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Abstract

In this supplement, we (i) study in detail the variance test statistics discussed the
main paper, (ii) report some Monte Carlo evidence on the quasi-maximum likelihood
(QML) group selection approach considered in that same paper, and (iii) provide some

additional Monte Carlo results on the unit root testing problem.

1 The variance tests

In this section we begin by presenting the test statistics discussed in the main paper for test-
ing the equality of the group-wise variances. The asymptotic distributions of these statistics

are reported, which are evaluated by means of Monte Carlo simulation in Section 1.2.

1.1 The test statistics and their asymptotic distributions

As mentioned in the main paper, if there is uncertainty regarding the equality of the group-
wise variances, then the appropriate approach will depend on the extent to which there is a
priori knowledge regarding the grouping. In this section, we begin by considering the case
when the researcher knows which units that belong to which group, and the question is if
the variances of those groups are in fact equal. Let us therefore consider two such groups, m
and n. A natural candidate for a test is the following t-statistic:
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with &; = Zfil é?t/ N. While 7, is only point-wise in ¢, the point-wise statistics can be
combined. The first combination statistic that we consider is simply the empirical rejection
frequency of T+, and is given by
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an = f Z 1(|Tmn,t| > ca)r
t=p;+2

where 1(A) and ¢, denote is the indicator function for the event A, and the (1 — «)-quantile
of the standard normal distribution, respectively. This statistic allows ‘ATan,t to deviate from
073, for a pre-specified number of time points, as specified by «. A stronger test is to require
05, not to deviate from 67, by more than the sampling error at every t. The following test

statistic is based on this stronger requirement:

an == max |Tmn,t | .
t=p;i+2,.,T

The relevant asymptotic results are reported in Proposition 1.

Proposition 1. Under the conditions of Theorem 1 and the null hypothesis of Hy : 03, = 07, = 0F

forallt, givenk > 0,as N, T — oo with N/T — 0
Fun — 2a,
P(Myn <x) ~ (2&(x)—-1)7T,

where ~ and ®(x) signify asymptotic equivalence and the standard normal cumulative distribution

function, respectively.

Proof of Proposition 1.

This proof is almost an immediate consequence of Lemma A.1 in the main paper. Note first
that by that lemma,
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Therefore, by a central limit theorem,
Ny — Ny—1Comt =4 N(0, 07, (11 — 1)) 1)
as N, T — oo. But we also have, for m # n,
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where the second equality holds because of cross-section independence. These results imply

that under the null hypothesis of Hy : 02 , = 0, = 07,
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Note how the second equality here follows from imposing Hy, while the third follows from

the definition of N,, as N, = [A,,N]. Now, according to Lemma A.1, we have that &,

mt

O'm’t +0,(1/ VN N') and, similarly, & = x; +O,(1/ VN N ). This, together with Taylor expansion

of the inverse square root, implies
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as N, T — cowith N/T — 0. Hence, denoting by c, the (1 — a)-quantile of N(0, 1), we have

P(|Tynt| > ca) — 2a, suggesting that, by a law of large numbers,

T
Z (ITmnt| > ca) — 24, (4)
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where 1(A) is the indicator function for the event A. This establishes the first result.



As for the second result, note that since €;; is serially uncorrelated, ¢y, is serially cor-

related too. Hence, T+ is asymptotically uncorrelated across t, and hence independent by

T
P(Myn, <x)=P < max T|Tmn,t\ < x> ~ TT PUtmmt| < x) = (2P(x) — T, (5)
t=p;+2
where ~ signifies asymptotic equivalence and ®(x) is the cumulative distribution function
of N(0,1). This establishes the second result, and hence the proof of the proposition is com-

plete. [ |

According to Proposition 1, the appropriate a-level critical value for use with My, cq,
is defined by ®(c,) = (1 + (1 —c,)"/T)/2, which is increasing in T. This is illustrated in
Table 1, which report the critical values for some selected values of T. If M, accepts, then
we conclude that groups m and n have the same variance, which means that for the purpose
of estimation of the group-specific variances, they can be treated as one. On the other hand,
if the test rejects, then the groups should not be merged. In contrast to My, Fy, is not a
statistical test but rather a point estimator of the theoretical rejection frequency. If H is true,

then F,,,, should be close to 2a, whereas if Hj is false, then F,,, should be larger than 2a.

Table 1: Critical values for M,;;,.

x T=20 T=50 T=100 T=200 T =400
0.01 3.479 3.718 3.889 4.054 4214
0.05 3.016 3.283 3.474 3.656 3.830
0.1 2.791 3.075 3.276 3.467 3.649

Notes: a refers to the significance level.

The above tests suppose that the researcher knows the group identity of all the units of
the panel. If this is not the case, then F,,;, and M,,, may be applied in a sequential fashion
to determine the groups. In the main paper an approach based on QML is proposed. A
key step in that approach is to make use of the time series dimension to order the cross-
section, after which the problem of group selection becomes a similar to that of breakpoint
estimation. Specifically, the cross-section is ordered according to 67 = ZtT:p,- ) é%t/ T. This
makes it possible to use the following sequential test approach (see, for example, Bai, 1997;

1999, for similar proposals in the case of break estimation). We begin by testing Hj : Ulz,t =



= 012\4 = Utz for all t. The appropriate version of T, to use in this case, denoted 7, is

the same as before but with 62 , and &2, , replaced by 67 = Y-, é%,/N and
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respectively. The resulting combination statistics are written in an obvious notation as F,
and M,,.} If the null is not rejected by these test statistics, there is no heteroskedasticity, and
so the testing is stopped. If, however, the null is rejected, then the testing continues by using
Fun and My, to test the equality of potential group candidates, which may be selected by
looking for obvious breaks in the ordered ¢?. The appropriate group to use in the first step
(when testing Hp : Ulz,t =.=0y 1= 0?) can be selected in the same way. Because in this
case only one group is needed, one may focus on the group where the difference to the other
units is most obvious.

The steps used for evaluating T, are exactly the same as in the proof of Proposition 1.

The only difference is that now
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The second equality follows from imposing the null hypothesis of 07, = ... = 03,1, = 07.

As for the third equality, note that y M+l (Am — Am—1) = 1, suggesting that, under the null,

m=1

1 As we show in Remark 1 to the proof of Proposition 1, the results reported in Proposition 1 apply also to Fy,
and M,,.



Y MEY Ay — Am—1)0m — 0p = Y MUY (A — Ap—1)0? — 07 = 0. Hence, the results reported in

Proposition 1 for T+ apply also to T, .

Table 2: Rejection frequencies and averages for M, and F,;,, respectively.

6=0 6=05 0=1
N Case Mun Fun Mun  Fun Mun  Fun
50 1 0.7 44 109 149 56.2 36.8

100 1 26 47 58.1 283 100 67
200 1 4 4.8 98.3 515 100 93

50 2 07 44 109 149 562 36.8
100 2 26 47 58.1 283 100 67
200 2 4 4.8 983 515 100 93

50 3 0.7 44 109 149 56.2 36.8
100 3 26 47 58.1 283 100 67

200 3 4 4.8 98.3 515 100 93

Notes: The results reported for M, are the 5% rejection frequencies.
The results reported for Fy,;, are average test values across replications.
0,%” = 8,02, where §; = 1+ 61(i > 0.5N) and case 1-3 refer to the model
assumed for (Tf.

1.2 Monte Carlo simulations

In this section, we investigate briefly the small-sample accuracy of the asymptotic results
reported in Proposition 1. The data generating process (DGP) used for this purpose is very

simple and is given by
Vit = Omi€it (7)

where €;; ~ N(0,1). Hence, since in this section we are only interested in the testing of the
group-wise variances, we chose a DGP in which the heteroskedasticity is the key feature;
the results for the unit root testing problem are reported in the main paper (see Section 4).
As in that paper, three cases regarding the time-variation of 7, , are considered: (1) 07 = 1;
() o2 =1-1(t > |T/2])3/4; 3) 0? = 1 —3/4(1 + exp(—(t — |T/2]))). Cross-section
variation is induced by setting 07, , = 6;07, where ; = 1+ 61(i > 0.5N). Hence, in this DGP
there are two groups, and the difference between them is governed by ¢. If § = 0, then the
variances are the same, whereas if § # 0, then they are not. The significance level is set to

5% and the number of replications is 3,000.



Table 3: Correct selection frequencies for the QML approach.

N T Case 6=0 6=05 o66=1

10 100 1 90 39.9 90.2
20 100 1 83 48.3 96.5
10 200 1 89.7 64.4 99.1
20 200 1 82.5 83.1 100
10 100 2 90.4 44.1 914
20 100 2 80.7 51.2 97.2
10 200 2 91.9 67 99.1
20 200 2 84 85.9 100
10 100 3 90 44.2 91.3
20 100 3 80.9 51.3 97.2
10 200 3 91.8 67.1 99.1
20 200 3 84.2 86.1 100

Notes: The results reported in the table refers to the percentage
of times the QML approach was able to pick both the number
of groups and their members. See Table 1 for an explanation
of the rest.

The results are summarized in Table 2. While the numbers reported for M,,, are the 5%
rejection frequencies, those reported for F,,;, are the average test values from across the repli-
cations. The critical value used for the latter test is 1.96, suggesting that the average should
be close to 5% under the null. Also, since for these tests T is relatively unimportant, in the
simulations we fix T = 50, and focus on the effect of N. It is seen that while F,, is correctly
centered at 5%, M,,, has a tendency to under-reject the null of equal variances. We also see
that this under-rejection tendency disappears, albeit quite slowly, as N increases. The best
power is generally obtained by using M,,,,, which is not totally unexpected considering that
it is an order statistic. As expected, there is no difference in the results depending on the

specification of o7.

2 Monte Carlo results for the QML approach

In this section we consider some results obtained by applying the QML approach discussed
in Section 3.3 of the main paper to the DGP considered in Section 1.2. Thus, while M,,, and
Fun assume knowledge of the groups, the QML approach does not. In Table 3 we report the
frequency by which the QML approach is able to pick both the number of groups and their



members correctly. The first thing to note is that the correct selection frequencies are very
high and that they tend to increase with N and T. The correct selection frequencies are lower
for 6 = 0.5 than for § = 1, which is to be expected, because a smaller break is more difficult

to discern.

3 Additional Monte Carlo results for the unit root tests

In this section we report some Monte Carlo results for the unit root tests that are discussed in
Section 4 of the main paper, but not reported. In particular, two sets of results are reported.
The results reported in Section 4 of the main paper are based on using the QML approach
to select the groups. The first set of results reported in this section, contained in Tables 4—
6, are for the case when a,%/t = o7 is known to the researcher, which seems like a natural
benchmark for determining the “cost” of having to estimate the groups. Except for the fact

that o2

= (th, the DGP used here is the same as in the main paper. The second set of results,

reported in Tables 7-9, are for the case when (73” = Uiz,t = 6;02, where 07 is as in cases 1-3
above (Section 1.2) and 6; ~ U(1,2). Thus, in this case, N;, — Nj,—1 = 1, and therefore the
number of groups is equal to N. As mentioned in the paper, when N,, — N,,_1 = 1, we
have ARwi,t = W;;&;; = sign(é;;), and sign-based tests have been shown to be robust to
certain types of heteroskedasticity (see Demetrescu and Hanck, 2011). Hence, for the group
selection to be worthwhile, there should be some benefits to accounting for the grouping.
The second set of results is therefore interesting for determining the value of accounting for
the group structure. Again, except for the change in 07, ,, the DGP is the same as in Section 4
of the main paper.

As in Section 1.2, the significance level is set to 5% and the number of replications is

3,000. The results contained in Tables 4-6 can be summarized as follows:

o The size results (Table 4) are almost identical to the ones reported in Table 1 of the
main paper. Hence, in terms of size accuracy, there seem to be no cost to estimating the

groups.

e As expected, the test based on assuming a single homoskedastic group (see Tables 5
and 6) has higher power than the corresponding test based on two estimated groups
(see Tables 2 and 3 of the main paper). However, gain in power is only marginal. For

example, the largest gain in power for the T test in the case whena = b = —landx =0



is no more than 3.4%. Hence, again, there seem to be little or no cost to estimating the

groups.
The following summary applies to the results contained in Tables 7-9:

e Comparing the size results reported in Table 7 based on N groups with those reported
in Table 4 based on only one group, we see that accuracy does not seem to be affected
by the size of the groups, which is partly expected given the robustness of sign-based
tests. Hence, in terms of size, there are no gains to be made by accounting for the size

of the groups.

e While size accuracy is unaffected by the size of the groups, power is not. In fact, com-
paring the results based on N groups (Tables 5 and 6) with those based on one group
(Tables 8 and 9), we see that the power significantly as the number of groups increases.
Considering again the example when a = b = —1 and « = 0, the largest difference
occurs when N = 20 and T = 400, in which case the power drops from 90.5% with
one group to 36.7% with N groups. Hence, while in terms of size there seem to be no
point in accounting for the grouping, in terms of power accounting for the grouping

can lead to substantial power gains.

All-in-all, the results reported in this section suggest that the use of the QML approach to
estimate the groups has very little “cost” to it, and that the potential power gain that comes

from exploring the information contained in the group structure is substantial.
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Table 4: Size at the 5% level when there is only one group.

N T Case T ?IV T TlV,i

$1=0

10 100 1 77 09 52 19
20 40 1 58 03 52 06
10 100 2 76 19 56 33
20 400 2 57 06 53 14
10 100 3 76 19 55 34
20 400 3 57 07 53 14
¢1 =05
10 100 88 00 50 04

1
20 400 1 63 01 51 01
10 100 2 99 03 56 11
20 400 2 67 01 53 03
10 100 3 100 03 55 11
20 400 3 67 01 53 03

Notes: Variance cases 1-3 refer to homogeneity, a discrete break and
a smooth transition break, respectively. ¢, refers to the first-order
autoregressive serial correlation coefficient in the errors.
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Table 5: Power at the 5% level when there is only one group.

k=0 xk=1/2
N T Case T TIv T T, T TIv T TV
a=b=-1
10 100 1 335 39 62 2.7 99 15 52 21
20 400 1 677 13 65 0.7 10.7 04 5.1 0.6
10 100 2 488 62 65 4.6 144 31 53 38
20 400 2 904 2.7 6.6 1.7 156 1.1 5.1 14
10 100 3 488 6.1 65 47 143 32 53 3.9
20 400 3 90.5 28 6.6 1.7 157 09 5.1 14
a=b=-2
10 100 1 705 99 86 3.8 187 27 56 25
20 400 1 994 52 95 1.0 227 06 54 0.7
10 100 2 76.9 122 83 6.0 29.7 43 58 43
20 400 2 9.8 74 94 2.2 39.1 13 54 15
10 100 3 780 12.0 83 6.0 296 47 58 43
20 400 3 99.8 73 93 2.2 390 14 54 15
a=-3,b=-1
10 100 1 632 9.7 83 3.7 185 26 56 25
20 400 1 96.6 59 93 1.0 224 05 54 0.7
10 100 2 664 11.8 7.8 5.8 273 46 58 42
20 400 2 9.1 79 89 2.2 357 13 55 1.5
10 100 3 674 11.7 7.8 5.9 272 44 58 43
20 400 3 96.1 8.0 88 2.2 355 14 55 1.5

Notes: «, a and b are such that p; = exp(c;/N*T), where c¢; ~ U(a, ). See
Table 4 for an explanation of the rest.
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Table 6: Power at the 5% level when there is only one group.

K= k=1/2
N T  Case T Tiv T Ty T Ty T Ty,
a=b=-5
10 100 1 98.3 358 159 7.4 55.9 7.6 7.7 3.4
20 400 1 100.0 35.1 21.7 24 753 1.8 6.8 0.8
10 100 2 93.7 302 136 10.1 69.2 95 76 5.3
20 400 2 100.0 27.6 189 42 945 33 69 1.7
10 100 3 95.3 30.0 138 10.2 694 96 75 5.3
20 400 3 100.0 275 19.1 42 943 35 69 1.7
a=b=-10
10 100 1 99.9 742 294 16.3 915 194 113 5.0
20 400 1 100.0 839 46.7 6.6 998 71 103 1.1
10 100 2 99.1 60.5 239 20.1 86.8 18.8 10.2 7.6
20 400 2 100.0 69.5 373 102 999 82 10.1 2.3
10 100 3 99.5 60.7 248 20.1 88.6 18.7 10.3 7.6
20 400 3 100.0 69.2 378 10.2 999 79 10.1 2.3
a=-15b= -5
10 100 1 9.8 746 269 17.1 85,5 18.8 10.8 5.1
20 400 1 100.0 84.6 425 7.4 98.3 7.1 10.0 1.1
10 100 2 979 612 21.1 20.8 789 19.0 9.5 7.6
20 400 2 100.0 712 325 11.0 96.7 9.0 94 24
10 100 3 984 61.7 219 208 80.1 19.0 9.6 7.6
20 400 3 100.0 715 33.0 11.0 96.8 9.0 94 24

Notes: See Tables 4 and 5 for an explanation.

13



Table 7: Size at the 5% level when there are N groups.

N T Case T Tiv T T,
$¢r1=0

10 100 1 6.8 08 49 14
20 400 1 63 00 52 03
10 100 2 70 18 56 23
20 400 2 65 02 54 07
10 100 3 6.6 17 57 24
20 400 3 6.6 01 54 0.7
¢$1 =05
10 100 1 6.7 02 50 02
20 400 1 6.5 00 51 0.0
10 100 2 70 01 55 0.6
20 400 2 6.6 00 52 01
10 100 3 70 02 55 0.6
20 400 3 6.6 00 52 01

Notes: See Table 4 for an explanation.
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Table 8: Power at the 5% level when there are N groups.

K = K= 1/2
N T Case T Trv T v, T Tiv T T,
a=b=-1
10 100 1 16.1 33 54 2.0 87 13 48 1.6
20 400 1 27.2 0.5 55 0.4 76 00 52 0.3
10 100 2 19.8 53 5.7 3.2 95 25 52 2.8
20 400 2 37.6 14 55 0.9 96 03 5.1 0.7
10 100 3 19.5 53 5.6 3.2 92 26 53 2.7
20 400 3 36.7 1.3 55 0.9 93 03 5.1 0.7
a=b=-2
10 100 1 27.1 84 6.1 2.6 125 23 50 1.8
20 400 1 52.1 29 6.5 0.6 115 01 53 0.3
10 100 2 279 101 6.0 4.2 145 36 53 3.0
20 400 2 57.3 53 6.0 1.3 170 05 5.1 0.8
10 100 3 272 102 6.0 4.2 142 39 53 3.0
20 400 3 57.7 53 6.0 1.3 171 05 5.2 0.8
a=-3,b=-1
10 100 1 24.4 85 6.1 2.7 11.3 23 52 1.8
20 400 1 48.6 32 64 0.6 114 01 52 0.3
10 100 2 25.1 9.7 5.8 4.2 13.6 38 53 3.0
20 400 2 50.4 46 59 1.3 160 04 52 0.8
10 100 3 248 102 59 4.1 131 36 54 3.0

20 400 3 507 46 60 13 159 06 52 08

Notes: See Tables 4, 5 and 7 for an explanation.
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Table 9: Power at the 5% level when there are N groups.

K= k=1/2
N T Case T T1v T Tv, T Trv T Tv,
a=b=-5
10 100 1 42.7 33.6 7.9 5.2 22.6 59 57 2.2
20 400 1 80.3 34.6 9.1 14 30.6 06 57 0.4
10 100 2 374 295 7.3 7.5 25.3 8.0 5.8 3.8
20 400 2 71.1 28.1 7.9 2.6 414 1.7 5.6 0.9
10 100 3 38.8 29.7 7.3 74 25.1 8.1 5.8 3.8
20 400 3 71.5 284 8.0 2.6 41.6 1.7 55 0.9
a=b=-10
10 100 1 545 789 10.8 125 357 16.7 6.7 3.6
20 400 1 88.2 87.8 12.7 4.1 56.5 42 6.8 0.6
10 100 2 484 66.3 99 16.1 315 165 6.2 5.4
20 400 2 82.6 743 11.6 7.1 59.7 6.5 6.1 14
10 100 3 50.0 66.5 10.1 16.2 322 164 63 54
20 400 3 839 744 116 7.1 60.0 6.3 6.1 14
a=-15b= -5
10 100 1 533 79.0 106 132 331 161 68 3.5
20 400 1 87.3 87.8 123 4.6 52.6 41 6.6 0.7
10 100 2 459 67.2 9.5 16.7 292 166 64 5.5
20 400 2 793 76,5 109 7.7 52.5 6.1 6.1 14
10 100 3 472 67.1 95 16.8 30.0 165 64 5.5
20 400 3 795 761 109 7.8 52.9 6.1 6.1 14

Notes: See Tables 4, 5 and 7 for an explanation.
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