Supplementary data

Table 4. Associations with	the risk of other	^r reoperation (tim	ne-invari-
ant HR unless specified)			

Model	GAR cohort HR (CI)	SHAR cohort HR (CI)
Univariable model		
ASA I	1 (ref)	1 (ref)
ASA II	0.9 (0.5–1.8)	1.8 (1.3–2.4) ^{a,f} 1.2 (1.0–1.6) ^{b,f}
ASA III–IV	1.2 (0.6–2.5)	3.2 (2.3–4.3) ^{a,f} 1.6 (1.2–2.1) ^{b,f}
Multivariable model		(, , , , , , , , , , , , , , , , , , ,
ASA I	1 (ref)	1 (ref)
ASA II	0.9 (0.4–1.7)	1.7 (1.2–2.2) ^{a,g}
		1.1 (0.9–1.5) ^{b,g}
ASA III–IV	1.1 (0.5–2.4)	2.7 (2.0–3.7) ^{a,g} 1.4 (1.0–1.8) ^{b,g}
Sex		
Male	1 (ref)	1 (ref)
Female	0.8 (0.4–1.6) ^{a,c}	0.6 (0.5–0.8) ^{a,h}
	1.8 (1.0–3.2) ^{b,c}	1.0 (0.8–1.2) ^{b,h}
Diagnosis		
Primary OA	1 (ref)	1 (ref)
Secondary OA	3.1 (1.6–6.0) ^{a,d}	1.8 (1.5–2.2)
	0.7 (0.4–1.5) ^{b,d}	
BMI		
< 35	1 (ref)	1 (ref)
≥ 35	4.5 (1.9–10.3) ^{a,e}	2.6 (1.9–3.4) ^{a,i}
	1.1 (0.4–2.9) ^{b,e}	1.2 (0.8–1.7) ^b , ⁱ
Age	1 (405)	1 (1105)
< 85 y		
≥ 85 Y	0.9 (0.4–2.0)	1.9 (1.4–2.4)

^a HR within the first 3 months.

^b HR after 3 months and within 5 years.

- ^c A change in HR within the first 3 months and after was suspected (p = 0.08).
- ^d The change in HR within the first 3 months and after was statistically significant (p = 0.003).
- ^e A change in HR within the first 3 months and after was suspected (p = 0.05).
- ^f The change in HR within the first 3 months and after was statistically significant (ASA II: p = 0.05, ASA III–IV: p = 0.001).
- ⁹ The change in HR within the first 3 months and after was statistically significant for ASA II (p = 0.05) and close to statistical significance for ASA III–IV (p = 0.05).
- ^h The change in HR within the first 3 months and after was statistically significant (p < 0.001).
- ⁱ The change in HR within the first 3 months and after was statistically significant (p = 0.001).

Appendix Checking of models

The proportionality of hazards was checked by plotting the complementary log-log of Kaplan-Meier's survival (with censoring death) versus the log of the follow-up time. In addition, for each covariate (gender, age, BMI, diagnosis), univariate cause-specific Cox models were used to detect a variation of HRs within 3 months following primary THA and after 3 months. In cases where the proportional hazards assumption over follow-up time was violated, a time-varying HR was introduced in the model using a time-dependent variable and an interaction term.

Statistical method for the assessment of cause-specific Cox models

For the analyses of the risk of revision, we ran a cause-specific Cox model with death as competing risk and with an interaction to allow a variation of the hazard ratio over follow-up time. For this purpose, we used the function coxph of R software (package Survival). Data were organized as follow:

IdPatient	TimeStart (days)	TimeStop (days)	Event	ASA 2	ASA 3/4	Group Time
1	0	90	0	No	Yes	0
1	90	540	1	No	Yes	1
2	0	90	0	Yes	No	0
2	90	120	2	Yes	No	1

The coding of the variable "Event" was: 0=censor, 1=revision, 2=death.

If a patient was censored or had a revision or died after 90 days, data were stored on two lines: one per period (first 3 months and after 3 months). The variable "GroupTime" indicated the period of time. The struture of database was consistent with the documentation of the R package Survival (see Therneau et al. https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf).

In Cox model, the hazard function for revision, hRevision (t), was modelled as follow:

$$\begin{split} h_{\text{Revision}}(t) &= h_{\text{Revision},0}(t) \exp[\alpha I_{(\text{ASA}=2)} + \beta I_{(\text{ASA}=2)} \text{ Group-Time} + \gamma I_{(\text{ASA}=3/4)} + \delta I_{(\text{ASA}=3/4)} \text{ Group-Time}] \\ & \text{were } h_0(t) \text{ is the baseline hazard of revision, } \alpha \text{ is the coef-} \end{split}$$

were $h_0(t)$ is the baseline hazard of revision, α is the coefficient of ASA class = 2 (with ASA class = 1 as reference category), β is the coefficient of the interaction between ASA class = 2 and the period of time, γ is the coefficient of ASA class = 3 or 4 and δ is the coefficient of the interaction between ASA class = 3/4 and the period of time. With this model, the cause

specific hazard ratio for the association between ASA class 2 and revision was $exp(\alpha)$ in the first 3 months and $exp(\alpha + \beta)$ after 3 months. The test of the null hypothesis $\beta = 0$ allowed testing that the hypothesis that the association between ASA class = 2 and revision was the same in the two periods of time. Similarly, the cause specific hazard ratio for the association between ASA class 3 or 4 and revision was $exp(\gamma)$ in the first 3 months and $exp(\gamma + \delta)$ after 3 months. The code written in software R to assess the regression coefficients was:

coxph(Surv(TimeStart,TimeStop, Event==1) ~ ASAClass2+ ASAClass2:GroupTime+ASAClass3+ASAClass3:GroupTime)

For the additional models (with adjustment for sex, age and BMI and for the risk of other reoperation), a similar approach was followed.