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S.1. The two dimensional sphere - H1 persistence diagram

S.1.1. Fitting the model

We present here the analysis of the H1 persistence diagram for the two dimensional sphere

that is described in Section 4.1 in the paper. Again estimating the parameters for the Gibbs

pseudolikelihood (7) in the paper, taking K = 3, the estimate of δ was 0.0047. For this δ,

the estimates of Θ were θ1 = −0.0331, θ2 = 0, θ3 = 3.3842, θH = 60.00, and θV = 110.00.

To check the match between the estimated model and the H1 persistence diagram, we

used the same 100 simulated sets of the 2-sphere used for the H0 diagram, following the

same procedure that we adopted then, this time restricting to a model with only θ1, θ3, θH ,

and θV non-zero. The blue plot in Figure 1 shows the smoothed empirical densities for the

parameters estimates generated by these simulations. As for the H0 case, the results indicate

that the estimation procedure is stable.

(a) (b) (c) (d)

Figure 1: Smoothed empirical densities for the four parameter estimates of H1 persistence diagram coming

from the simulations of 2-sphere, see text for details. (a) θ1, (b) θ3, (c) θH , (d) θV .

.

S.1.2. Replicating the H1 persistence diagram

As for the analysis of the H0 diagram, we calculated bottleneck and the Wasserstein distances

between the original persistence diagrams and the corresponding 100 MCMC simulated di-

agrams of the previous section. The results are shown by the blue plots in Figure 2.

The first row in Figure 2 shows the bottleneck distances, while the second row shows

the W2 differences. The first column shows the results of the first 50 steps of the MCMC

algorithm on a linear scale. The second and third columns go out to 2,000 steps, first on
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a linear scale and then on a logarithmic scale. The point where the initial rapid growth of

the distance functions ceases, is approximately 44 for the bottleneck distance and 47 in the

Wasserstein case.

(a) (b) (c)

(d) (e) (f)

Figure 2: Growth of the bottleneck (a) and Wasserstein (d) differences of MCMC simulations from a specific

persistence diagram (vertical axis), as a function of the number of steps nb (horizontal axis, 1 ≤ nb ≤ 50)

averaged over 100 independent persistence diagrams. Panels (b) and (e) take 1 ≤ nb ≤ 2, 000, while (c) and

(f) show he same data but on a logarithmic scale.

In addition we considered summary statistics of the 100 simulated persistence diagrams

as the MCMC progressed, to ensure that the simulations reliably replicate the statistical

properties of the persistence diagrams. Here the best fits were for a burn in of 50, which is

consistent with the results of Figure 2.

S.1.3. Resampling H1

As for the H0 case, we again examine the performance of resampling from the original

persistence diagram (Setting I) and from the original data (Setting II), repeating each pro-

cedure 100 times. The results are summarised in Figure 1. The red (dot dashed) plots are

the smoothed empirical densities for the parameter estimates in Setting I, while the yellow
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(dashed) plot correspond to Setting II.

In order to assess the fit of the simulated data to the original, we computed, as previously,

the bottleneck and the Wasserstein distances between the MCMC simulations and the data

itself. The results are presented in Figure 2, in addition to the results based on the 100

simulated persistence diagrams. The red (dot dashed) plot shows the results for the 100

resampled sets from the original persistence diagram, and the yellow (dashed) plot shows

the same thing, but for the 100 resampled sets from the original data. The point where the

initial rapid growth of the distance functions ceases, is approximately 22 and 46 in Setting I

and Setting II, respectively, for the bottleneck distance, and approximately 20 and 48 in the

Wasserstein case. This suggests taking a burn in period of 50 for generating the replicated

persistence diagrams for H1.

S.1.4. Statistical inference

We are now finally in a position to carry out a simulation study to test how well we can

identify the homology of 2-sphere, using the methodology described earlier. To do so, we

generated 1,000 persistence diagrams from the fitted model, via MCMC, with a burn in

period of 50 iterations and with (nb, nr, nR) given by (500,10,100), (500,20,50), (500,40,25),

or (500,100,10). Using these four sets of simulations, we computed the maximum statistic

T1 = maxi |di − bi|, its confidence interval and p-value, for both the H0 and H1 persistence

diagrams. Table 1 summarizes the results.

The results for the H0 persistence diagram show that T1, in two first scenarios, was

statistically insignificant, and in the two other scenarios was significant. In other words, the

evidence is split between one connected component (represented by the ‘point at infinity’

not included in the analysis) and two components. The fact that the correct result occurs

in the cases of a larger number of shorter MCMC runs is consistent with earlier findings in

Adler et al. (2017).

As for the H1 topology, all four scenarios showed that T1 was insignificant for all MCMC

parameter, implying, correctly, a trivial H1 homology.

In order to appreciate the power of the above inferences, we now carry out inference
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Homology Statistic Real PD (nb, nr, nR) CI p-value Significance

H0 T1 0.4769 (500,10,100) [0, 0.4769] 0.0990 no
(500,20,50) [0, 0.4769] 0.0520 no
(500,40,25) [0, 0.3273] 0.0320 yes
(500,100,10) [0, 0.2616] 0.0100 yes

H1 T1 0.1673 (500,10,100) [0, 0.2140] 0.4060 no
(500,20,50) [0, 0.2069] 0.3780 no
(500,40,25) [0, 0.2065] 0.3550 no
(500,100,10) [0, 0.1995] 0.3270 no

Table 1: Maximum statistic T1 for the real H0 and H1 persistence diagram and the simulated H0 and

H1 persistence diagrams of the 2-sphere. The CI is a one-sided confidence interval at a 95% confidence

level. The p-value is also one-sided. Both the CI and the p-value are based on 1,000 simulated persistence

diagrams.

based on two existing, bootstrap based, methods. Figure 3 presents 95% confidence sets for

the persistence diagram using the bootstrap with 1000 bootstrap samples. The pink region

describes the confidence set, and the number of bootstrap samples was 1000. There are

two approaches for bootstrapping, either via bootstrapping the original data data (Fasy et

al. (2014)), or bootstrapping from the original persistence diagram (Chazal et al. (2014)).

Figure 3 (a) shows that bootstrapping from the original persistence diagram fails to detect

any connected components at all (including the one corresponding to the ‘point at infinity’,

which appears in this particular diagram!), while (b) shows that it (incorrectly) identified

several significant holes. Bootstrapping from the original sphere, as in (c), failed to detect

either connected components or holes.
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(a) (b) (c)

Figure 3: 95% confidence sets for persistence diagrams using the bootstrap: See text for more details.

(a) A 95% confidence set for the H0 persistence points of the sphere, using bootstrapping from the original

persistence diagram. (b) A 95% confidence set for the H1 persistence points of the sphere, using bootstrap-

ping from the original persistence diagram. (c) A 95% confidence set for the persistence diagram, using

bootstrapping from the original sphere. Black circles are H0 persistence points, red triangle is H1 point.

Birth times are on the vertical axis.

S.2. 3-torus

S.2.1. Replicating the persistence diagram

The determination of the burn in period in this example, for both H0 and H1, was only

heuristic. Figure 4 presents the original persistence diagrams of H0 and H1 and their MCMC

with burn in periods of 10, 25, 50 and 1000. The best fits for both H0 and H1 occur for burn

in periods in the range [10, 50].

S.2.2. Statistical inference

We generated 1,000 replicated persistence diagrams from the fitted model with a burn in

period of 10 iterations. Table 2 summarizes the results.

The results for the H0 diagram, for all scenarios, showed that T1 was insignificant (the

lowest p-value reached in any of the six cases was 0.235). Thus, adding the ‘point at infinity’

back into the diagram, we have evidence for exactly one connected component, as we hoped

to find.

For the H1 diagram, the results for all scenarios showed that T1 − T3 were all significant

6



Figure 4: The first row shows the persistence diagrams of H0 of the 3-torus, and the second row shows the

persistence diagrams of H1 of the 3-torus. At each row, the left plot is the original persistence diagram, and

the four other plots are simulated persistence diagrams based on an MCMC simulation with burn in of 10,

25, 50 and 1000.

Homology Statistic Real PD (nb, nr, nR) CI p-value Significance

H0 T1 0.0295 (500,10,100) [0, 0.0371] 0.3360 no
(500,20,50) [0, 0.0362] 0.2770 no
(500,40,25) [0, 0.0359] 0.2350 no
(500,100,10) [0, 0.0322] 0.2720 no

H1 T1 0.0136 (500,10,100) [0, 0.0123] 0.0340 yes
(500,20,50) [0, 0.0118] 0.0320 yes
(500,40,25) [0, 0.0107] 0.0220 yes
(500,100,10) [0, 0.0134] 0.0490 yes

H1 T2 0.0118 (500,10,100) [0, 0.0103] 0.0030 yes
(500,20,50) [0, 0.0102] 0.0060 yes
(500,40,25) [0, 0.0102] 0 yes
(500,100,10) [0, 0.0101] 0.0020 yes

H1 T3 0.0103 (500,10,100) [0, 0.0100] 0.0360 yes
(500,20,50) [0, 0.0098] 0.0060 yes
(500,40,25) [0, 0.0099] 0.0060 yes
(500,100,10) [0, 0.0099] 0.0180 yes

Table 2: Order statistics T1, T2, T3 for the real H0 and H1 persistence diagrams and the simulated H0

and H1 persistence diagrams for the 3-torus example. The CI is a one-sided confidence interval at a 95%

confidence level. The p-value is also a one-sided. Both the CI and the p-value are based on 1000 simulated

persistence diagrams.

(the highest p-value reached in any of the 8 cases was 0.049). That is, three significant

7



‘holes’, as we hoped to find.

However, as mentioned in the main paper, T4, ..., T10 were also statistically significant,

leading to a significant over-estimation of the complexity of the H1 homology. Some possible

explanations, and ways to correct, for this are described there.

S.3. Three circles

The results of the bootstrap method are presented in Figure 5: we have that bootstrap-

ping from the original persistence diagram and from the original three circles recognize one

connected component.

(a) (b)

Figure 5: 95% confidence sets for the persistence diagrams of the three circles, using the bootstrap.

(a) A 95% confidence set for the H0 persistence points of the three circles, using bootstrapping from the

original persistence diagram. (b) A 95% confidence set for the persistence diagram of the three circles, using

bootstrapping from the original sphere. Black circles are H0 persistence points, red triangle is H1 point.

Birth times are on the vertical axis.
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S.4. Noisy circle

S.4.1. Fitting the model

In order to compare the estimates distributions over noisy circle and a circle without noise,

we generated 100 collections of samples from the noisy circle and from the circle without

noise, according to the same procedure that generated the original data; for each sample

we fitted the model that includes all the five parameters of Θ. The top plots in Figure 6

show the (smoothed) empirical densities of the resulting parameter estimates for the noisy

circle1. The bottom plots in Figure 6 show the (smoothed) empirical densities of the resulting

parameter estimates for the circle without noise2. We see that the estimates of δ, θ1, θ2, θ3,

θH , are typically smaller for the noisy circle than the corresponding estimates under a circle

without noise, whereas for θV the opposite is true. In addition, we see that the behaviour

of the distributions is the same over the two cases except for θ1: the distributions of δ and

θV are symmetric, whereas the distributions for the other estimates are asymmetric to the

right. That is, the noise in general made the estimates to be with smaller values, except θV

which had the opposite direction of sign.

Most noticeable, however, are the facts that while the centres (as measured by modes) of

the distributions are not seriously affected by the noise, the means and variances do change.

In other words, estimation in the presence of noise involves both mean bias (not expected) and

(typically) increased variance (expected). Table 3 gives some summary statistics supporting

these claims.

1Some of these estimates included outliers, probably since the model with the all five parameters is not

the best model for the specific sample. We omitted these cases (7 cases), and the plots are based on the

samples without outliers in the estimates.
2Also here some of the estimates included outliers. We omitted these cases (15 cases), and the plots are

based on the samples without outliers in the estimates.
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Figure 6: Smoothed empirical densities for δ and the five parameter estimates for the H0 persistence

diagram. Top: 100 simulations of noisy circle. Bottom: 100 simulations of circle without noise. See text for

details. From left to right: δ, θ1, θ2, θ3, θH , θV .

.

Without noise With noise
Statistic Mode Average Relative stda Mode Mean Relative stda

θ1 −0.1412 -0.0539 0.0307 -0.1214 0.5749 1.2914
θ2 −0.1489 -0.0411 0.0523 -0.0977 1.3950 1.1879
θ3 −0.1322 -0.0056 0.1551 -0.1240 1.3201 1.2133
θ4 7.8188 30.4283 0.4383 21.5787 78.1979 1.0950
θ5 14.4942 52.3556 0.9348 7.1351 21.3760 0.3574
δ 0.0016 0.0066 0.6896 0.0020 0.0099 1.1279

Table 3: Comparison of the center location (mode and mean) and the spread (relative standard deviation)

over the circle without noise and the circle with noise. aRelative standard deviation is the fraction of the

relevant standard deviation from the total standard deviation. The total standard deviation was calculated

over the two cases of the circle with and without noise for the specific parameter.

S.4.2. The determination of the burn in period

The determination of the burn in period in this example, for both the noisy circle and the

circle without noise, was only heuristic. Figure 7 presents the original persistence diagrams

of the noisy circle and the circle without noise and their MCMC with burn in periods of 10,

25, 50 and 1000. The best fits for both noisy circle and circle without noise occur for burn

in periods in the range [10, 50].
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Figure 7: The first row shows the persistence diagrams of the noisy circle, and the second row shows the

persistence diagrams of circle without noise. At each row, the left plot is the original persistence diagram,

and the four other plots are simulated persistence diagrams based on an MCMC simulation with burn in of

10, 25, 50 and 1000.

S.4.3. Statistical inference

We generated 1,000 replicated persistence diagrams from the fitted model of the both cases

with a burn in period of 10 iterations. Table 4 summarizes the results for the noisy circle,

and Table 5 summarizes the results for the circle without noise.

Homology Statistic Real PD (nb, nr, nR) CI p-value Significance

H0 T1 0.3080 (500,10,100) [0, 0.2165] 0.0210 yes
(500,20,50) [0, 0.1843] 0.0070 yes
(500,40,25) [0, 0.1562] 0.0030 yes
(500,100,10) [0, 0.1734] 1.00E-03 yes

Table 4: Maximum statistics T1, T2, T3 for the real H0 persistence diagrams and the simulated H0

persistence diagram of the noisy circle. The CI is a one-sided confidence interval at a 95% confidence level.

The p-value is also a one-sided. Both the CI and the p-value are based on 1000 simulated persistence

diagrams.

Comparing these results with the bootstrap method described in Figure 8, we have that

bootstrapping from the original persistence diagram in the noisy circle finds a single, sig-

nificant, connected component, but bootstrapping from the original noisy circle indentifies
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Homology Statistic Real PD (nb, nr, nR) CI p-value Significance

H0 T1 0.3122 (500,10,100) [0, 0.3419] 0.0790 no
(500,20,50) [0, 0.3298] 0.0770 no
(500,40,25) [0, 0.3285] 0.0650 no
(500,100,10) [0, 0.3138] 0.0540 no

Table 5: Maximum statistics T1, T2, T3 for the real H0 persistence diagram and the simulated H0

persistence diagram of the circle without noise. The CI is a one-sided confidence interval at a 95% confidence

level. The p-value is also a one-sided. Both the CI and the p-value are based on 1000 simulated persistence

diagrams.

none.

(a) (b)

Figure 8: 95% confidence sets for persistence diagrams of the noisy circle using the bootstrap. (a) A 95%

confidence set for the persistence diagram of the noisy circle using bootstrapping from the original persistence

diagram. (b) A 95% confidence set for the persistence diagram of the noisy circle, using bootstrapping from

the original noisy circle. Black circles are H0 persistence points, red triangle is H1 point. Birth times are on

the vertical axis.
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