
SUPPLEMENTARY MATERIAL

A Imputation error by data type and timing results

In this section we provide more details on the simulations of Section 5.2. Table 6 presents
the imputation errors of the compared methods for quantitative variables only, and Table 7
for binary variables. For the quantitative variables, mimi and MLFAMD, which both
model main group effects, perform best. As already noticed in Section 5.2, mimi has
smaller imputation errors than other methods when the size of the main effects compared
to the interactions, and the proportion of missing entries, are both large. For the binary
variables, suprisingly, softImpute outperforms consistently the other methods, although it
is not designed for mixed data. Finally, Table 8 shows the average computational times
of the different compared methods. We observe that the computational times of mimi,
GLRM, FAMD and MLFAMD are of comparable order. The aforementioned methods are
an order of magnitude slower than softImpute and mice.

% missing 20 40 60
ρ 0.2 1 5 0.2 1 5 0.2 1 5
mean 20.7(1.3) 19.8(0.7) 19.6(0.6) 28.0(2.6) 28.2(1.3) 26.9(1.1) 35.5(1.6) 34.2(1.3) 34.1(0.5)
mimi 13.0(0.4) 12.3(0.4) 11.4(0.3) 19.8(1.1) 19.0(0.7) 16.1(0.5) 27.1(1.0) 24.3(1.1) 20.2(0.4)
GLRM 16.1(1.0) 16.9(0.7) 13.8(0.4) 24.0(5.3) 24.5(1.5) 23.4(1.1) 36.5(12.3) 41.9(18.0) 44.1(3.7)
softImpute 14.0(0.5) 14.0(0.4) 13.3(0.4) 20.3(1.2) 20.9(0.7) 18.5(0.8) 27.3(1.2) 27.4(1.0) 24.4(0.5)
FAMD 12.7(0.5) 12.9(0.6) 12.1(0.3) 19.2(1.3) 20.2(0.6) 17.3(0.6) 26.9(1.8) 31.2(1.0) 22.7(0.4)
MLFAMD 12.6(0.6) 13.7(0.6) 12.2(0.4) 18.8(1.0) 19.7(0.6) 17.6(0.7) 25.4(1.5) 26.2(1.2) 23.5(0.6)
mice 17.3(0.8) 17.2(1.0) 16.9(0.6) 25.1(1.2) 26.0(0.7) 23.1(1.0) 40.7(2.8) 40.1(0.9) 36.8(1.8)

Table 1: Quantitative variables: Imputation error (MSE) of mimi, GLRM, softImpute and
FAMD for different percentages of missing entries (20%, 40%, 60%) and different values of
the ratio ‖fU(α0)‖F/‖L0‖F (0.2, 1, 5). The values are averaged across 100 replications and
the standard deviation is given between parenthesis.

B Proof of Theorem 1

To prove global convergence of the BCGD algorithm, we use a result from (Tseng and Yun,
2009, Theorem 1) summarized below in Theorem 5, combined with the compacity of the
level sets of the objective F , proved using Lemma 3 and Lemma 4.
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% missing 20 40 60
ρ 0.2 1 5 0.2 1 5 0.2 1 5
mean 13.0(0.3) 12.4(0.3) 11.8(0.4) 18.33(0.4) 17.4(0.3) 16.9(0.3) 22.6(0.5) 22.0(0.6) 20.8(0.6)
mimi 13.5(0.3) 13.5(0.3) 13.5(0.3) 18.9(0.5) 19.1(0.3) 18.9(0.6) 23.7(0.6) 23.4(0.5) 23.1(0.4)
GLRM 14.2(0.4) 14.1(0.6) 14.2(0.5) 20.0(0.4) 20.2(0.4) 20.4(0.3) 24.9(0.5) 25.1(0.6) 24.9(0.3)
softImpute 12.2(0.1) 12.0(0.3) 12.0(0.6) 17.0(0.3) 16.7(0.2) 16.6(0.4) 21.6(0.4) 21.6(0.3) 21.0(0.5)
FAMD 13.6(0.4) 13.8(0.4) 13.5(0.3) 19.2(0.5) 19.8(0.3) 18.8(0.6) 24.0(0.5) 25.0(0.4) 23.6(0.4)
MLFAMD 13.6(0.5) 13.5(0.4) 13.6(0.4) 19.4(0.5) 19.5(0.4) 19.6(0.5) 24.0(0.5) 24.1(0.4) 23.9(0.4)
mice 14.6(0.3) 14.5(0.4) 14.4(0.4) 20.5(0.4) 20.3(0.2) 20.5(0.4) 25.7(0.4) 25.7(0.6) 25.3(0.2)

Table 2: Binary variables: Imputation error (MSE) of mimi, GLRM, softImpute and FAMD
for different percentages of missing entries (20%, 40%, 60%) and different values of the
ratio ‖fU(α0)‖F/‖L0‖F (0.2, 1, 5). The values are averaged across 100 replications and the
standard deviation is given between parenthesis.

method mean mimi GLRM softImpute FAMD MLFAMD mice
time (s) 1.7e-4 6.6 5.5 0.1 2.6 3.5 0.2

Table 3: Computation time of the seven compared methods (averaged across 100 simula-
tions).

Theorem 1. Let {(α[k], L[k])} be the current iterates, {(d[k]
α , d

[k]
L )} the descent directions

and {(Γ[k]
α ,Γ

[k]
L )} the functionals generated by the BCGD algorithm. Then the following

results hold.

(a) {F (α[k], L[k])} is nonincreasing and for all k, (Γ
[k]
α ,Γ

[k]
L ) satisfies

−Γ[k]
α ≥ (1− θ)ν‖d[k]

α ‖2
2 and − Γ

[k]
L ≥ (1− θ)ν‖d[k]

L ‖
2
F .

(b) Every cluster point of {(α[k], L[k])} is a stationary point of F .

Assumptions H1 and 2, combined with the separability of the `1 and nuclear norm
penalties, guarantee that the conditions of (Tseng and Yun, 2009, Theorem 1) are satisfied.
We now show that the data-fitting term L(fU(α) + L;Y,Ω) is lower-bounded.

Lemma 1. There exists a constant c > −∞ such that, for all X ∈ Rm1×m2, L(X;Y,Ω) ≥ c.

Proof. Recall that L(X;Y,Ω) =
∑m1

i=1

∑m2

j=1 Ω{−YijXij + gj(Xij)}. Thus, we only need to
prove that for all (i, j) ∈ Jm1K×Jm2K, the function x 7→ −Yijx+gj(x) is lower bounded by a
constant cij > −∞. Assume that this is not the case; by the convexity of x 7→ −Yijx+gj(x)
we have that either −Yijx+ gj(x) →

x→+∞
−∞ or −Yijx+ gj(x) →

x→−∞
−∞. Assume without
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loss of generality that −Yijx+ gj(x) →
x→+∞

−∞. Then, there exists x0 ∈ R such that for all

x ≥ x0, −Yijx+ gj(x) < log
∫
y∈Yj
y≥Yij

hj(y)µj(dy). Thus, for all x ≥ max(x0, 0), we have that

∫
y∈Yj

hj(y)eyx−gj(x)µj(dy) =

∫
y∈Yj
y<Yij

hj(y)eyx−gj(x)µj(dy) +

∫
y∈Yj
y≥Yij

hj(y)eyx−gj(x)µj(dy)

>

∫
y∈Yj
y<Yij

hj(y)eyx−gj(x)µj(dy) + 1 > 1,

contradicting normality of the density hj(y)eyx−gj(x). Thus, there exists cij > −∞, such
that for all x ∈ R, −Yijx + gj(x) ≥ cij. Finally we obtain that L(X;Y,Ω) ≥ c =∑m1

i=1

∑m2

j=1 cij.

Finally, we use Lemma 3 to show the compactness of the level sets of the objective
function F , defined for C ∈ R by

LC = {(α,L) ∈ RN × Rm1×m2 ;F (α,L) ≤ C}.

Lemma 2. The level sets of the objective function F are compact.

Proof. For all (α,L) ∈ RN × Rm1×m2 , F (α,L) ≥ c + λ1‖L‖∗ + λ2‖α‖1, where c is the
constant defined in Lemma 3. Thus, for all C ∈ R, the level set LC is included in the
compact set {

(α,L) ∈ RN × Rm1×m2 ; ‖L‖∗ ≤
C − c
2λ1

and ‖α‖1 ≤
C − c
2λ2

}
.

Furthermore, by the continuity of F , the level set LC is also a closed set. Thus we obtain
that for all C ∈ R, the level set LC is compact.

We can now combine Theorem 5, Lemma 3 and Lemma 4 to prove Theorem 1. Let
(α[0], L[0]) be an initialization point. Theorem 5 (a) implies that the sequence (α[k], L[k])
generated by the BCGD algorithm lies in the level set of F

LF (α[0],L[0]) =
{

(α,L) ∈ RN × Rm1×m2 ;F (α,L) ≤ F (α[0], L[0])
}
.

Furthermore, LF (α[0],L[0]) is compact by Lemma 4, showing that the sequence (α[k], L[k]) has
at least one accumulation point. Combined with Theorem 5 (b) and the convexity of F ,
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this shows Theorem 1 (a).

Theorem 5 (a) and Lemma 3 combined imply that the sequence {F (α[k], L[k])} converges
to a limit F ∗. Furthermore, Theorem 1 (a) and the continuity of F imply that there
exists a sub-sequence {F (α[k], L[k])}k∈K such that {F (α[k], L[k])}k∈K → F (α̂, L̂). Thus,
F ∗ = F (α̂, L̂), which proves Theorem 1 (b).

C Proof of Theorem 2

Let Π = (πij)(i,j)∈Jm1K×Jm2K be the distribution of the mask Ω. For B ∈ Rm1×m2 we de-
note BΩ the projection of B on the set of observed entries. We define ‖B‖2

Ω = ‖BΩ‖2
F ,

and ‖B‖2
Π = E [‖B‖2

Ω], where the expectation is taken with respect to Π. The proof of
Theorem 2 will follow the subsequent two steps. We first derive an upper bound on the
Frobenius error restricted to the observed entries ‖∆X‖2

Ω, then show that the expected
Frobenius error ‖∆X‖2

Π is upper bounded by ‖∆X‖2
Ω with high probability, and up to a

residual term defined later on.
Let us derive the upper bound on ‖∆X‖2

Ω. By definition of L̂ and α̂: L(X̂;Y,Ω) −
L(X0;Y,Ω) ≤ λ1

(
‖L0‖∗ − ‖L̂‖∗

)
+ λ2 (‖α0‖1 − ‖α̂‖1) . Recall that, for α ∈ RN , we use

the notation fU(α) =
∑N

k=1 αkU
k. Adding 〈∇L(X0;Y,Ω),∆X〉 on both sides of the last

inequality, we get

L(X̂;Y,Ω)− L(X0;Y,Ω) + 〈∇L(X0;Y,Ω),∆X〉 ≤

λ1

(
‖L0‖∗ − ‖L̂‖∗

)
− 〈∇L(X0;Y,Ω),∆L〉

+ λ2

(
‖α0‖1 − ‖α̂‖1

)
− 〈∇L(X0;Y,Ω), fU(∆α)〉. (1)

Assumption H2 implies that for any pair of matrices X1 and X2 in Rm1×m2 satisfying
‖X1‖∞ ∨ ‖X2‖∞ ≤ (1 + æ)a, the two following inequalities hold for all Ω:

L(X;Y,Ω)− L(X̃;Y,Ω)− 〈∇L(X̃;Y,Ω), X − X̃〉 ≥
σ2
−

2
‖X − X̃‖2

Ω, (2)

‖∇L(X;Y,Ω)−∇L(X̃;Y,Ω)‖F ≤ σ2
+‖X − X̃‖Ω. (3)

Plugging (33) into (32) allows to construct a lower bound on the left hand side term and
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obtain σ2
−‖∆X‖2

Ω/2 ≤ A1 + A2,

A1 = λ1

(
‖L0‖∗ − ‖L̂‖∗

)
+
∣∣〈∇L(X0;Y,Ω),∆L〉

∣∣ ,
A2 = λ2

(
‖α0‖1 − ‖α̂‖1

)
+
∣∣〈∇L(X0;Y,Ω), fU(∆α)〉

∣∣ . (4)

Let us upper bound A1. The duality of the norms ‖ · ‖∗ and ‖ · ‖ implies that∣∣〈∇L(X0;Y,Ω),∆L〉
∣∣ ≤ ‖∇L(X0;Y,Ω)‖‖∆L‖∗.

Denote by S1 and S2 the linear subspaces spanned respectively by the left and right singular
vectors of L0, and PS⊥1 and PS⊥2 the orthogonal projectors on the orthogonal of S1 and S2,
PL0⊥ : X 7→ PS⊥1 XPS⊥2 and PL0 : X 7→ X − PS⊥1 XPS⊥2 . The triangular inequality yields

‖L̂‖∗ = ‖L0 − PL0⊥(∆L)− PL0(∆L)‖∗ ≥ ‖L0 + PL0⊥(∆L)‖∗ − ‖PL0(∆L)‖∗. (5)

Moreover, by definition of PL0⊥ , the left and right singular vectors of PL0⊥(∆L) are respec-
tively orthogonal to the left and right singular spaces of L0, implying ‖L0 +PL0⊥(∆L)‖∗ =
‖L0‖∗ + ‖PL0⊥(∆L)‖∗. Plugging this identity into (36) we obtain

‖L0‖∗ − ‖L̂‖∗ ≤ ‖PL0(∆L)‖∗ − ‖PL0⊥(∆L)‖∗, (6)

and A1 ≤ λ1

(
‖PL0(∆L)‖∗ − ‖PL0⊥(∆L)‖∗

)
+ ‖∇L(X0;Y,Ω)‖‖∆L‖∗.

Using ‖∆L‖∗ ≤ ‖PL0(∆L)‖∗+‖PL0⊥(∆L)‖∗ and the assumption λ1 ≥ 2‖∇L(X0;Y,Ω)‖
we get A1 ≤ 3λ1‖PL0(∆L)‖∗/2. In addition, ‖PL0(∆L)‖∗ ≤

√
rank (PL0(∆L))‖PL0(∆L)‖F ,

and rank (PL0(∆L)) ≤ 2 rank (L0) (see, e.g. (Klopp, 2014, Theorem 3)). Together with
‖PL0(∆L)‖F ≤ ‖∆L‖F , this finally implies the following upper bound:

A1 ≤
3λ1

2

√
2r‖∆L‖F . (7)

We now derive an upper bound for A2. The duality between ‖ · ‖1 and ‖ · ‖∞ ensures∣∣〈∇L(X0;Y,Ω), fU(∆α)〉
∣∣ ≤ ‖∆α‖1‖∇L(X0;Y,Ω)‖∞u. (8)

The assumption λ2 ≥ 2‖∇L(X0;Y,Ω)‖∞u in conjunction with (39) and the triangular
inequality ‖∆α‖1 ≤ ‖α0‖1 + ‖α̂‖1 yield

A2 ≤
3λ2

2
‖α0‖1. (9)
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Combining inequalities (35), (38) and (40) we obtain

‖∆X‖2
Ω ≤

3λ1

σ2
−

√
2r‖∆L‖F +

3λ2

σ2
−
‖α0‖1. (10)

We now show that when the errors ∆L and ∆α belong to a subspace C and for a residual
D - both defined later on - the following holds with high probability:

‖∆X‖2
Ω ≥ ‖∆X‖2

Π − D. (11)

We start by defining our constrained set and prove that it contains the errors ∆L and ∆α
with high probability (Lemma 5-6); then we show that restricted strong convexity holds
on this subspace (Lemma 7). For non-negative constants d1, dΠ, ρ < m and ε that will be
specified later on, define the two following sets where ∆α and ∆L should lie:

A(d1, dΠ) =
{
α ∈ RN : ‖α‖1 ≤ d1, ‖fU(α)‖2

Π ≤ dΠ

}
. (12)

L(ρ, ε) =

{
L ∈ Rm1×m2 , α ∈ RN : ‖L+ fU(α)‖2

Π ≥
72 log(d)

p log(6/5)
,

‖L+ fU(α)‖∞ ≤ 1, ‖L‖∗ ≤
√
ρ‖L‖F + ε

} (13)

If ‖∆X‖2
Π is too small, the right hand side of (42) is negative. The first inequality in the

definition of L(ρ, ε) prevents from this. Condition ‖L‖∗ ≤
√
ρ‖L‖F + ε is a relaxed form

of the condition ‖L‖∗ ≤
√
ρ‖L‖F satisfied for matrices of rank ρ. Finally, we define the

constrained set of interest:

C(d1, dΠ, ρ, ε) = L(ρ, ε) ∩
{
Rm1×m2 ×A(d1, dΠ)

}
.

Recall u = maxk ‖Uk‖1 and let

d1 = 4‖α0‖1, and dΠ =
3λ2

σ2
−
‖α0‖1 + 64a2uE [‖ΣR‖∞] ‖α0‖1 + 3072a2p−1 +

72a2 log(d)

log(6/5)
.

Lemma 3. Let λ2 ≥ 2u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + u)a
)

and assume H1-2 hold. Then,
with probability at least 1− 8d−1, ∆α ∈ A(d1, dΠ).

Proof. See Appendix E.
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Lemma 5 implies the upper bound on ‖∆α‖2
2 of Theorem 2. Thus, we only need to

prove the upper bound on ‖∆L‖2
F . Let ρ = 32r and ε = 3λ2/λ1‖α0‖1.

Lemma 4. Assume H2 and let

λ1 ≥ 2‖∇L(X0;Y,Ω)‖, λ2 ≥ 2u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + u)a
)
.

Then ‖∆L‖∗ ≤
√
ρ‖∆L‖F + ε.

Proof. See Appendix F

As a consequence, under the conditions on the regularization parameters λ1 and λ2

given in Lemma 6 and whenever ‖∆L+ fU(∆α)‖2
Π ≥ 72 log(d)/(p log(6/5)), the error terms

(∆L,∆α) belong to the constrained set C(d1, dΠ, ρ, ε) with high probability.

Case 1: Suppose ‖∆L+ fU(∆α)‖2
Π < 72 log(d)/(p log(6/5)). Then, Lemma 5 combined

with the fact that ‖M‖2
F ≤ p−1‖M‖2

Π for all M , and the identity (a + b)2 ≥ a2/4 − 4b2

ensures that ‖∆L‖2
F ≤ 4‖∆L + fU(∆α)‖2

F + 16‖fU(∆α)‖2
F . Therefore we obtain (ii) of

Theorem 2:

‖∆L‖2
F ≤

288a2 log(d)

log(6/5)
+ 16

‖α0‖1

p
Θ1.

Case 2: Suppose ‖∆L + fU(∆α)‖2
Π ≥ 72 log(d)/(p log(6/5)). Then, Lemma 5 and 6

yield that with probability at least 1− 8d−1,(
∆L

2(1 + æ)a
,

∆α

2(1 + æ)a

)
∈ C(d′1, d′Π, ρ′, ε′),where

d′1 =
d1

2(1 + æ)a
, d′Π =

dΠ

4(1 + æ)2a2
, ρ′ = ρ, ε′ =

ε

2(1 + æ)a
,

and where d1, dΠ, ρ and ε are the same as in Lemma 5 and 6. We use the following result,
proven in Appendix G. Recall that we assume for all (i, j) ∈ Jm1K× Jm2K, P(Ωij = 1) ≥ p
and define:

Ã(d1) =

{
α ∈ RN : ‖α‖∞ ≤ 1; ‖α‖1 ≤ d1; ‖fU(α)‖2

Π ≥
18 log(d)

p log(6/5)

}
,

Dα = 8æd1uE [‖ΣR‖∞] + 768p−1,

DX =
112ρ

p
E [‖ΣR‖]2 + 8æεE [‖ΣR‖] + 8æd1uE [‖ΣR‖∞] + dΠ + 768p−1.

(14)
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Lemma 5. (i) For any α ∈ Ã(d1), with probability at least 1− 8d−1,

‖fU(α)‖2
Ω ≥

1

2
‖fU(α)‖2

Π − Dα.

(ii) For any pair (L, α) ∈ C(d1, dΠ, ρ, ε), with probability at least 1− 8d−1

‖L+ fU(α)‖2
Ω ≥

1

2
‖L+ fU(α)‖2

Π − DX . (15)

Proof. See Appendix G.

Lemma 7 (ii) applied to
(

∆L
2(1+æ)a

, ∆α
2(1+æ)a

)
implies that with probability at least 1−8d−1,

‖∆X‖2
Π ≤ 2‖∆X‖2

Ω +4(1+æ)aDX . Combined with (41), ‖∆X‖2
F ≤ p−1‖∆X‖2

Π, ‖∆X‖2
F ≥

‖∆L‖2
F/2−‖fU(∆α)‖2

F and 6
√

2rλ1/(pσ
2
−)‖∆L‖F ≤ ‖∆L‖2

F/4 + 288rλ2
1/(p

2σ4
−), we obtain

the result of Theorem 2 (ii):

‖∆L‖2
F ≤

1152rλ2
1

p2σ4
−

+
24λ2‖α0‖1

pσ2
−

+ 4(1 + æ)aDX + 4
‖α0‖
p

Θ1.

D Proof of Theorem 4

We will establish separately two lower bounds of order rM/p and s/p respectively. Define

L̃ =

{
L̃ ∈ Rm1×r : L̃ij ∈

{
0, ηmin(a, σ+)

(
r

pm

)1/2
}
,∀(i, j) ∈ Jm1K× JrK

}
,

where 0 ≤ η ≤ 1 will be chosen later. Define also the associated set of block matrices

L =
{
L = (L̃| . . . |L̃|O) ∈ Rm1×m2 : L̃ ∈ L̃

}
,

where O denotes the m1 × (m2 − r bm2/rc) null matrix and, for some x ∈ R, bxc is the
integer part of x. We also define the following set of vectors

A =
{
α = (Õ|α̃) ∈ RN , α̃k ∈ {0, η̃min(a, σ+)} ∀1 ≤ k ≤ s

}
,

with Õ ∈ Rm2−s denoting the null vector. Finally, we set

X =
{
X = L+ fU(α) ∈ Rm1×m2 , α ∈ A, L ∈ L

}
.
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For any X ∈ X there exists a matrix L ∈ L of rank at most r and a vector α with at
most s non-zero components satisfying X = L + fU(α). Furthermore, for any X̃ ∈ X
there exists a matrix L̃ ∈ L of rank at most r and a vector α̃ with at most s non-zero
components satisfying X− X̃ = L̃+ fU(α̃). Finally, for all X ∈ X and (i, j) ∈ Jm1K× Jm2K,
0 ≤ Xij ≤ (1 + æ)a. Thus, X ⊂ F(r, s), where F(r, s) is defined in (29).

Lower bound of order rM/p. Consider the set

XL = {X = L+ fU(α) ∈ X ;α = 0}.

Lemma 2.9 in Tsybakov (2008) (Varshamov Gilbert bound) implies that there exists a
subset X 0

L ⊂ XL satisfying Card(X 0
L) ≥ 2rM/8 + 1, such that the zero m1 × m2 matrix

0 ∈ X 0
L, and that for any two X and X ′ in X 0

L, X 6= X ′ we have

‖X −X ′‖2
F ≥

Mr

8

(
η2 min(a, σ+)2 r

pm

⌊m2

r

⌋)
≥ η2

16
min(a2, σ2

+)
rM

p
. (16)

For X ∈ X 0
L we compute the Kullback-Leibler divergence KL(P0,PX) between P0 and PX .

Using Assumption H2 we obtain

KL(P0,PX) =
∑
i,j

πij
(
gj(Xij)− gj(0)− g′j(0)Xij

)
≤
σ2

+η
2 min(a, σ+)2Mr

2
. (17)

Inequality (48) implies that

1

Card(X 0
L)− 1

∑
X∈X 0

L

KL(P0,PX) ≤ 1

16
log(Card(X 0

L)− 1) (18)

is satisfied for η̃ = min
{

1, (8σ+ min(a, σ+))−1}. Then, conditions (47) and (48) guarantee
that we can apply Theorem 2.5 from Tsybakov (2008). We obtain that for some constant
δ > 0 and with Ψ1 = C min

(
σ−2

+ ,min(a, σ2
+)
)
:

inf
L̂,α̂

sup
(L0,α0)∈E

PX0

(
‖∆L‖2

F + ‖∆α‖2
2 >

Ψ1rM

p

)
≥ δ, (19)
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Lower bound of order s/p. Using again the Varshamov-Gilbert bound (Tsybakov
(2008), Lemma 2.9) we obtain that there exists a subset A0 ∈ A satisfying Card(A0) ≥
2s/8 + 1 and containing the null vector 0 ∈ RN and such that, for any α and α′ of A0,
α 6= α′,

‖α− α′‖2
2 ≥

s

8
η̃2 min(a, σ+)2. (20)

Define Xα ⊂ X the set of matrices X = fU(α) such that α ∈ A0 and L = 0. For any
X ∈ Xα we compute the Kullback-Leibler divergence KL(P0,PX) between P0 and PX

KL(P0,PX) =
∑
i,j

πij(gj(Xij)− gj(0)− g′j(0)Xij ≤ σ2
+‖fU(α)‖2

Π ≤ σ2
+p‖fU(α)‖2

F . (21)

Using Assumption H2

KL(P0,PX) ≤ σ2
+p
(

max
k
‖Uk‖2

F + 2τ
)
‖α‖2

2

≤ sσ2
+p
(

max
k
‖Uk‖2

F + 2τ
)
η̃2 min(a, σ+)2.

(22)

From (53) we deduce that

1

Card(A0)− 1

∑
A0

KL(P0,PX) ≤ sp
(

max
k
‖Uk‖2

F + 2τ
)
σ2

+η̃
2 min(a, σ+)2. (23)

Choosing η̃ = min
{

1,
(√

pσ+ maxk(‖Uk‖F + 2τ) min(a, σ+)
)−1
}
, we now use Tsybakov

(2008), Theorem 2.5 which implies for some constant δ > 0

inf
L̂,α̂

sup
(L0,α0)∈E

PX0

{
‖∆L‖2

F + ‖
N∑
k=1

(α0
k − α̂k)Uk‖2

F > Ψ2
sκ2

p

}
≥ δ, (24)

Ψ2 = C

(
1

σ2
+ (maxk ‖Uk‖2

F + 2τ)
∧ (a ∧ σ+)2

)
,

where we have used that ‖
∑N

k=1(α0
k− α̂k)Uk‖2

F ≥ κ2‖α̂−α0‖2
2. We finally obtain the result

by combining (50) and (55).
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E Proof of Lemma 5

We start by proving ‖∆α‖1 ≤ 4‖α0‖1. By the optimality conditions over a convex set
(Aubin and Ekeland, 1984, Chapter 4, Section 2, Proposition 4), there exist two subgradi-
ents f̂L in the subdifferential of ‖ · ‖∗ taken at L̂ and f̂α in the subdifferential of ‖ · ‖1 taken
at α̂, such that for all feasible pairs (L, α) we have

〈∇L(X̂;Y,Ω), L− L̂+
N∑
k=1

(αk − α̂k)Uk〉+ λ1〈f̂L, L− L̂〉+ λ2〈f̂α, α− α̂〉 ≥ 0. (25)

Applying inequality (56) to the pair (L̂, α0) we obtain 〈∇L(X̂;Y,Ω),
∑N

k=1 ∆αkU
k〉 +

λ2〈f̂α,∆α〉 ≥ 0. Denote X̃ = L̂+
∑N

k=1 α
0
kU

k. The last inequality is equivalent to

〈∇L(X0;Y,Ω),
N∑
k=1

∆αkU
k〉︸ ︷︷ ︸

B1

+ 〈∇L(X̃;Y,Ω)−∇L(X0;Y,Ω),
N∑
k=1

∆αkU
k〉︸ ︷︷ ︸

B2

+ 〈∇L(X̂;Y,Ω)−∇L(X̃;Y,Ω),
N∑
k=1

∆αkU
k〉︸ ︷︷ ︸

B3

+λ2〈f̂α,∆α〉 ≥ 0.

We now derive upper bounds on the three terms B1, B2 and B3 separately. Recall that we
denote u = maxk ‖Uk‖1 and use (39) to bound B1:

B1 ≤ ‖∆α‖1‖∇L(X0;Y,Ω)‖∞u. (26)

The duality between ‖ · ‖∞ and ‖ · ‖1 gives B2 ≤ ‖∆α‖1‖∇L(X̃;Y,Ω)−∇L(X0;Y,Ω)‖∞u.
Moreover, ∇L(X̃;Y,Ω)−∇L(X0;Y,Ω) is a matrix with entries g′j(X̃ij)−g′j(X0

ij), therefore

assumption H2 ensures ‖∇L(X̃;Y,Ω) − ∇L(X0;Y,Ω)‖∞ ≤ 2σ2
+(1 + æ)a, and finally we

obtain
B2 ≤ ‖∆α‖12σ2

+(1 + æ)au. (27)

We finally bound B3 as follows. We have that B3 =
∑m1

i=1

∑m2

j=1 Ωij(g
′
j(X̂ij)−g′j(X̃ij))(X̃ij−

X̂ij). Now, for all j ∈ Jm2K, g′j is increasing therefore (g′j(X̂ij) − g′j(X̃ij))(X̃ij − X̂ij) ≤ 0,
which implies B3 ≤ 0. Combined with (57) and (58) this yields

λ2〈f̂α, α̂− α0〉 ≤ ‖∆α‖1u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + æ)a
)
.
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Besides, the convexity of ‖ · ‖1 gives 〈f̂α, α̂− α0〉 ≥ ‖α̂‖1 − ‖α0‖1, therefore{
λ2 − u

(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + æ)a
)}
‖α̂‖1 ≤{

λ2 + u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + æ)a
)}
‖α0‖1,

and the condition λ2 ≥ 2
{
u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + æ)a
)}

gives ‖α̂‖1 ≤ 3‖α0‖1 and
finally

‖∆α‖1 ≤ 4‖α0‖1. (28)

Case 1: ‖fU(∆α)‖2
Π < 72a2 log(d)/(p log(6/5)). Then the result holds trivially.

Case 2: ‖fU(∆α)‖2
Π ≥ 72a2 log(d)/(p log(6/5)). For d1 > 0 recall the definition of the set

Ã(d1) =

{
α ∈ RN : ‖α‖∞ ≤ 1; ‖α‖1 ≤ d1; ‖fU(α)‖2

Π ≥
18 log(d)

p log(6/5)

}
.

Inequality (59) and ‖∆α‖∞ ≤ 2a imply that ∆α/(2a) ∈ Ã(2‖α0‖1/a). Therefore we can
apply Lemma 7(i) and obtain that with probability at least 1− 8d−1,

‖fU(∆α)‖2
Π ≤ 2‖fU(∆α)‖2

Ω + 64æa‖α0‖1uE [‖ΣR‖∞] + 3072a2p−1. (29)

We now must upper bound the quantity ‖fU(∆α)‖2
Ω. Recall that X̃ =

∑N
k=1 α

0
kU

k + X̂. By

definition, L(X̂;Y,Ω) + λ1‖L̂‖∗ + λ2‖α̂‖1 ≤ L(X̃;Y,Ω) + λ1‖L̂‖∗ + λ2‖α0‖1, i.e.

L(X̂;Y,Ω)− L(X̃;Y,Ω) ≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
.

Substracting 〈∇L(X̃;Y,Ω), X̂− X̃〉 on both sides and using the restricted strong convexity
((33)), we obtain

σ2
−

2
‖fU(∆α)‖2

Ω ≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
+ 〈∇L(X̃;Y,Ω), fU(∆α)〉

≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
+
∣∣〈∇L(X0;Y,Ω), fU(∆α)〉

∣∣︸ ︷︷ ︸
C1

+
∣∣∣〈∇L(X0;Y,Ω)−∇L(X̃;Y ), fU(∆α)〉

∣∣∣︸ ︷︷ ︸
C2

. (30)
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The duality of ‖ · ‖1 and ‖ · ‖∞ yields C1 ≤ ‖∇L(X0;Y,Ω)‖∞u‖∆α‖1, and

C2 ≤ ‖∇L(X0;Y,Ω)−∇L(X̃;Y,Ω)‖∞u‖∆α‖1.

Furthermore, ‖∇L(X0;Y,Ω) − ∇L(X̃;Y,Ω)‖∞ ≤ 2σ2
+a, since for all (i, j) ∈ Jm1K × Jm2K

|X̃ij −X0
ij| ≤ 2a and g′′j (X̃ij) ≤ σ2

+. The last three inequalities plugged in (61) give

σ2
−

2
‖fU(∆α)‖2

Ω ≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
+ u‖∆α‖1

{
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+a
}
.

The triangular inequality gives

σ2
−

2
‖fU(∆α)‖2

Ω ≤
{
u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+a
)

+ λ2

}
‖α0‖1

+
{
u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+a
)
− λ2

}
‖α̂‖1.

Then, the assumption λ2 ≥ 2u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + æ)a
)

gives

‖fU(∆α)‖2
Ω ≤

3λ2

σ2
−
‖α0‖1.

Plugged into (60), this last inequality implies that with probability at least 1− 8d−1

‖fU(∆α)‖2
Π ≤

3λ2

σ2
−
‖α0‖1 + 64æa‖α0‖1uE [‖ΣR‖∞] + 3072a2p−1. (31)

Combining (59) and (62) gives the result.

F Proof of Lemma 6

Using (56) for L = L0 and α = α0 we obtain

〈∇L(X̂;Y,Ω),∆L+
N∑
k=1

(∆αk)U
k〉+ λ1〈f̂L,∆L〉+ λ2〈f̂α,∆α〉 ≥ 0.
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Then, the convexity of ‖ · ‖∗ and ‖ · ‖1 imply that ‖L0‖∗ ≥ ‖L̂‖∗ + 〈∂‖L̂‖∗,∆L〉 and
‖α0‖1 ≥ ‖α̂‖∗ + 〈∂‖α̂‖1,∆α〉. The last three inequalities yield

λ1

(
‖L̂‖∗ − ‖L0‖∗

)
+ λ2

(
‖α̂‖1 − ‖α0‖1

)
≤ 〈∇L(X̂;Y,Ω),∆L〉

+ 〈∇L(X̂;Y,Ω),
N∑
k=1

(∆αk)U
k〉

≤ ‖∇L(X̂;Y,Ω)‖‖∆L‖∗ + u‖∇L(X̂;Y,Ω)‖∞‖∆α‖1.

Using (37) and the conditions

λ1 ≥ 2‖∇L(X0;Y,Ω)‖, λ2 ≥ 2u
{
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + æ)a
}
,

we get

λ1

(
‖P⊥L0(∆L)‖∗ − ‖PL0(∆L)‖∗

)
+ λ2

(
‖α̂‖1 − ‖α0‖1

)
≤

λ1

2

(
‖P⊥L0(∆L)‖∗ + ‖PL0(∆L)‖∗

)
+
λ2

2
‖∆α‖1,

which implies ‖P⊥L0(∆L)‖∗ ≤ 3‖PL0(∆L)‖∗ + 3λ2/λ1‖α0‖1. Now, using

‖∆L‖∗ ≤ ‖P⊥L0(∆L)‖∗ + ‖PL0(∆L)‖∗, ‖PL0(∆L)‖F ≤ ‖∆L‖F

and rank(PL0(∆L)) ≤ 2r, we get ‖∆L‖∗ ≤
√

32r‖∆L‖F + 3λ2/λ1‖α0‖1. This completes
the proof of Lemma 6.

G Proof of Lemma 7

Proof of (i): Recall Dα = 8æd1uE [‖ΣR‖∞] + 768p−1 and

Ã(d1) =

{
α ∈ RN : ‖α‖∞ ≤ 1; ‖α‖1 ≤ d1; ‖fU(α)‖2

Π ≥
18 log(d)

p log(6/5)

}
.

We will show that the probability of the following event is small:

B =

{
∃α ∈ Ã(d1) such that

∣∣‖fU(α)‖2
Ω − ‖fU(α)‖2

Π

∣∣ > 1

2
‖fU(α)‖2

Π + Dα

}
.
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Indeed, B contains the complement of the event we are interested in. We use a peeling
argument to upper bound the probability of event B. Let ν = 18 log(d)/(p log(6/5)) and
η = 6/5. For l ∈ N set

Sl =
{
α ∈ Ã(d1) : ηl−1ν ≤ ‖fU(α)‖2

Π ≤ ηlν
}
.

Under the event B, there exists l ≥ 1 and α ∈ Ã(d1) ∩ Sl such that∣∣‖fU(α)‖2
Ω − ‖fU(α)‖2

Π

∣∣ >
1

2
‖fU(α)‖2

Π + Dα >
1

2
ηl−1ν + Dα =

5

12
ηlν + Dα. (32)

For T > ν, consider the set of vectors

Ã(d1, T ) =
{
α ∈ Ã(d1) : ‖fU(α)‖2

Π ≤ T
}

and the event

Bl =

{
∃α ∈ Ã(d1, η

lν) :
∣∣‖fU(α)‖2

Ω − ‖fU(α)‖2
Π

∣∣ > 5

12
ηlν + Dα

}
.

If B holds, then (63) implies that Bl holds for some l ≤ 1. Therefore ,B ⊂ ∪+∞
l=1Bl, and it is

enough to estimate the probability of the events Bl and then apply the union bound. Such
an estimation is given in the following lemma, adapted from Lemma 10 in Klopp (2015).

Lemma 6. Define ZT = supα∈Ã(d1,T ) |‖fU(α)‖2
Ω − ‖fU(α)‖2

Π| . Then,

P
(
ZT ≥ Dα +

5

12
T

)
≤ 4e−pT/18.

Proof. By definition,

ZT = supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

ΩijfU(α)2
ij − E

∑
(i,j)

ΩijfU(α)2
ij

∣∣∣∣∣∣ .
We use the following Talagrand’s concentration inequality, proven in Talagrand (1996) and
Chatterjee (2015).

Lemma 7. Assume f : [−1, 1]n 7→ R is a convex Lipschitz function with Lipschitz constant
L. Let Ξ1, . . . ,Ξn be independent random variables taking values in [−1, 1]. Let Z :=
f(Ξ1, . . . ,Ξn). Then, for any t ≥ 0, P (|Z − E [Z]| ≥ 16L+ t) ≤ 4e−t

2/2L2
.
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We apply this result to the function

f(x11, . . . , xm1m2) = supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij

∣∣∣∣∣∣ ,
which is Lipschitz with Lipschitz constant

√
p−1T . Indeed, for any (x11, . . . , xm1m2) ∈

Rm1×m2 and (z11, . . . , zm1m2) ∈ Rm1×m2 :

|f(x11, . . . , xm1m2)− f(z11, . . . , zm1m2)|

=

∣∣∣∣∣∣supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij

∣∣∣∣∣∣− supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(zij − πij)fU(α)2
ij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ supα∈Ã(d1,T )

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
(i,j)

(zij − πij)fU(α)2
ij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij −

∑
(i,j)

(zij − πij)fU(α)2
ij

∣∣∣∣∣∣
≤ supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − zij)fU(α)2
ij

∣∣∣∣∣∣
≤ supα∈Ã(d1,T )

√∑
(i,j)

π−1
ij (xij − zij)2

√∑
(i,j)

πijfU(α)4
ij

≤ supα∈Ã(d1,T )

√
p−1

√∑
(i,j)

(xij − zij)2

√∑
(i,j)

πijfU(α)2
ij

≤
√
p−1T

√∑
(i,j)

(xij − zij)2,

where we used ||a| − |b|| ≤ |a − b|,‖fU(α)‖∞ ≤ 1 and ‖A‖2
Π ≤ T . Thus, Lemma 9 and the

identity
√
p−1T ≤ 96p−1

2
+ T

2×96
imply

P
(
|Z − E [Z]| ≥ 768p−1 +

1

12
T + t

)
≤ 4e−t

2p/2T .
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Taking t = T/3 we get

P
(
|Z − E [Z]| ≥ 768p−1 +

5

12
T

)
≤ 4e−pT/18. (33)

Now we must bound the expectation E [ZT ]. To do so, we use a symmetrization argument
(Ledoux, 2001) which gives

E [ZT ] = E

supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

ΩijfU(α)2
ij − E []

∑
(i,j)

ΩijfU(α)2
ij

∣∣∣∣∣∣


≤ 2E

supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

εijΩijfU(α)2
ij

∣∣∣∣∣∣
 ,

where {εij} is an i.i.d. Rademacher sequence independent of {Ωij}. We apply an extension
Talagrand’s contraction inequality to Lipschitz functions (see Koltchinskii (2011), Theorem
2.2) and obtain

E [ZT ] = E

[
sup
A∈T

∣∣∣∣∣∑
i,j

εijΩijA
2
ij

∣∣∣∣∣
]
≤ 4æE

supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

εijΩijAij

∣∣∣∣∣∣


= 4æE
[
supα∈Ã(d1,T ) |〈ΣR, fU(α)〉|

]
,

where ΣR =
∑

(i,j) εijΩijEij. Moreover, for α ∈ Ã(d1, T ) we have

|〈ΣR, fU(α)〉| =

∣∣∣∣∣〈ΣR,
N∑
k=1

αkU
k〉

∣∣∣∣∣ ≤ ‖α‖1u‖ΣR‖∞.

Finally, we get E [ZT ] ≤ 4æd1uE [‖ΣR‖∞] . Combining this with the concentration inequal-
ity (64) we complete the proof of Lemma 8:

P
(
ZT ≥ 8æd1uE [‖ΣR‖∞] + 768p−1 +

5

12
T

)
≤ 4e−pT/18.
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Lemma 8 gives that P (Bl) ≤ 4 exp(−pηlν/18). Applying the union bound we obtain

P (B) ≤
∞∑
l=1

P (Bl) ≤ 4
∞∑
l=1

exp(−pηlν/18)

≤ 4
∞∑
l=1

exp(−p log(η)lν/18),

where we used ex ≥ x. Finally, for ν = 18 log(d)/(p log(6/5)) we obtain

P (B) ≤ 4 exp(−pν log(η)/18)

1− exp(−pν log(η)/18)
≤ 4 exp(− log(d))

1− exp(− log(d))
≤ 8

d
,

since d− 1 ≥ d/2, which concludes the proof of (i).

Proof of (ii): The proof is similar to that of (i); we recycle some of the notations for
simplicity. Recall DX = 112ρp−1E [‖ΣR‖]2 +8æεE [‖ΣR‖]+8æd1uE [‖ΣR‖∞]+dΠ +768p−1,
and let

B =
{
∃(L, α) ∈ C(d1, dΠ, ρ, ε);∣∣‖L+ fU(α)‖2

Ω − ‖L+ fU(α)‖2
Π

∣∣ > 1

2
‖L+ fU(α)‖2

Π + DX

}
,

ν = 72 log(d)/(p log(6/5)), η = 6/5 and for l ∈ N

Sl =
{

(L, α) ∈ C(d1, dΠ, ρ, ε) : ηl−1ν ≤ ‖L+ fU(α)‖2
Π ≤ ηlν

}
.

As before, if B holds, then there exist l ≥ 2 and (L, α) ∈ C(d1, dΠ, ρ, ε) ∩ Sl such that∣∣‖L+ fU(α)‖2
Ω − ‖L+ fU(α)‖2

Π

∣∣ >
5

12
ηlν + DX . (34)

For T > ν, consider the set C̃(T ) = {(L, α) ∈ C(d1, dΠ, ρ, ε) : ‖L+ fU(α)‖2
Π ≤ T}, and the

event

Bl =

{
∃(L, α) ∈ C̃(ηlν) :

∣∣‖L+ fU(α)‖2
Ω − ‖L+ fU(α)‖2

Π

∣∣ > 5

12
ηlν + DX

}
.

Then, (65) implies that Bl holds and B ⊂ ∪+∞
l=1Bl. Thus, we estimate in Lemma 10 the

probability of the events Bl, and then apply the union bound.
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Lemma 8. Let WT = sup(L,α)∈C̃(T ) |‖L+ fU(α)‖2
Ω − ‖L+ fU(α)‖2

Π| .

P
(
WT ≥ DX +

5

12
T

)
≤ 4e−pT/72.

Proof. The proof is two-fold: first we show that WT concentrates around its expectation,
then bound its expectation. By definition,

WT = sup(L,α)∈C̃(T )

∣∣∣∣∣∣
∑
(i,j)

Ωij(Lij + fU(α)ij)
2 − E

∑
(i,j)

Ωij(Lij + fU(α)ij)
2

∣∣∣∣∣∣ .
The concentration proof is exactly similar to the proof in Lemma 8, but we choose t = T/6,
and we obtain

P
(
|WT − E [WT ]| ≥ 768p−1 +

3

12
T

)
≤ 4e−pT/72. (35)

Let us now bound the expectation E [WT ]. Again, we use a standard symmetrization
argument (Ledoux, 2001) which gives

E [WT ] ≤ 2E

sup(L,α)∈C̃(T )

∣∣∣∣∣∣
∑
(i,j)

εijΩij(Lij + fU(α)ij)
2

∣∣∣∣∣∣
 ,

where {εij} is an i.i.d. Rademacher sequence independent of Ωij. Then, the contraction
inequality (see Koltchinskii (2011), Theorem 2.2) yields

E [WT ] ≤ 4æE
[
sup(L,α)∈C̃(T ) |〈ΣR, L+ fU(α)〉|

]
,

where ΣR =
∑

(i,j) εijΩijEij. Moreover

|〈ΣR, L+ fU(α)〉| ≤ |〈ΣR, L〉|+ |〈ΣR, fU(α)〉|
≤ ‖L‖∗‖ΣR‖ + ‖α‖1u‖ΣR‖∞.

For (L, α) ∈ C̃(T ) we have by assumption ‖α‖1 ≤ d1, ‖fU(α)‖Π ≤
√
dΠ and ‖L‖∗ ≤√

ρ‖L‖F + ε. We obtain

‖L‖∗ ≤
√
ρ

p
‖L‖Π + ε ≤

√
ρ

p
(‖L+ fU(α)‖Π + ‖fU(α)‖Π) + ε

≤
√
ρ

p

(√
T +

√
dΠ

)
+ ε.
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This gives

E [WT ] ≤ 4æ

{√
ρ

p

(√
T +

√
dΠ

)
+ ε

}
‖ΣR‖ + 4æd1u‖ΣR‖∞

≤ T

12
+
dΠ

2
+ 56æ2ρ

p
‖ΣR‖2 + 4æε‖ΣR‖ + 4æd1u‖ΣR‖∞.

Combining this with the concentration inequality (66) we finally obtain:

P
(
WT ≥ DX +

5

12
T

)
≤ 4e−pT/72.

Lemma 10 gives that P (Bl) ≤ 4 exp(−pηlν/72). Applying the union bound we obtain

P (B) ≤
∞∑
l=1

P (Bl) ≤ 4
∞∑
l=1

exp(−pηlν/72)

≤ 4
∞∑
l=1

exp(−p log(η)lν/72),

where we used ex ≥ x. Finally, for ν = 72 log(d)/(p log(6/5)) we obtain

P (B) ≤ 4 exp(−pν log(η)/72)

1− exp(−pν log(η)/72)
≤ 4 exp(− log(d))

1− exp(− log(d))
≤ 8d−1,

since d− 1 ≥ d/2, which concludes the proof of (ii).

H Proof of Lemma 1

The first inequality is trivially true using that ‖Σ‖∞ = maxi,j |Ωijεij| ≤ 1. We prove the
second inequality using an extension to rectangular matrices via self-adjoint dilation of
Corollary 3.3 in Bandeira and van Handel (2016).

Proposition 1. Let A be an m1 × m2 rectangular matrix with Aij independent centered
bounded random variables. then, there exists a universal constant C∗ such that

E [‖A‖] ≤ C∗
{
σ1 ∨ σ2 + σ∗

√
log(m1 ∧m2)

}
,
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σ1 = max
i

√∑
j

E
[
A2
ij

]
, σ2 = max

j

√∑
i

E
[
A2
ij

]
, σ∗ = max

i,j
|Aij|.

Applying Proposition 1 to ΣR with σ1 ∨ σ2 ≤
√
β and σ∗ ≤ 1 we obtain

E [‖ΣR‖] ≤ C∗
{√

β +
√

log(m1 ∧m2)
}
.

I Proof of Lemma 2

Denote Σ = ∇L(X0;Y,Ω). Definition (2) implies that E [Yij] = g′j(X
0
ij), (i, j) ∈ Jm1K ×

Jm2K. Combined with the sub-exponentiality of the entries Yij, we obtain that for all i, j,
Yij−g′j(X0

ij) is sub-exponential with scale and variance parameters 1/γ and σ2
+ respectively.

Then, noticing that |Ωij| ≤ 1 implies that for all t ≥ 0,

P
{∣∣Ωij

(
Yij − g′j(X0

ij)
)∣∣ ≥ t

}
≤ P

{∣∣Yij − g′j(X0
ij)
∣∣ ≥ t

}
,

we obtain that the random variables Σij = Ωij

(
Yij − g

′
j(X

0
ij)
)

are also sub-exponential.
Thus, for all i, j and for all t ≥ 0 we have that |Σij| ≤ t with probability at least 1 −
max

{
2e−t

2/2σ2
+ , 2e−γt/2

}
. A union bound argument then yields

‖Σ‖∞ ≤ t w. p. at least 1−max
{

2m1m2e
−t2/2σ2

+ , 2m1m2e
−γt/2

}
,

where γ and σ+ are defined in H2. Using log(m1m2) ≤ 2 log d, where d = m1 + m2 and
setting t = 6 max

{
σ+

√
log d, γ−1 log d

}
, we obtain that with probability at least 1− d−1,

‖Σ‖∞ ≤ 6 max
{
σ+

√
log d, γ−1 log d

}
,

which proves the first inequality. Now we prove the second inequality using the following
result obtained by extension of Theorem 4 in Tropp (2012) to rectangular matrices.

Proposition 2. Let W1, . . . ,Wn be independent random matrices with dimensions m1×m2

that satisfy E [Wi] = 0. Suppose that

δ∗ = sup
i∈JnK

inf
δ>0
{E [exp (‖Wi‖/δ)] ≤ e} < +∞. (36)
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Then, there exists an absolute constant c∗ such that, for all t > 0 and with probability at
least 1− e−t we have∥∥∥∥∥ 1

n

n∑
i=1

Wi

∥∥∥∥∥ ≤ c∗max

{
σW

√
t+ log d

n
, δ∗

(
log

δ∗
σW

)
t+ log d

n

}
,

where

σW = max


∥∥∥∥∥ 1

n

n∑
i=1

E
[
WiW

>
i

]∥∥∥∥∥
1/2

,

∥∥∥∥∥ 1

n

n∑
i=1

E
[
W>
i Wi

]∥∥∥∥∥
1/2
 .

For all (i, j) ∈ Jm1K×Jm2K define Zij = −Ωij

(
Yij − g

′
j(X

0
ij)
)
Eij. The sub-exponentiality

of the variables Ωij

(
Yij − g

′
j(X

0
ij)
)

implies that for all i, j ∈ Jm1K× Jm2K

δij = infδ>0

{
E
[
exp

(∣∣∣Ωij

(
Yij − g

′

j(X
0
ij)
)∣∣∣ /δ)] ≤ e

}
≤ 1

γ
.

We can therefore apply Proposition 2 to the matrices Zij defined above, with the quantity

σZ = max

{∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

,

∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
Z>ijZij

]∥∥∥∥∥
1/2}

. (37)

We obtain that for all t ≥ 0 and with probability at least 1− e−t,

‖Σ‖ ≤ c∗max

{
σZ
√
m1m2(t+ log d),

(
log

1

γσZ

)
t+ log d

γ

}
.

We bound σZ from above and below as follows.

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]
=

m1∑
i=1

{
m2∑
j=1

E
[
Ω2
ij

]
E
[(
Yij − g

′

j(X
0
ij)
)2
]}

Eii(m1),

where Eii(n), i, n ≥ 1 denotes the n×n square matrix with 1 in the (i, i)-th entry and zero
everywhere else. Therefore∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

=

√√√√ 1

m1m2

max
i

m2∑
j=1

E
[
Ω2
ij

]
E
[(
Yij − g

′
j(X

0
ij)
)2
]
.
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Then, assumption H2 gives∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

≤ σ+

√√√√ 1

m1m2

(
max
i

m2∑
j=1

E
[
Ω2
ij

])
,

and ∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

≥ σ−

√√√√ 1

m1m2

(
max
i

m2∑
j=1

E
[
Ω2
ij

])
.

Similarly, we obtain∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
Z>ijZij

]∥∥∥∥∥
1/2

≤ σ+

√√√√ 1

m1m2

(
max
j

m1∑
i=1

E
[
Ω2
ij

])
,

and ∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
Z>ijZij

]∥∥∥∥∥
1/2

≥ σ−

√√√√ 1

m1m2

(
max
j

m1∑
i=1

E
[
Ω2
ij

])
.

Combining the last four inequalities, we obtain

σ−

√
β

m1m2

≤ σZ ≤ σ+

√
β

m1m2

,

and setting t = log d, we further obtain for all t ≥ 0 and with probability at least 1− d−1:

‖Σ‖ ≤ c∗max

{
σ+

√
2β log d,

2 log d

γ
log

(
1

σ−

√
m1m2

β

)}
,

which proves the result.
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