N6   | 106.1(2)   | C11  | C12  | C13  | 129.3(2)   |
| N4   | N5   | C12  | 109.0(2)   | 05   | C16  | N10  | 123.4(3)   |
| C1   | N1   | C4   | 127.0(2)   | 05   | C16  | C15  | 120.1(2)   |
| C14  | N9   | N8   | 106.0(2)   | N10  | C16  | C15  | 116.5(2)   |
| N7   | N8   | N9   | 110.7(2)   | 03   | C6   | N2   | 107.70(19) |
| C16  | N10  | C17  | 122.2(3)   | 03   | C6   | C7   | 106.41(19) |
| C16  | N10  | C18  | 121.9(3)   | N2   | C6   | C7   | 113.8(2)   |
| C18  | N10  | C17  | 115.6(2)   | 03   | C9   | C8   | 105.92(19) |
| O2   | C4   | N1   | 120.3(2)   | 03   | C9   | C10  | 110.1(2)   |
| O2   | C4   | C3   | 123.8(2)   | C10  | C9   | C8   | 114.1(2)   |
| N1   | C4   | C3   | 115.9(2)   | N3   | C11  | C12  | 104.3(2)   |
| 01   | C1   | N2   | 124.2(2)   | N6   | C13  | C12  | 110.0(2)   |
| 01   | C1   | N1   | 121.9(2)   | O4   | C10  | C9   | 109.4(2)   |
| N1   | C1   | N2   | 114.0(2)   | C14  | C15  | C16  | 111.0(2)   |
| N6   | C14  | C15  | 126.5(2)   | C8   | C7   | C6   | 103.2(2)   |

**Table S6.** Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **10d**.

| Atom | x     | у    | $\mathcal{Z}$ | U(eq) |
|------|-------|------|---------------|-------|
| H4   | -3407 | 4523 | 2095          | 27    |
| H1S  | -1331 | 5579 | 3570          | 58    |
| H1   | -437  | 7605 | 357           | 17    |
| H2   | -3151 | 5816 | 1414          | 16    |
| H8   | -1847 | 6291 | 2608          | 16    |
| H6   | 1902  | 7406 | 1707          | 16    |
| H9   | 3368  | 5829 | 2367          | 16    |
|      |       |      |               |       |

| H11  | 2362  | 6418 | 3231 | 20 |
|------|-------|------|------|----|
| H13A | 6998  | 7314 | 3648 | 20 |
| H13B | 7151  | 8319 | 3521 | 20 |
| H10A | 1218  | 4577 | 2031 | 22 |
| H10B | 337   | 4720 | 2519 | 22 |
| H15A | 4742  | 6810 | 4754 | 22 |
| H15B | 6731  | 6804 | 4341 | 22 |
| H5A  | -7784 | 5663 | 606  | 25 |
| H5B  | -6521 | 5106 | 991  | 25 |
| H5C  | -5280 | 4986 | 522  | 25 |
| H7A  | -1961 | 7657 | 2118 | 17 |
| H7B  | -3515 | 6775 | 1973 | 17 |
| H17A | 7744  | 5585 | 4701 | 42 |
| H17B | 6925  | 4588 | 4766 | 42 |
| H17C | 5344  | 5321 | 5036 | 42 |
| H1SA | -4000 | 4650 | 2994 | 64 |
| H1SB | -5433 | 4794 | 3450 | 64 |
| H1SC | -2461 | 4302 | 3414 | 64 |
| H18A | 1790  | 4186 | 4553 | 47 |
| H18B | 4068  | 4058 | 4182 | 47 |
| H18C | 1194  | 4575 | 4090 | 47 |
|      |       |      |      |    |

#### Crystal structure determination of compound 10d

**Crystal Data** for C<sub>19</sub>H<sub>28</sub>N<sub>10</sub>O<sub>6</sub> (*M* =492.51 g/mol): orthorhombic, space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> (no. 19), a = 4.72153(19) Å, b = 15.4366(7) Å, c = 31.4484(12) Å, V = 2292.09(16) Å<sup>3</sup>, Z = 4, T = 100(2) K,  $\mu$ (MoK $\alpha$ ) = 0.109 mm<sup>-1</sup>, *Dcalc* = 1.427 g/cm<sup>3</sup>, 17747 reflections measured (6.556°  $\leq 2\Theta \leq 54.998°$ ), 5228 unique ( $R_{int} = 0.0566$ ,  $R_{sigma} = 0.0492$ ) which were used in all calculations. The final  $R_1$  was 0.0462 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1152 (all data).

# 4. Anti-HIV activity



**Fig. S65.** The photo of MT-4 cells: a) cells without protection; b) cells control; c) protection of MT-4 cells by **10d** (50  $\mu$ M); d) protection of MT-4 cells by AZT (0.1  $\mu$ M).