
Supplementary materials for
“BET on Independence”

Abstract

In this supplementary file, we provide some additional numerical and graph-
ical illustrations, as well as some key proofs. Some simple proofs are omitted.

Keywords: Nonparametric Inference; Multiple Testing; Binary Expansion; Contin-
gency Table; Hadamard Transform

1 Additional Numerical Studies

1.1 Illustration of Power Loss in Detecting BEX4

In this section we provide simulation results showing the possible power loss in de-

tecting BEX4. We consider two important tests in practice: the test based on the

Hoeffding’s D as a CDF based test and the test based on distance correlation as a

kernel based test. We consider the sample size of n = 5000, 10000, 15000, 20000 and

25000. The data are generated by uniformly sampling from the uniform distribution

over BEX4. The level of the tests is set to be 0.1. The power is calculated based on

1000 simulated datasets and is presented in Table 1.

n = 5000 n = 10000 n = 15000 n = 20000 n = 25000

Hoeffding’s D 0.114 0.149 0.172 0.181 0.216

Distance Correlation 0.096 0.121 0.109 0.114 0.115

Table 1: Power of Hoeffding’s D and distance correlation for the uniform distribution

over BEX4.

We can see from Table 1 that the power of these two tests are low even when the

sample size is as large as 25000. One intuition behind this power loss is that these tests
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are global and are not able to detect the local dependency in the uniform distribution

over BEX4. See the following illustration of a particular dataset of sample size 5000

as in Figure 1: Although data are locally collinear, globally they are not. Therefore,

although the dependency in this particular dataset can be clearly observed by naked

eyes, the p-value of Hoeffding’s D test is 0.350 and the p-value of distance correlation

test is 0.531. This power loss was quite large and was one main motivation of this

paper.
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Figure 1: 5000 samples from the uniform distribution over the bisection expanding

cross (BEX) at level d = 4. For this particular dataset, the p-value of Hoeffding’s D

test is 0.350 and the p-value of distance correlation test is 0.531.

For replicability purposes, we provide below our R code for generating i.i.d. sam-

ples from the BEX as in Figure 1.

library(energy)

library(Hmisc)

bex.sample <- function(n,depth=2){ # depth >=1

2



width <- 1/2^depth

which.be <- sample(1:2^(2*(depth-1)),n,replace=T)

bex.center <- cbind(rep((1:2^(depth-1))/2^(depth-1),2^(depth-1)),

rep( (1:2^(depth-1))/2^(depth-1), rep(2^(depth-1),

2^(depth-1)) ))-1/2^(depth)

x_inc <- runif(n)*2*width-width

y_inc <- x_inc*sample(c(-1,1),n,replace=T)

xy <- bex.center[which.be,]+cbind(x_inc,y_inc)

colnames(xy) <- c("x","y")

xy

}

set.seed(1)

xy <- bex.sample(n=5000,depth=4);x <- xy[,1];y <- xy[,2]

plot(xy);dcor.ttest(x,y);hoeffd(x,y)$P

We remark here that the power of BET against this alternative distribution can

be very high. See the discussions in Section 4.3 of the main paper.

1.2 Studies of the Power Loss Due to Multiplicity Control

over the Depth

In this section we provide simulation results illustrating the adverse effect on power

due to multiplicity control over depth discussed in Section 4.5 of the main paper. We

consider the first four scenarios that are considered in Section 6 in the main paper

since the dependency in these scenarios can be explained by one cross interaction, thus

an “oracle” depth can be defined for each of these scenarios: As Figure 5 in the main

paper shows, observations with linear dependency tend to fall in the positive region of̂̇A1
̂̇B1, observations with the parabolic dependency tend to fall in the positive region of̂̇A1
̂̇A2
̂̇B1, observations with circular dependency tend to fall in the negative region of̂̇A1

̂̇A2
̂̇B1
̂̇B2, observations with the sine dependency tend to fall in the negative region

of ̂̇A2
̂̇B1. Therefore, we define the oracle depths for the linear, parabolic, circular and

sine dependency to be 1, 2, 2 and 2 respectively. We compare the power of the Max

BET with the above oracle depth (denoted by BETO in this subsection) and that
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Figure 2: Comparison of the power of the Max BET with multiplicity control over

depth (BETS) and that of the Max BET with an oracle depth (BETO). The loss of

power is substantial in the linear case where the oracle depth is 1. The loss is less

severe in other cases where the oracle depth is 2.

of the Max BET with the second stage multiplicity control (the procedure discussed

in Section 4.5 and studied in Section 6 of the main paper, denoted by BETS in this

subsection). See Figure 2. The loss of power is substantial in the linear case where

the oracle depth is 1. However, the loss is much less in other cases where the oracle

depth is 2.

Below is the explanation of the above phenomenon: Suppose dmax = 4 and the

overall FEWR is α. When the oracle depth is doracle = 1, the level for the oracle cross

interaction in BETO is α, while that for BETS is 1
dmax

α = 0.25α. The ratio between

them is 0.25. However, when doracle = 2, the level for BETO is 1
(2doracle−1)2α = 1

9
α,

while that for BETS is 1
dmax((2doracle−1)2−(2doracle−1−1)2)α = 1

32
α. Note that the ratio in

this case is 9
32

= 0.281 > 0.25. This means the difference in the levels is smaller, thus

the loss of power is less severe.

In general, the ratio of levels is (2doracle−1)2
dmax((2doracle−1)2−(2doracle−1−1)2) , which is an increas-

ing function in doracle and is asymptotically equivalent to 4
3dmax

. Therefore, we con-
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clude the studies about the power loss due to multiplicity control over depth with the

following remarks:

1. The most severe power loss due to multiplicity control over depth occurs when

doracle = 1. The loss with a larger doracle is less serious.

2. By Hoeffding’s inequality, the multiplicative effect on the critical value isO(
√

log dmax),

which is small when dmax is not too large.

3. By Theorem 4.4 in the main paper, dmax ≤ log2 n. Thus the multiplicative effect

can be further bounded by O(
√

log log n).

One practical remedy to avoid the loss of power due to multiplicity control in BET

when doracle = 1 could be considering both the analysis with BET and that of the

distance correlation (which has the best power for linear dependency as shown in

Section 6 of the main paper).

2 Proofs in Section 2 of the Main Paper

To facilitate the explanation in this section, we use the concept of dyadic squares of

level k ≥ 0, Ek
i,j, which are squares with four corners at

{( i
2k
,
j

2k
), (

i+ 1

2k
,
j

2k
), (

i

2k
,
j + 1

2k
), (

i+ 1

2k
,
j + 1

2k
)}2k−1i,j=0.

We denote the uniform distribution over [0, 1]2 by P0. We also denote the probability

measure of the uniform distribution over the BEX at level d by Pd. We state without

proof below the following easy but useful lemma:

Lemma 2.1.

(a) (Probability of a dyadic square) For d ≥ 1, ∀i, j = 0, . . . , 2d−1 − 1,

Pd(E
d−1
i,j ) = P0(E

d−1
i,j ) =

1

4d−1
. (2.1)
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(b) (Probability measure restricted to a dyadic square) For d ≥ 1, i
2d−1 ≤ x < i+1

2d−1 ,

i = 0, . . . , 2d−1 − 1,

Pd

(
i

2d−1
≤ Xd ≤ x

∣∣∣∣Ed−1
i+1,j

)
= P1

(
0 ≤ X1 ≤ 2d−1

(
x− i

2d−1

))
= 2d−1

(
x− i

2d−1

)
.

(2.2)

2.1 Proof of Proposition 2.1

Proof. (a) Without loss of generality, we show below the marginal distribution of

X is uniform. By Lemma 2.1, for any d ≥ 1, suppose x ∈ [ i0
2d−1 ,

i0+1
2d−1 ), i0 =

0, . . . , 2d−1 − 1.

Pd(Xd ≤ x)

=Pd

(
Xd ≤

i0
2d−1

)
+ Pd

(
i0

2d−1
≤ Xd ≤ x

)

=


∑2d−1−1

j=0 Pd

(
i0

2d−1 ≤ Xd ≤ x

∣∣∣∣Ed−1
i0,j

)
Pd

(
Ed−1
i0,j

)
i0 = 0∑i0−1

i=0

∑2d−1−1
j=0 Pd(E

d−1
i,j ) +

∑2d−1−1
j=0 Pd

(
i0

2d−1 ≤ Xd ≤ x

∣∣∣∣Ed−1
i0,j

)
Pd

(
Ed−1
i0,j

)
i0 ≥ 1

=2d−1
i0

4d−1
+ 2d−12d−1

(
x− i0

2d−1

)
1

4d−1

=x.

(2.3)

(b) The proof is immediate and is omitted.

(c) At level d, the coordinates of any point (x, y) ∈ [0, 1]2 can be written as x =

2i0+1±c1
2d

, y = 2j0+1±c2
2d

for some 0 < c1, c2 < 1, and some i0, j0 = 0, . . . , 2d−1 − 1.

Without loss of generality, we give the proof for x = 2i0+1−c1
2d

, y = 2j0+1+c2
2d

, for

i0 ≥ 1 and j0 ≥ 1, as other cases are similar and simpler. In this case,

xy =
1

4d
(4i0j0 + 2i0(1 + c2) + 2j0(1− c1)) +O(4−d). (2.4)
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On the other hand, by Lemma 2.1,

Pd(Xd ≤ x, Yd ≤ y)

=Pd

(
Xd ≤

i0
2d−1

, Yd ≤
j0

2d−1

)
+ Pd

(
Xd ≤

i0
2d−1

,
j0

2d−1
≤ Yd ≤ y

)
+

+ Pd

(
i0

2d−1
≤ Xd ≤ x, Yd ≤

j0
2d−1

)
+ Pd

(
i0

2d−1
≤ Xd ≤ x,

i0
2d−1

≤ Yd ≤ y

)
=

i0−1∑
i=0

j0∑
j=0

Pd(E
d−1
i,j ) +

i0−1∑
i=0

Pd

(
j0

2d−1
≤ Yd ≤ y

∣∣∣∣Ed−1
i,j0

)
Pd

(
Ed−1
i,j0

)
+

+

j0−1∑
j=0

Pd

(
i0

2d−1
≤ Xd ≤ x

∣∣∣∣Ed−1
i0,j

)
Pd

(
Ed−1
i0,j

)
+ Pd

(
i0

2d−1
≤ Xd ≤ x,

j0
2d−1

≤ Yd ≤ y

)

=
i0j0
4d−1

+
2j0(1− c1)

4d
+

2i0(1 + c2)

4d
+ O(4−d).

(2.5)

By comparing (2.4) and (2.5), we see Pd(Xd ≤ x, Yd ≤ y) = xy +O(4−d).

2.2 Proof of Theorem 2.2

Proof. Consider the case when δ = 1. Since n is fixed and P0(∂Cn) = 0 (Cn is referred

to as Jordan measurable in Rn), ∀ε > 0, there exists a finite collection of N almost

disjoint dyadic hypercubes {Gi}Ni=1, which are direct products of dyadic squares, such

that

Cn ⊂ ∪Ni=1Gi (2.6)

and

P0(∪Ni=1Gi) ≤ P0(Cn) + ε ≤ α + ε. (2.7)

Suppose the smallest dyadic square in forming {Gi}Ni=1 is at level k. Now consider

the BEX at level k + 1, we see from Lemma 2.1 that

Pk+1(∪Ni=1Gi) = P0(∪Ni=1Gi). (2.8)

Therefore,

Pk+1(Cn) ≤ Pk+1(∪Ni=1Gi) = P0(∪Ni=1Gi) ≤ P0(Cn) + ε ≤ α + ε. (2.9)
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This implies that with n samples, the test with critical region Cn is powerless with

Fn being the uniform distribution over the BEX at level k + 1.

3 Proofs in Section 3 of the Main Paper

3.1 Proof of Theorem 3.4

Proof. We prove part (a) below by induction. The proof of part (b) is similar. For

d1 = d2 = 1, we consider calculation of expectations by conditioning on Ȧ1 and Ḃ1.

For example,

E[Ḃ1]

=E[Ḃ1|A1 = 1, B1 = 1]P(A1 = 1, B1 = 1) + E[Ḃ1|A1 = 1, B1 = 0]P(A1 = 1, B1 = 0)+

+ E[Ḃ1|A1 = 0, B1 = 1]P(A1 = 0, B1 = 1) + E[Ḃ1|A1 = 0, B1 = 0]P(A1 = 0, B1 = 0)

=p(11) − p(10) + p(01) − p(00).

(3.1)

In general, we have the following four equations:

1 = E(00) = E[1] =p(11) + p(10) + p(01) + p(00)

E(01) = E[Ḃ1] =p(11) − p(10) + p(01) − p(00)

E(10) = E[Ȧ1] =p(11) + p(10) − p(01) − p(00)

E(11) = E[Ȧ1Ḃ1] =p(11) − p(10) − p(01) + p(00).

(3.2)

Note that

H4 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


. (3.3)

Thus, by considering the matrix form of (3.2) with (3.3), we see E = Hp for d1 =

d2 = 1.
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Suppose the result is true for d1 and d2. Without loss of generality, consider the

case with depths d1 and d2 + 1 with a new binary variable Bd2+1. Note that by the

induction assumption, we have a similar identity as in (3.2) that for any (d1 + d2)-

dimensional binary integer indices (ab) and (a′b′), the corresponding entry in H2d1+d2

is

H(ab),(a′b′) = E[ȦaḂb|A = a′,B = b′] = (−1)(ab)
T (a′b′). (3.4)

To consider the probabilities in the σ-field at depths d1 and d2 +1, we write probabil-

ities in the σ-field at depths d1 and d2 by p(a′b′·) = p(a′b′1) + p(a′b′0) where two latter

probabilities are in the σ-field at depths d1 and d2 + 1.

With Bd2+1, we can expand the following two quantities through condition expec-

tation:

E[ȦaḂb|A = a′,B = b′]p(a′b′·)

=

(
E[ȦaḂb|A = a′,B = b′, Bd2+1 = 1]

p(a′b′1)

p(a′b′·)
+E[ȦaḂb|A = a′,B = b′, Bd2+1 = 0]

p(a′b′0)

p(a′b′·)

)
p(a′b′·)

=E[ȦaḂb|A = a′,B = b′, Bd2+1 = 1]p(a′b′1) +E[ȦaḂb|A = a′,B = b′, Bd2+1 = 0]p(a′b′0)

(3.5)

and

E[ȦaḂbḂd2+1|A = a′,B = b′]p(a′b′·)

=

(
E[ȦaḂbḂd2+1|A = a′,B = b′, Bd2+1 = 1]

p(a′b′1)

p(a′b′·)
+E[ȦaḂbḂd2+1|A = a′,B = b′, Bd2+1 = 0]

p(a′b′0)

p(a′b′·)

)
p(a′b′·)

=E[ȦaḂbḂd2+1|A = a′,B = b′, Bd2+1 = 1]p(a′b′1) +E[ȦaḂbḂd2+1|A = a′,B = b′, Bd2+1 = 0]p(a′b′0).

(3.6)

Now note that

E[ȦaḂb|A = a′,B = b′, Bd2+1 = 1] =E[ȦaḂb|A = a′,B = b′] = (−1)(ab0)
T (a′b′1)

E[ȦaḂb|A = a′,B = b′, Bd2+1 = 0] =E[ȦaḂb|A = a′,B = b′] = (−1)(ab0)
T (a′b′0)

E[ȦaḂbḂd2+1|A = a′,B = b′, Bd2+1 = 1] =E[ȦaḂb|A = a′,B = b′] = (−1)(ab1)
T (a′b′1)

E[ȦaḂbḂd2+1|A = a′,B = b′, Bd2+1 = 0] =−E[ȦaḂb|A = a′,B = b′] = (−1)(ab1)
T (a′b′0).

(3.7)

By using part (c) in Proposition 3.5 that H2d1+d2+1 = H2d1+d2 ⊗H2, putting (3.7) in

(3.5) and (3.6) and combining over (ab) and (a′b′), the equation E = Hp is shown

at the depths d1 and d2 + 1, and the induction proof is complete.
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3.2 Proof of Theorem 3.7

Proof. This proof is seen by using part (a) in Proposition 3.5.

3.3 Proof of Theorem 3.8

Proof. The “only if” part is easy. To prove the “if” part of Theorem 3.8, we first

show the following lemma, which connects independence to the odds ratio between

each cell and corresponding cells in the last row and column. Note that the same

result is shown in Cornfield (1956) for the case when marginal counts are fixed, but

we prove the general case in Section 3.4.

Lemma 3.1. Ud1 and Vd2 are independent if and only if for any a 6= 1d1 and b 6= 1d2,

θ(ab) =
p(11)p(ab)
p(a1)p(1b)

= 1. (3.8)

With this lemma, we show below that λ(ab) = 1 for all a 6= 0 and b 6= 0 implies

θ(a′b′) = 1 and log θ(a′b′) = 0 for any a′ 6= 1d1 and b′ 6= 1d2 .

Note first that log θ(a′)(b′) can be written as a linear combination of log cell proba-

bilities, i.e., log θ(a′b′) = `T(a′b′)pl. Moreover, the binary integer indices of the only four

non-zero entries in `(a′b′) are 1 for (11), −1 for (a′1), −1 for (1b′) and 1 for (a′b′).

Denote the (2d1 − 1)(2d2 − 1)× 2d1+d2 matrix with rows of `T(a′b′) by L.

Now note that by Theorem 3.7, pl = 1
2d1+d2

Hλl. Therefore, the event log θ(a′b′) = 0

for any a′ 6= 1d1 and b′ 6= 1d2 can be summarized by the following equation in λl:

LHλl = 0. (3.9)

To solve (3.9), we consider the inner product `T(a′b′)H(ab). Because all entries in `(a′b′)

are 0’s except four of them, we have

`T(a′b′)H(ab) = 1·(−1)(11)
T
(ab)+(−1)·(−1)(1b

′)
T
(ab)+(−1)·(−1)(a

′1)
T
(ab)+1·(−1)(a

′b′)
T
(ab).

(3.10)
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Now note that for a = 0,

`T(a′b′)H(0b) = 1− (−1)(1b
′)
T
(0b) − 1 + (−1)(a

′b′)
T
(0b) = 0. (3.11)

Similarly, for b = 0,

`T(a′b′)H(a0) = 0. (3.12)

With (3.11) and (3.12), we see that in (3.9), the coefficients for log λ(00), log λ(a0)’s and

log λ(0b)’s are all 0’s. Therefore, (3.9) is a system of (2d1−1)(2d2−1) linear equations

with (2d1 − 1)(2d2 − 1) unknowns of log λ(ab) with a 6= 0 and b 6= 0. Because L is

full rank, the unique solution to (3.9) is log λ(ab) = 0 and λ(ab) = 1 for all a 6= 0 and

b 6= 0.

3.4 Proof of Lemma 3.1

Proof. The “only if” part is immediate. To see the “if” part, note that (3.8) implies

that p(ab) =
p(a1)p(1b)
p(11)

. Denote the row total probability and column total probabilities

by p(a·) and p(·b) respectively. By summing over rows and columns, we see that∑
a6=1d1

p(a1)
∑

b6=1d2
p(1b)

p(11)
+
∑

a6=1d1

p(a1) +
∑
b 6=1d2

p(1b) + p(11) = 1, (3.13)

which in turn gives( ∑
a6=1d1

p(a1) + p(11)

)( ∑
b6=1d2

p(1b) + p(11)

)
= p(1·)p(·1) = p(11). (3.14)

Now for any a 6= 1d1 , note that the row total probability is

p(a·) =
∑

b′ 6=1d2

p(ab′) + p(a1) =
p(a1)p(·1)
p(11)

(3.15)

and similarly, for any b 6= 1d2 , the column total probability is

p(·b) =
p(1b)p(1·)
p(11)

. (3.16)
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Therefore, by (3.14), for any a 6= 1d1 and b 6= 1d2 ,

p(a·)p(·b) =
p(a1)p(·1)
p(11)

p(1b)p(1·)
p(11)

=
p(a1)p(1b)
p(11)

= p(ab). (3.17)

Now for any a 6= 1d1 , by (3.17),

p(a1) = p(a·) −
∑

b′ 6=1d2

p(ab′) = p(a·) −
∑

b′ 6=1d2

p(a·)p(·b′) = p(a·)(1−
∑

b′ 6=1d2

p(·b′)) = p(a·)p(·1).

(3.18)

Similarly,

p(1b) = p(·b)p(1·). (3.19)

By (3.14),(3.17), (3.18) and (3.19), Ud1 and Vd2 are independent.

4 Proofs in Section 4 of the Main Paper

4.1 Proof of Theorem 4.1

Proof. This is a consequence of Theorem 3.4 with p = 1
2d1+d2

1.

4.2 Proof of Theorem 4.2

Proof. To see how part (b) and (c) imply (a), note the following general facts:

1. (Ŝ(ab) + n)/4 ∼ Hypergeometric(n, n/2, n/2, wab), where the noncentral pa-

rameter ω(ab) is given by

ω(ab) =
P( ̂̇Aa = 1, ̂̇Bb = 1)P( ̂̇Aa = −1, ̂̇Bb = −1)

P( ̂̇Aa = 1, ̂̇Bb = −1)P( ̂̇Aa = −1, ̂̇Bb = 1)
. (4.1)

2. The inclusion of events {Âa = a′, B̂b = b′} ⊆ { ̂̇Aa = a, ̂̇Bb = b} for a = ±1

and b = ±1 if and only if (−1)(a
′)
T
(a) = a and (−1)(b

′)
T
(b) = b. In particular,

{Âa = 1, B̂b = 1} ⊆ { ̂̇Aa = 1, ̂̇Bb = 1} for any a and b since (−1)(1)
T
(a) =

(−1)(1)
T
(b) = 1.
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It can be helpful to understand the above two facts with Figure 2 in the main paper.

To see fact 1, note that for interaction ̂̇A1
̂̇A2
̂̇B1, the event { ̂̇Aa,i = 1, ̂̇Bb,i = 1}

corresponding to the event that observation i falling into either the upper right white

region or the upper left white region. To see fact 2, note that the upper right region

is always white for any variables in the filtration.

With the above facts, to show that parts (b) and (c) imply (a) is to show that

ω(ab) = 1 for any a 6= 0 and b 6= 0 implies independence, which is equivalent to, by

Lemma 3.1, θ(a′b′) = 1 for any a′ 6= 1 and b′ 6= 1.

To show that θ(a′b′) = 1 for any a′ 6= 1 and b′ 6= 1, note that by (4.1) and fact 2

above,

ω(ab) =

∑
(−1)(a′)

T
(a)=1

(−1)(b′)
T
(b)=1

p(a′b′)
∑

(−1)(a′)
T
(a)=−1

(−1)(b′)
T
(b)=−1

p(a′b′)

∑
(−1)(a′)

T
(a)=−1

(−1)(b′)
T
(b)=1

p(a′b′)
∑

(−1)(a′)
T
(a)=1

(−1)(b′)
T
(b)=−1

p(a′b′)
. (4.2)

Therefore, setting ω(ab) = 1 for a 6= 0 and b 6= 0 is to set∑
(−1)(a′)

T
(a)=1

(−1)(b′)
T
(b)=1

p(a′b′)
∑

(−1)(a′)
T
(a)=−1

(−1)(b′)
T
(b)=−1

p(a′b′) =
∑

(−1)(a′)
T
(a)=−1

(−1)(b′)
T
(b)=1

p(a′b′)
∑

(−1)(a′)
T
(a)=1

(−1)(b′)
T
(b)=−1

p(a′b′). (4.3)

Consider (4.3) as a system of (2d1−1)(2d2−1) linear equations of p(11)p(a′b′) for a′ 6= 1

and b′ 6= 1. Denote the coefficient matrix by Md1,d2 , with the rows corresponding

to ω(ab) and columns corresponding to p(11)p(a′b′). Note that if Md1,d2 is invertible,

then (4.3) has a unique solution. Note also that Lemma 3.1 implies θ(a′b′) = 1, or

p(11)p(a′b′) = p(a′1)p(1b′) is a solution to (4.3). Thus, if Md1,d2 is invertible, p(11)p(a′b′) =

p(a′1)p(1b′) is the unique solution to (4.3). This means that ω(ab) = 1 for any a 6= 0

and b 6= 0 implies θ(a′b′) = 1 for any a′ 6= 1 and b′ 6= 1, i.e., independence.

To show the invertibility of Md1,d2 , note that by fact 2, Md1,d2 is a binary matrix

with entries

Md1,d2,(ab),(a′b′) =

 1 (−1)(a
′)
T
(a) = −1 and (−1)(b

′)
T
(b) = −1

0 otherwise
, (4.4)
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which can be simplified to

Md1,d2,(ab),(a′b′) =
1

4
(1− (−1)(a

′)
T
(a))(1− (−1)(b

′)
T
(b)). (4.5)

Consider the special case when d2 = 1. In this case, the only possible values for b

and b′ are b = 1 and b′ = 0. Therefore,

Md1,1,(a1),(a′0) =
1

2
(1− (−1)(a

′)
T
(a)). (4.6)

Note that (4.6) implies that one can write the matrix H2d1 in block form as

H2d1 =

 1 1T

1 11T − 2Md1,1

 (4.7)

Now note that H2d1 is invertible with H−1
2d1

= 1
2d1

H2d1 . Therefore, by the inversion

formula of a partitioned matrix,

1

2d1
(11T − 2Md1,1) = (11T − 2Md1,1 − 11T )−1 = −1

2
M−1

d1,1
, (4.8)

i.e., Md1,1 is invertible and M−1
d1,1

= − 1
2d1−1 (11T − 2Md1,1).

Similarly, when d1 = 1, M1,d2 with

M1,d2,(1b),(0b′) =
1

2
(1− (−1)(b

′)
T
(b)) (4.9)

is invertible.

Now note that by (4.5), (4.6) and (4.9), we have Md1,d2 = Md1,1 ⊗M1,d2 . Thus,

Md1,d2 is invertible.

4.3 Proof of Theorem 4.3

Proof. (a) Consider any two cross interaction variables Ȧa1Ḃb1 and Ȧa2Ḃb2 such that

(a1b1) 6= (a2b2). Under independence of Ud1 and Vd2 , any Ȧi and Ḃj are indepen-

dent. Note that their marginal expectations are also all 0’s. Thus, we have

E[Ȧa1Ḃb1Ȧa2Ḃb2 ] = 0 = E[Ȧa1Ḃb1 ]E[Ȧa2Ḃb2 ]. (4.10)
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Therefore, Ȧa1Ḃb1 and Ȧa2Ḃb2 are uncorrelated binary variables. This means

they are independent. The pairwise independence of S(ab)’s is a consequence of

the pairwise independence of cross interaction variables.

(b) Under independence of Ûd1,i and V̂d2,i for each i, the joint distribution of cell counts

N̂ is central multivariate hypergeometric. This implies that the cell counts N̂(ab)’s

are exchangeable. In particular, the covariance matrix of N̂ takes the form

Var[N̂ ] = c1I2d1+d2 + c211
T (4.11)

for some constants c1 and c2.

Now consider Ŝ(a1b1) and Ŝ(a2b2) with (a1b1) 6= (a2b2). Note that by Theorem 3.4,

Ŝ(a1b1) = HT
(a1b1)

N̂ and Ŝ(a2b2) = HT
(a2b2)

N̂ . Therefore,

E[Ŝ(a1b1)Ŝ(a2b2)] = HT
(a1b1)

(c1I2d1+d2 + c211
T )H(a2b2) = 0. (4.12)

The last equation is because of the orthogonality of H:

HT
(a1b1)

H(a2b2) = HT
(a1b1)

1 = 1TH(a2b2) = 0. (4.13)

(c) Note that the expected count in each cell is n
2d1+d2

. Therefore, by Theorem 3.4,

we have

C =
2d1+d2

n

∑
a,b

(
N̂(ab) −

n

2d1+d2

)2
=

2d1+d2

n

(
N̂ − n

2d1+d2
1
)T (
N̂ − n

2d1+d2
1
)

=
2d1+d2

n

( 1

2d1+d2
HŜ − n

2d1+d2
1
)T ( 1

2d1+d2
HŜ − n

2d1+d2
1
)

=
2d1+d2

n

( 1

2d1+d2

∑
a,b

Ŝ2
(ab) −

n2

2d1+d2

)
=

1

n

∑
a6=0,b6=0

Ŝ2
(ab).

(4.14)

The last equation comes from the fact that Ŝ(a0) = Ŝ(0b) = 0 except Ŝ(00) = n.
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4.4 Proof of Theorem 4.4

Proof.

1. Note that the joint distribution of (Ud1 , Vd2), P(Ud1
,Vd2 )

, can be represented by

the vector of cell probabilities p as in Theorem 3.4. Note also that the (in-

dependent) bivariate uniform distribution P0,d1,d2 can be represented as the

vector p0,d1,d2 = 1
2d1+d2

12d1+d2 . Denote the difference of these two vectors by

q = p− 1
2d1+d2

12d1+d2 . Then the total variation distance between P(Ud1
,Vd2 )

and

P0,d1,d2 can be written as the `1 norm of q:

‖q‖1 =
∑
ab

∣∣p(ab) − 1

2d1+d2

∣∣ = 2TV (P(Ud1
,Vd2 )

,P0,d1,d2) ≥ 2δ. (4.15)

We shall show next that (4.15) implies that for the expectation of some cross

interaction is greater than 2
√
d1+d2δ

2(d1+d2)/4
, in the proof of which we utilize again The-

orem 3.4. To see this, note that

H2d1+d2q = H2d1+d2p−
1

2d1+d2
H2d1+d212d1+d2 = E − e(00). (4.16)

Note that E(00) = 1 and E(a0) = E(0b) = 0 for any a 6= 0 and b 6= 0. Therefore,

all entries in H2d1+d2q not corresponding to cross interactions are 0’s. Now

the maximal absolute entry in H2d1+d2q corresponds to the maximal absolute

expectation among cross interactions:

‖H2d1+d2q‖∞ = max
a6=0,b6=0

|E(ab)|. (4.17)
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Now note that by the condition ‖E−e(00)‖∞ ≥
√
d1 + d22

−(d1+d2)/4‖E−e(00)‖2,

max
a6=0,b6=0

|E(ab)|

=‖H2d1+d2q‖∞

≥
√
d1 + d22

−(d1+d2)/4‖H2d1+d2q‖2

=
√
d1 + d22

(d1+d2)/4‖q‖2

≥
√
d1 + d22

−(d1+d2)/4‖q‖1

≥2
√
d1 + d2δ

2(d1+d2)/4
.

(4.18)

By (4.18), for some (ab), the cross interaction ȦaḂb has an expectation that is

at least 2
√
d1+d2δ

2(d1+d2)/4
away from 0.

Now for α > 0, consider the following test for (S(ab) + n)/2 ∼ Binomial(n, q):

H0 : q =
1

2
v.s. H1 : |q − 1/2| ≥ 2

√
d1 + d2δ

2(d1+d2)/4+1
. (4.19)

For the test statistic 1√
n
S(ab) and the level α

(2d1−1)(2d2−1) , by Hoeffding’s inequal-

ity under H0, the critical value cα is such that cα �
√
d1 + d2. Note that under

H1, E
[∣∣ 1√

n
S(ab)

∣∣] ≥ √n 2
√
d1+d2δ

2(d1+d2)/4
. Since the variance of 1√

n
S(ab) is bounded, the

proof follows by comparing the magnitude of E
[∣∣ 1√

n
S(ab)

∣∣] and cα.

2. The proof follows from the general method in Le Cam (2012) and is similar to

the approach in Paninski (2008). For 0 < δ < 1/2, we consider a collection of

alternative distributions P in H1,d1,d2 such that

P = {P(ab),c : EP(ab)
= e(00) + 2cδe(ab), c = ±1}. (4.20)

By Theorem 3.4, for each distribution in P , the vector of probability p(ab),c =

(p(a′b′)) of P(ab),c satisfies that

p(a′b′) =


1

2d1+d2
(1 + 2δ) if (−1)(a

′b′)
T
(ab) = c

1
2d1+d2

(1− 2δ) if (−1)(a
′b′)

T
(ab) = −c

(4.21)
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Therefore, TV (P(ab),c,P0,d1,d2) = δ.Moreover, ‖E−e(00)‖∞ = ‖E−e(00)‖2 = 2δ

so the conditions in the theorem are satisfied.

Let m = (2d1 − 1)(2d2 − 1) for simplicity in notation. We shall show that no

test can be consistent for the 2m distributions in P if n = o(
√
m
δ2

). To this end,

consider the uniform measure µP over P . Consider the likelihood ratio between

µP and P0,d1,d2 based on n samples,

LµP =
(1− 4δ2)

n
2

2m

∑
a6=0
b6=0

(1 + 2δ

1− 2δ

) s(ab)
2

+

(
1− 2δ

1 + 2δ

) s(ab)
2

 . (4.22)

By Le Cam (2012), it suffices to show that (see for example the proof of Theo-

rem 5 in Han et al. (2017)) if n = o(
√
m
δ2

),

EP0,d1,d2
[L2

µP
] = 1 + o(1). (4.23)

To see this, we utilize the pairwise independence of S(a1b2) and S(a2b2) for

(a1b1) 6= (a2b2) as in Theorem 4.3. Let S denote the sum of n independent

Rademacher variables, and note that E[etS] = 1
2n

(e−t + et)n. We have

EP0,d1,d2
[L2

µP
]

=
(1− 4δ2)n

4m2

(
m

(
E

[(
1 + 2δ

1− 2δ

)S]
+ E

[(
1− 2δ

1 + 2δ

)S]
+ 2

)
+

m(m− 1)

(
E

[(
1 + 2δ

1− 2δ

)S
2

]
+ E

[(
1− 2δ

1 + 2δ

)S
2

])2


=
(1− 4δ2)n

4m2

(
2m

((
1 + 4δ2

1− 4δ2

)n
+ 1

)
+m(m− 1)

(
2

(1− 4δ2)
n
2

)2
)

=1 +
1

2m
[(1 + 4δ2)n + (1− 4δ2)n − 2]

=1 +O

(
n2δ4

m

)
.

(4.24)
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