SUPPLEMENTARY MATERIAL

Two new compounds from Artemisia ordosica Krasch.

Qiang Tong ${ }^{1}$, Qinghu Wang ${ }^{2} *$, Bashenjirigala ${ }^{2}$, Bilegetu Pa^{2}, Wenqiang Bao ${ }^{2}$, Junsheng Hao ${ }^{2}$
${ }^{1}$ Affiliated Hospital, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China
${ }^{2}$ College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China

Two new compounds, named ordosacid A (5) and ordosacid B (6), along with four known compounds: 3,4-dihydroxybenzaldehyde (1),
p-hydroxybenzoic acid (2), p-hydroxycinnamic acid (3) and o-hydroxycinnamic acid (4), were isolated from the EtOAc extract of Artemisia ordosica Krasch. The structures of new compounds were elucidated on the basis of spectroscopic methods including UV, IR, ESI-MS, 1D NMR, 2D NMR, HR-ESI-MS and modified Mosher's method.

Keywords: Artemisia ordosica Krasch.; Ordosacid A; Ordosacid B; NMR

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 5

Figure S2. ${ }^{13} \mathrm{C}$-NMR spectrum of compound 5

Figure S3. HSQC spectrum of compound 5

Figure S 4 . DEPT spectrum of compound 5

Figure S5. HMBC spectrum of compound 5

Figure S6.COSY spectrum of compound 5

Figure S7.NOESY spectrum of compound 5

\section*{| Single Mass Analysis |
| :--- |
| Tolerance |}

Tolerance $=100.0 \mathrm{mDa} /$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
5 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used: \quad H: 0-20 $0: 0-5$

Mass	Calc. Mass	mDa	PPM	DBE	Formula	C	H	O
239.0883	239.0919	-3.6	-15.1	5.5	C12 H15 05	12	15	5

Figure S 8.MS spectrum of compound 5

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 6

Figure S10. ${ }^{13} \mathrm{C}$-NMR spectrum of compound 6

Figure S11. HSQC spectrum of compound 6

Figure S12. DEPT spectrum of compound 6

Figure S13. HMBC spectrum of compound 6

Figure S14.COSY spectrum of compound $\mathbf{6}$

Figure S15.NOESY spectrum of compound 6

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR data (500 and 125 MHz , resp.; $\mathrm{CD}_{3} \mathrm{OD}$) of compound 5 .

Position	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{c}}(\mathrm{ppm})$	HMBC
1	-	122.5	
2	$7.84(\mathrm{brs}, 1 \mathrm{H})$	126.6	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-1^{\prime}$
3	-	127.7	
4	-	163.9	
5	$6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$	108.2	$\mathrm{C}-1, \mathrm{C}-3$
6	$7.83(\mathrm{brd}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$	130.9	$\mathrm{C}-2, \mathrm{C}-4, \mathrm{C}-7$
7	-	168.6	
1^{\prime}	$3.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.5,9.0 \mathrm{~Hz})$	31.6	$\mathrm{C}-2, \mathrm{C}-4$
	$3.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.5,8.5 \mathrm{~Hz})$		
2^{\prime}	$4.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.0,8.5 \mathrm{~Hz})$	85.8	$\mathrm{C}-3, \mathrm{C}-5^{\prime}$
3^{\prime}	$2.05(\mathrm{~m}, 1 \mathrm{H})$	40.7	$\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}$
4^{\prime}	$3.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.0,5.5 \mathrm{~Hz})$	63.7	
	$3.63(\mathrm{~m}, 1 \mathrm{H})$		$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$
5^{\prime}	$1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})$	11.0	

Table 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data (500 and 125 MHz , resp.; $\mathrm{CD}_{3} \mathrm{OD}$) of compound 6.

Position	$\delta_{\mathrm{H}}(\mathrm{ppm}), J(\mathrm{~Hz})$	$\delta_{\mathrm{c}}(\mathrm{ppm})$	HMBC
1	-	122.4	
2	$7.84(\mathrm{brs}, 1 \mathrm{H})$	126.5	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-1^{\prime}$
3	-	127.6	
4	-	164.2	
5	$6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$	108.1	$\mathrm{C}-1, \mathrm{C}-3$
6	$7.83(\mathrm{brd}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$	130.1	$\mathrm{C}-2, \mathrm{C}-4, \mathrm{C}-7$
7	-	168.6	
1^{\prime}	$3.33(\mathrm{~m}, 1 \mathrm{H})$	32.1	$\mathrm{C}-2, \mathrm{C}-4$
	$3.08(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.5,8.5 \mathrm{~Hz})$		
2^{\prime}	$4.93(\mathrm{~m}, 1 \mathrm{H})$	84.9	$\mathrm{C}-3, \mathrm{C}-5^{\prime}$
3^{\prime}	$1.94(\mathrm{~m}, 1 \mathrm{H})$	41.1	$\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}$
4^{\prime}	$3.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.0,6.0 \mathrm{~Hz})$	63.2	
	$3.56(\mathrm{~m}, 1 \mathrm{H})$		$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$
5^{\prime}	$1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})$	10.1	

