SUPPLEMENTARY MATERIAL

One new xanthenone from the marine-derived fungus Aspergillus versicolor MF160003

Zhijun Song^{a,b,†}, Jieyu Gao^{a,c†}, Jiansen Hu^{a,b}, Hongtao He^{a,b}, Pei Huang^{a,d}, Lixin Zhang^e* and Fuhang Song^a*

^aKey Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cSchool of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China ^dDepartment of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi 563000, China ^eState Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China

[†]The authors contributed to this work equally.

*Corresponding author: Fuhang Song

E-mail: songfuhang@im.ac.cn

*Corresponding author: Lixin Zhang

E-mail: lxzhang@ecust.edu.cn

Abstract: A new xanthenone derivative, 3-hydroxy pinselin (1), together with five known analogues (2-6) were isolated from the marine-derived fungus *Aspergillus versicolor* MF160003. Their structures were identified by extensive 1D- and 2D-NMR, and high-resolution mass spectrometry data. Compounds **5** and **6** showed moderate bioactivities against BCG with MIC values of 40 and 20 μ g/mL, respectively.

Keywords: Marine-derived fungus; Aspergillus versicolor; xanthenone; anti-BCG

List of contents

Figure S1. ¹ H NMR spectrum (500 MHz, DMSO- d_6) of 1	.3
Figure S2. ¹³ C NMR spectrum (500 MHz, DMSO- d_6) of 1	.3
Figure S3. HMBC spectrum (500 MHz, DMSO- <i>d</i> ₆) of 1	.4
Figure S4. Key HMBC correlations (H-C) of 1	.4
Table S1 1D NMR data of compound 1 (500 MHz, DMSO- d_6)	5
Table S2 Antibacterial activities of compounds $1 - 6$	5

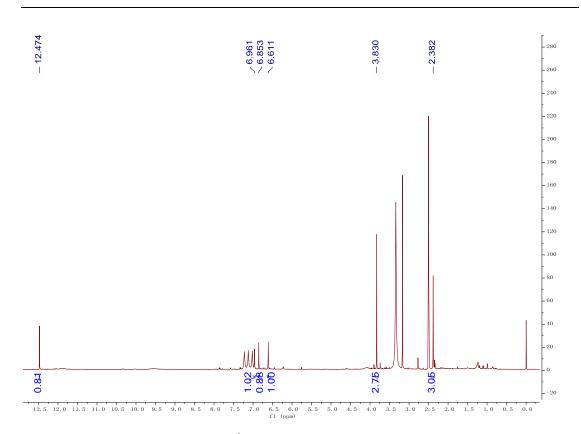


Figure S1. ¹H NMR spectrum (500 MHz, DMSO) of **1**

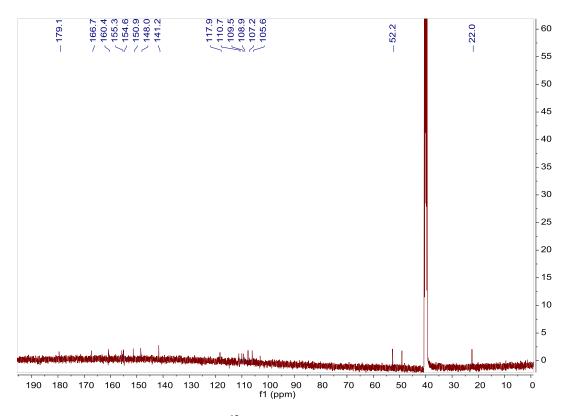


Figure S2.¹³C NMR spectrum (500 MHz, DMSO) of 1

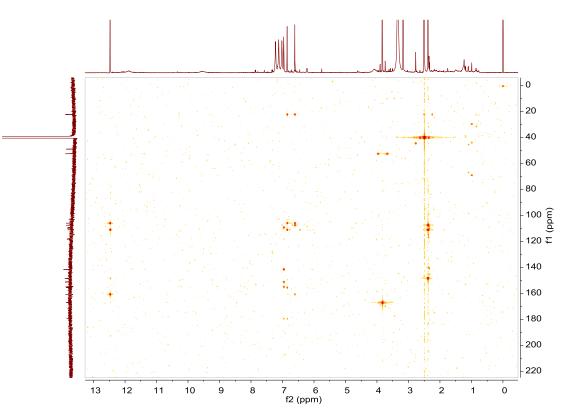


Figure S3. HMBC spectrum (500 MHz, DMSO) of 1

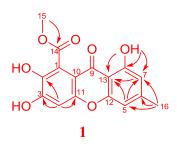


Figure S4. Key HMBC correlation (H-C) of 1

	1					
Pos.	$\delta_{\rm C}$, mult	$\delta_{\rm H}$, (<i>J</i> in Hz)				
1	117.8					
2	154.6					
3	141.1					
4	109.5	6.96, s				
5	107.1	6.85, s				
6	150.8					
7	110.7	6.61, s				
8	160.3					
9	179.1					
10	108.8					
11	148.0					
12	155.2					
13	105.6					
14	166.7					
15	52.2	3.83, s				
16	21.9	2.38, s				
8-OH		12.47, s				

Table S11D NMR a date of compounds 1 (500 MHz, DMSO- d_6)

NMR spectra were taken on a Bruker 500 MHz NMR system in DMSO- d_6 with the residual solvent peaks as an internal standard (δ_C 39.52, δ_H 2.50 ppm.)

Table S2 Antibacterial activities of compounds 1–6

Organism (strain)	1	2	3	4	5	6	Control
Methicillin-resistant S. aureus ^d	>100	>100	>100	>100	>100	>100	1.25 ^a
S. aureus (ATCC 6538)	>100	>100	>100	>100	>100	>100	0.625 ^a
B. subtilis (ATCC 6633)	>100	>100	>100	>100	>100	>100	0.313 ^a
P.aeruginosa (ATCC 15692)	>100	>100	>100	>100	>100	>100	2.5 ^b
BCG (M.bovis Pasteur 1173P2)	>100	>100	>100	>100	40	20	0.02 ^c

^a Vancomycin

^bCiprofloxacin

^c Isoniazid

^d MRSA, Clinical isolates, Beijing Chao-yang Hospital, Beijing, China