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Abstract

In this supplement, we (i) study in detail the variance test statistics discussed the

main paper, (ii) report some Monte Carlo evidence on the quasi-maximum likelihood

(QML) group selection approach considered in that same paper, and (iii) provide some

additional Monte Carlo results on the unit root testing problem.

1 The variance tests

In this section we begin by presenting the test statistics discussed in the main paper for test-

ing the equality of the group-wise variances. The asymptotic distributions of these statistics

are reported, which are evaluated by means of Monte Carlo simulation in Section 1.2.

1.1 The test statistics and their asymptotic distributions

As mentioned in the main paper, if there is uncertainty regarding the equality of the group-

wise variances, then the appropriate approach will depend on the extent to which there is a

priori knowledge regarding the grouping. In this section, we begin by considering the case

when the researcher knows which units that belong to which group, and the question is if

the variances of those groups are in fact equal. Let us therefore consider two such groups, m

and n. A natural candidate for a test is the following t-statistic:

τmn,t =

√
N(σ̂2

m,t − σ̂2
n,t)

ω̂mn,t
,

where

ω̂2
mn,t = N

(
1

(Nm − Nm−1)
+

1
(Nn − Nn−1)

)
(σ̂2

m,t + σ̂2
n,t)

2(κ̂t − 1),
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with κ̂t = ∑N
i=1 ϵ̂4

i,t/N. While τmn,t is only point-wise in t, the point-wise statistics can be

combined. The first combination statistic that we consider is simply the empirical rejection

frequency of τmn,t, and is given by

Fmn =
1
T

T

∑
t=pi+2

1(|τmn,t| > cα),

where 1(A) and cα denote is the indicator function for the event A, and the (1 − α)-quantile

of the standard normal distribution, respectively. This statistic allows σ̂2
m,t to deviate from

σ̂2
n,t for a pre-specified number of time points, as specified by α. A stronger test is to require

σ̂2
m,t not to deviate from σ̂2

n,t by more than the sampling error at every t. The following test

statistic is based on this stronger requirement:

Mmn = max
t=pi+2,...,T

|τmn,t|.

The relevant asymptotic results are reported in Proposition 1.

Proposition 1. Under the conditions of Theorem 1 and the null hypothesis of H0 : σ2
m,t = σ2

n,t = σ2
t

for all t, given κ ≥ 0, as N, T → ∞ with N/T → 0

Fmn → 2α,

P(Mmn < x) ∼ (2Φ(x)− 1)T,

where ∼ and Φ(x) signify asymptotic equivalence and the standard normal cumulative distribution

function, respectively.

Proof of Proposition 1.

This proof is almost an immediate consequence of Lemma A.1 in the main paper. Note first

that by that lemma,

σ̂2
m,t = σ2

m,t + C0m,t = σ2
m,t + c0m,t + Op

(
1

C2NT

)
.

where C2NT = min{N,
√

T} and c0m,t = ∑Nm
i=Nm−1+1(ϵ

2
i,t − σ2

m,t)/(Nm − Nm−1). Consider c0m,t.

Clearly, E(c0m,t) = 0 and

E[(
√

Nm − Nm−1c0m,t)
2] = σ4

m,t
1

(Nm − Nm−1)

Nm

∑
i=Nm−1+1

E[(ε2
i,t − 1)2]

= σ4
m,t

1
(Nm − Nm−1)

Nm

∑
i=Nm−1+1

(E(ε4
i,t)− 1)

= σ4
m,t(κt − 1).
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Therefore, by a central limit theorem,√
Nm − Nm−1c0m,t →d N(0, σ4

m,t(κt − 1)) (1)

as N, T → ∞. But we also have, for m ̸= n,

(Nn − Nn−1)(Nm − Nm−1)E(c0n,tc0m,t)

= σ4
n,tσ

4
m,t

Nn

∑
i=Nn−1+1

Nm

∑
k=Nm−1+1

E[(ε2
i,t − 1)(ε2

k,t − 1)]

= σ4
n,tσ

4
m,t

Nn

∑
i=Nn−1+1

Nm

∑
k=Nm−1+1

[E(ε2
i,t)E(ε2

k,t)− E(ε2
i,t)− E(ε2

k,t) + 1] = 0,

where the second equality holds because of cross-section independence. These results imply

that under the null hypothesis of H0 : σ2
m,t = σ2

n,t = σ2
t ,

√
N(σ̂2

m,t − σ̂2
n,t) =

√
N(σ2

m,t + c0m,t)−
√

N(σ2
n,t + c0n,t) + Op

( √
N

C2NT

)
=

√
Nc0m,t −

√
Nc0n,t + Op

( √
N

C2NT

)
=

√
Nm − Nm−1√
λm − λm−1

c0m,t −
√

Nn − Nn−1√
λn − λn−1

c0n,t + Op

( √
N

C2NT

)
→d N(0, ω2

mn,t) (2)

as N, T → ∞ with N/T → 0, where

ω2
mn,t =

(
1

(λm − λm−1)
+

1
(λn − λn−1)

)
σ4

t (κt − 1).

Note how the second equality here follows from imposing H0, while the third follows from

the definition of Nm as Nm = ⌊λmN⌋. Now, according to Lemma A.1, we have that σ̂2
m,t =

σ2
m,t +Op(1/

√
N ) and, similarly, κ̂t = κt +Op(1/

√
N ). This, together with Taylor expansion

of the inverse square root, implies

τmn,t =

√
N(σ̂2

m,t − σ̂2
n,t)

ω̂mn,t
=

√
N(σ̂2

m,t − σ̂2
n,t)

ωmn,t
+ Op

(
1√
N

)
→d N(0, 1) (3)

as N, T → ∞ with N/T → 0. Hence, denoting by cα the (1− α)-quantile of N(0, 1), we have

P(|τmn,t| > cα) → 2α, suggesting that, by a law of large numbers,

Fmn =
1
T

T

∑
t=pi+2

1(|τmn,t| > cα) → 2α, (4)

where 1(A) is the indicator function for the event A. This establishes the first result.
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As for the second result, note that since ϵi,t is serially uncorrelated, c0m,t is serially cor-

related too. Hence, τmn,t is asymptotically uncorrelated across t, and hence independent by

normality. Thus, letting Mmn = maxt=pi+2,...,T |τmn,t|, we can show that

P(Mmn < x) = P
(

max
t=pi+2,...,T

|τmn,t| < x
)
∼

T

∏
t=pi+2

P(|τmn,t| < x) = (2Φ(x)− 1)T, (5)

where ∼ signifies asymptotic equivalence and Φ(x) is the cumulative distribution function

of N(0, 1). This establishes the second result, and hence the proof of the proposition is com-

plete. �

According to Proposition 1, the appropriate α-level critical value for use with Mmn, cα,

is defined by Φ(cα) = (1 + (1 − cα)1/T)/2, which is increasing in T. This is illustrated in

Table 1, which report the critical values for some selected values of T. If Mmn accepts, then

we conclude that groups m and n have the same variance, which means that for the purpose

of estimation of the group-specific variances, they can be treated as one. On the other hand,

if the test rejects, then the groups should not be merged. In contrast to Mmn, Fmn is not a

statistical test but rather a point estimator of the theoretical rejection frequency. If H0 is true,

then Fmn should be close to 2α, whereas if H0 is false, then Fmn should be larger than 2α.

Table 1: Critical values for Mmn.

α T = 20 T = 50 T = 100 T = 200 T = 400

0.01 3.479 3.718 3.889 4.054 4.214
0.05 3.016 3.283 3.474 3.656 3.830
0.1 2.791 3.075 3.276 3.467 3.649

Notes: α refers to the significance level.

The above tests suppose that the researcher knows the group identity of all the units of

the panel. If this is not the case, then Fmn and Mmn may be applied in a sequential fashion

to determine the groups. In the main paper an approach based on QML is proposed. A

key step in that approach is to make use of the time series dimension to order the cross-

section, after which the problem of group selection becomes a similar to that of breakpoint

estimation. Specifically, the cross-section is ordered according to σ̂2
i = ∑T

t=pi+2 ϵ̂2
i,t/T. This

makes it possible to use the following sequential test approach (see, for example, Bai, 1997;

1999, for similar proposals in the case of break estimation). We begin by testing H0 : σ2
1,t =
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... = σ2
M+1,t = σ2

t for all t. The appropriate version of τmn,t to use in this case, denoted τn,t, is

the same as before but with σ̂2
m,t and ω̂2

mn,t replaced by σ̂2
t = ∑N

i=1 ϵ̂2
i,t/N and

ω̂2
n,t = N

(
1

(Nn − Nn−1)
− 1
)

σ̂4
t (κ̂t − 1),

respectively. The resulting combination statistics are written in an obvious notation as Fn

and Mn.1 If the null is not rejected by these test statistics, there is no heteroskedasticity, and

so the testing is stopped. If, however, the null is rejected, then the testing continues by using

Fmn and Mmn to test the equality of potential group candidates, which may be selected by

looking for obvious breaks in the ordered σ̂2
i . The appropriate group to use in the first step

(when testing H0 : σ2
1,t = ... = σ2

M+1,t = σ2
t ) can be selected in the same way. Because in this

case only one group is needed, one may focus on the group where the difference to the other

units is most obvious.

The steps used for evaluating τn,t are exactly the same as in the proof of Proposition 1.

The only difference is that now

√
N(σ̂2

t − σ̂2
n,t)

=
M+1

∑
m=1

(λm − λm−1)
√

N(σ2
m,t + c0m,t)−

√
N(σ2

n,t + c0n,t) + Op

( √
N

C2NT

)
=

M+1

∑
m=1

(λm − λm−1)
√

Nc0m,t −
√

Nc0n,t + Op

( √
N

C2NT

)
=

M+1

∑
m=1

(λm − λm−1)

√
Nm − Nm−1√
λm − λm−1

c0m,t −
√

Nn − Nn−1√
λn − λn−1

c0n,t + Op

( √
N

C2NT

)
=

M+1

∑
m ̸=n

(λm − λm−1)

√
Nm − Nm−1√
λm − λm−1

c0m,t

+ (λn − λn−1 − 1)
√

Nn − Nn−1√
λn − λn−1

c0n,t + Op

( √
N

C2NT

)
→d N(0, ω2

n,t) (6)

as N, T → ∞ with N/T → 0, where

ω2
n,t =

(
M+1

∑
m ̸=n

(λm − λm−1) +
(λn − λn−1 − 1)2

(λn − λn−1)

)
σ4

t (κt − 1)

=

(
1

(λn − λn−1)
− 1
)

σ4
t (κt − 1).

The second equality follows from imposing the null hypothesis of σ2
1,t = ... = σ2

M+1,t = σ2
t .

As for the third equality, note that ∑M+1
m=1 (λm − λm−1) = 1, suggesting that, under the null,

1As we show in Remark 1 to the proof of Proposition 1, the results reported in Proposition 1 apply also to Fn
and Mn.
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∑M+1
m=1 (λm − λm−1)σ

2
m,t − σ2

n,t = ∑M+1
m=1 (λm − λm−1)σ

2
t − σ2

t = 0. Hence, the results reported in

Proposition 1 for τmn,t apply also to τn,t.

Table 2: Rejection frequencies and averages for Mmn and Fmn, respectively.

δ = 0 δ = 0.5 δ = 1
N Case Mmn Fmn Mmn Fmn Mmn Fmn

50 1 0.7 4.4 10.9 14.9 56.2 36.8
100 1 2.6 4.7 58.1 28.3 100 67
200 1 4 4.8 98.3 51.5 100 93
50 2 0.7 4.4 10.9 14.9 56.2 36.8

100 2 2.6 4.7 58.1 28.3 100 67
200 2 4 4.8 98.3 51.5 100 93
50 3 0.7 4.4 10.9 14.9 56.2 36.8

100 3 2.6 4.7 58.1 28.3 100 67
200 3 4 4.8 98.3 51.5 100 93

Notes: The results reported for Mmn are the 5% rejection frequencies.
The results reported for Fmn are average test values across replications.
σ2

m,t = δiσ
2
t , where δi = 1 + δ1(i ≥ 0.5N) and case 1–3 refer to the model

assumed for σ2
t .

1.2 Monte Carlo simulations

In this section, we investigate briefly the small-sample accuracy of the asymptotic results

reported in Proposition 1. The data generating process (DGP) used for this purpose is very

simple and is given by

yi,t = σm,tε i,t, (7)

where ε i,t ∼ N(0, 1). Hence, since in this section we are only interested in the testing of the

group-wise variances, we chose a DGP in which the heteroskedasticity is the key feature;

the results for the unit root testing problem are reported in the main paper (see Section 4).

As in that paper, three cases regarding the time-variation of σ2
m,t are considered: (1) σ2

t = 1;

(2) σ2
t = 1 − 1(t ≥ ⌊T/2⌋)3/4; (3) σ2

t = 1 − 3/4(1 + exp(−(t − ⌊T/2⌋))). Cross-section

variation is induced by setting σ2
m,t = δiσ

2
t , where δi = 1 + δ1(i ≥ 0.5N). Hence, in this DGP

there are two groups, and the difference between them is governed by δ. If δ = 0, then the

variances are the same, whereas if δ ̸= 0, then they are not. The significance level is set to

5% and the number of replications is 3,000.
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Table 3: Correct selection frequencies for the QML approach.

N T Case δ = 0 δ = 0.5 δ = 1

10 100 1 90 39.9 90.2
20 100 1 83 48.3 96.5
10 200 1 89.7 64.4 99.1
20 200 1 82.5 83.1 100
10 100 2 90.4 44.1 91.4
20 100 2 80.7 51.2 97.2
10 200 2 91.9 67 99.1
20 200 2 84 85.9 100
10 100 3 90 44.2 91.3
20 100 3 80.9 51.3 97.2
10 200 3 91.8 67.1 99.1
20 200 3 84.2 86.1 100

Notes: The results reported in the table refers to the percentage
of times the QML approach was able to pick both the number
of groups and their members. See Table 1 for an explanation
of the rest.

The results are summarized in Table 2. While the numbers reported for Mmn are the 5%

rejection frequencies, those reported for Fmn are the average test values from across the repli-

cations. The critical value used for the latter test is 1.96, suggesting that the average should

be close to 5% under the null. Also, since for these tests T is relatively unimportant, in the

simulations we fix T = 50, and focus on the effect of N. It is seen that while Fmn is correctly

centered at 5%, Mmn has a tendency to under-reject the null of equal variances. We also see

that this under-rejection tendency disappears, albeit quite slowly, as N increases. The best

power is generally obtained by using Mmn, which is not totally unexpected considering that

it is an order statistic. As expected, there is no difference in the results depending on the

specification of σ2
t .

2 Monte Carlo results for the QML approach

In this section we consider some results obtained by applying the QML approach discussed

in Section 3.3 of the main paper to the DGP considered in Section 1.2. Thus, while Mmn and

Fmn assume knowledge of the groups, the QML approach does not. In Table 3 we report the

frequency by which the QML approach is able to pick both the number of groups and their
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members correctly. The first thing to note is that the correct selection frequencies are very

high and that they tend to increase with N and T. The correct selection frequencies are lower

for δ = 0.5 than for δ = 1, which is to be expected, because a smaller break is more difficult

to discern.

3 Additional Monte Carlo results for the unit root tests

In this section we report some Monte Carlo results for the unit root tests that are discussed in

Section 4 of the main paper, but not reported. In particular, two sets of results are reported.

The results reported in Section 4 of the main paper are based on using the QML approach

to select the groups. The first set of results reported in this section, contained in Tables 4–

6, are for the case when σ2
m,t = σ2

t is known to the researcher, which seems like a natural

benchmark for determining the “cost” of having to estimate the groups. Except for the fact

that σ2
m,t = σ2

t , the DGP used here is the same as in the main paper. The second set of results,

reported in Tables 7–9, are for the case when σ2
m,t = σ2

i,t = δiσ
2
t , where σ2

t is as in cases 1–3

above (Section 1.2) and δi ∼ U(1, 2). Thus, in this case, Nm − Nm−1 = 1, and therefore the

number of groups is equal to N. As mentioned in the paper, when Nm − Nm−1 = 1, we

have ∆R̂wi,t = ŵi,tϵ̂i,t = sign(ϵ̂i,t), and sign-based tests have been shown to be robust to

certain types of heteroskedasticity (see Demetrescu and Hanck, 2011). Hence, for the group

selection to be worthwhile, there should be some benefits to accounting for the grouping.

The second set of results is therefore interesting for determining the value of accounting for

the group structure. Again, except for the change in σ2
m,t, the DGP is the same as in Section 4

of the main paper.

As in Section 1.2, the significance level is set to 5% and the number of replications is

3,000. The results contained in Tables 4–6 can be summarized as follows:

• The size results (Table 4) are almost identical to the ones reported in Table 1 of the

main paper. Hence, in terms of size accuracy, there seem to be no cost to estimating the

groups.

• As expected, the test based on assuming a single homoskedastic group (see Tables 5

and 6) has higher power than the corresponding test based on two estimated groups

(see Tables 2 and 3 of the main paper). However, gain in power is only marginal. For

example, the largest gain in power for the τ test in the case when a = b = −1 and κ = 0
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is no more than 3.4%. Hence, again, there seem to be little or no cost to estimating the

groups.

The following summary applies to the results contained in Tables 7–9:

• Comparing the size results reported in Table 7 based on N groups with those reported

in Table 4 based on only one group, we see that accuracy does not seem to be affected

by the size of the groups, which is partly expected given the robustness of sign-based

tests. Hence, in terms of size, there are no gains to be made by accounting for the size

of the groups.

• While size accuracy is unaffected by the size of the groups, power is not. In fact, com-

paring the results based on N groups (Tables 5 and 6) with those based on one group

(Tables 8 and 9), we see that the power significantly as the number of groups increases.

Considering again the example when a = b = −1 and κ = 0, the largest difference

occurs when N = 20 and T = 400, in which case the power drops from 90.5% with

one group to 36.7% with N groups. Hence, while in terms of size there seem to be no

point in accounting for the grouping, in terms of power accounting for the grouping

can lead to substantial power gains.

All-in-all, the results reported in this section suggest that the use of the QML approach to

estimate the groups has very little “cost” to it, and that the potential power gain that comes

from exploring the information contained in the group structure is substantial.
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Table 4: Size at the 5% level when there is only one group.

N T Case τ τ IV τi τIV,i

ϕ1 = 0
10 100 1 7.7 0.9 5.2 1.9
20 400 1 5.8 0.3 5.2 0.6
10 100 2 7.6 1.9 5.6 3.3
20 400 2 5.7 0.6 5.3 1.4
10 100 3 7.6 1.9 5.5 3.4
20 400 3 5.7 0.7 5.3 1.4

ϕ1 = 0.5
10 100 1 8.8 0.0 5.0 0.4
20 400 1 6.3 0.1 5.1 0.1
10 100 2 9.9 0.3 5.6 1.1
20 400 2 6.7 0.1 5.3 0.3
10 100 3 10.0 0.3 5.5 1.1
20 400 3 6.7 0.1 5.3 0.3

Notes: Variance cases 1–3 refer to homogeneity, a discrete break and
a smooth transition break, respectively. ϕ1 refers to the first-order
autoregressive serial correlation coefficient in the errors.
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Table 5: Power at the 5% level when there is only one group.

κ = 0 κ = 1/2
N T Case τ τ IV τi τIV,i τ τ IV τi τIV,i

a = b = −1
10 100 1 33.5 3.9 6.2 2.7 9.9 1.5 5.2 2.1
20 400 1 67.7 1.3 6.5 0.7 10.7 0.4 5.1 0.6
10 100 2 48.8 6.2 6.5 4.6 14.4 3.1 5.3 3.8
20 400 2 90.4 2.7 6.6 1.7 15.6 1.1 5.1 1.4
10 100 3 48.8 6.1 6.5 4.7 14.3 3.2 5.3 3.9
20 400 3 90.5 2.8 6.6 1.7 15.7 0.9 5.1 1.4

a = b = −2
10 100 1 70.5 9.9 8.6 3.8 18.7 2.7 5.6 2.5
20 400 1 99.4 5.2 9.5 1.0 22.7 0.6 5.4 0.7
10 100 2 76.9 12.2 8.3 6.0 29.7 4.3 5.8 4.3
20 400 2 99.8 7.4 9.4 2.2 39.1 1.3 5.4 1.5
10 100 3 78.0 12.0 8.3 6.0 29.6 4.7 5.8 4.3
20 400 3 99.8 7.3 9.3 2.2 39.0 1.4 5.4 1.5

a = −3, b = −1
10 100 1 63.2 9.7 8.3 3.7 18.5 2.6 5.6 2.5
20 400 1 96.6 5.9 9.3 1.0 22.4 0.5 5.4 0.7
10 100 2 66.4 11.8 7.8 5.8 27.3 4.6 5.8 4.2
20 400 2 96.1 7.9 8.9 2.2 35.7 1.3 5.5 1.5
10 100 3 67.4 11.7 7.8 5.9 27.2 4.4 5.8 4.3
20 400 3 96.1 8.0 8.8 2.2 35.5 1.4 5.5 1.5

Notes: κ, a and b are such that ρi = exp(ci/NκT), where ci ∼ U(a, b). See
Table 4 for an explanation of the rest.
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Table 6: Power at the 5% level when there is only one group.

κ = 0 κ = 1/2
N T Case τ τ IV τi τIV,i τ τ IV τi τIV,i

a = b = −5
10 100 1 98.3 35.8 15.9 7.4 55.9 7.6 7.7 3.4
20 400 1 100.0 35.1 21.7 2.4 75.3 1.8 6.8 0.8
10 100 2 93.7 30.2 13.6 10.1 69.2 9.5 7.6 5.3
20 400 2 100.0 27.6 18.9 4.2 94.5 3.3 6.9 1.7
10 100 3 95.3 30.0 13.8 10.2 69.4 9.6 7.5 5.3
20 400 3 100.0 27.5 19.1 4.2 94.3 3.5 6.9 1.7

a = b = −10
10 100 1 99.9 74.2 29.4 16.3 91.5 19.4 11.3 5.0
20 400 1 100.0 83.9 46.7 6.6 99.8 7.1 10.3 1.1
10 100 2 99.1 60.5 23.9 20.1 86.8 18.8 10.2 7.6
20 400 2 100.0 69.5 37.3 10.2 99.9 8.2 10.1 2.3
10 100 3 99.5 60.7 24.8 20.1 88.6 18.7 10.3 7.6
20 400 3 100.0 69.2 37.8 10.2 99.9 7.9 10.1 2.3

a = −15, b = −5
10 100 1 99.8 74.6 26.9 17.1 85.5 18.8 10.8 5.1
20 400 1 100.0 84.6 42.5 7.4 98.3 7.1 10.0 1.1
10 100 2 97.9 61.2 21.1 20.8 78.9 19.0 9.5 7.6
20 400 2 100.0 71.2 32.5 11.0 96.7 9.0 9.4 2.4
10 100 3 98.4 61.7 21.9 20.8 80.1 19.0 9.6 7.6
20 400 3 100.0 71.5 33.0 11.0 96.8 9.0 9.4 2.4

Notes: See Tables 4 and 5 for an explanation.
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Table 7: Size at the 5% level when there are N groups.

N T Case τ τ IV τi τIV,i

ϕ1 = 0
10 100 1 6.8 0.8 4.9 1.4
20 400 1 6.3 0.0 5.2 0.3
10 100 2 7.0 1.8 5.6 2.3
20 400 2 6.5 0.2 5.4 0.7
10 100 3 6.6 1.7 5.7 2.4
20 400 3 6.6 0.1 5.4 0.7

ϕ1 = 0.5
10 100 1 6.7 0.2 5.0 0.2
20 400 1 6.5 0.0 5.1 0.0
10 100 2 7.0 0.1 5.5 0.6
20 400 2 6.6 0.0 5.2 0.1
10 100 3 7.0 0.2 5.5 0.6
20 400 3 6.6 0.0 5.2 0.1

Notes: See Table 4 for an explanation.
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Table 8: Power at the 5% level when there are N groups.

κ = 0 κ = 1/2
N T Case τ τ IV τi τIV,i τ τ IV τi τIV,i

a = b = −1
10 100 1 16.1 3.3 5.4 2.0 8.7 1.3 4.8 1.6
20 400 1 27.2 0.5 5.5 0.4 7.6 0.0 5.2 0.3
10 100 2 19.8 5.3 5.7 3.2 9.5 2.5 5.2 2.8
20 400 2 37.6 1.4 5.5 0.9 9.6 0.3 5.1 0.7
10 100 3 19.5 5.3 5.6 3.2 9.2 2.6 5.3 2.7
20 400 3 36.7 1.3 5.5 0.9 9.3 0.3 5.1 0.7

a = b = −2
10 100 1 27.1 8.4 6.1 2.6 12.5 2.3 5.0 1.8
20 400 1 52.1 2.9 6.5 0.6 11.5 0.1 5.3 0.3
10 100 2 27.9 10.1 6.0 4.2 14.5 3.6 5.3 3.0
20 400 2 57.3 5.3 6.0 1.3 17.0 0.5 5.1 0.8
10 100 3 27.2 10.2 6.0 4.2 14.2 3.9 5.3 3.0
20 400 3 57.7 5.3 6.0 1.3 17.1 0.5 5.2 0.8

a = −3, b = −1
10 100 1 24.4 8.5 6.1 2.7 11.3 2.3 5.2 1.8
20 400 1 48.6 3.2 6.4 0.6 11.4 0.1 5.2 0.3
10 100 2 25.1 9.7 5.8 4.2 13.6 3.8 5.3 3.0
20 400 2 50.4 4.6 5.9 1.3 16.0 0.4 5.2 0.8
10 100 3 24.8 10.2 5.9 4.1 13.1 3.6 5.4 3.0
20 400 3 50.7 4.6 6.0 1.3 15.9 0.6 5.2 0.8

Notes: See Tables 4, 5 and 7 for an explanation.
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Table 9: Power at the 5% level when there are N groups.

κ = 0 κ = 1/2
N T Case τ τ IV τi τIV,i τ τ IV τi τIV,i

a = b = −5
10 100 1 42.7 33.6 7.9 5.2 22.6 5.9 5.7 2.2
20 400 1 80.3 34.6 9.1 1.4 30.6 0.6 5.7 0.4
10 100 2 37.4 29.5 7.3 7.5 25.3 8.0 5.8 3.8
20 400 2 71.1 28.1 7.9 2.6 41.4 1.7 5.6 0.9
10 100 3 38.8 29.7 7.3 7.4 25.1 8.1 5.8 3.8
20 400 3 71.5 28.4 8.0 2.6 41.6 1.7 5.5 0.9

a = b = −10
10 100 1 54.5 78.9 10.8 12.5 35.7 16.7 6.7 3.6
20 400 1 88.2 87.8 12.7 4.1 56.5 4.2 6.8 0.6
10 100 2 48.4 66.3 9.9 16.1 31.5 16.5 6.2 5.4
20 400 2 82.6 74.3 11.6 7.1 59.7 6.5 6.1 1.4
10 100 3 50.0 66.5 10.1 16.2 32.2 16.4 6.3 5.4
20 400 3 83.9 74.4 11.6 7.1 60.0 6.3 6.1 1.4

a = −15, b = −5
10 100 1 53.3 79.0 10.6 13.2 33.1 16.1 6.8 3.5
20 400 1 87.3 87.8 12.3 4.6 52.6 4.1 6.6 0.7
10 100 2 45.9 67.2 9.5 16.7 29.2 16.6 6.4 5.5
20 400 2 79.3 76.5 10.9 7.7 52.5 6.1 6.1 1.4
10 100 3 47.2 67.1 9.5 16.8 30.0 16.5 6.4 5.5
20 400 3 79.5 76.1 10.9 7.8 52.9 6.1 6.1 1.4

Notes: See Tables 4, 5 and 7 for an explanation.
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