Metrics for crystallographic diffraction- and fit-
data: a review of existing ones and the need for
new ones

By Julian Henn

----Supplementary Material for Case Study 2---

Overview:

- Fig.1: Normal probability plots and corresponding histograms of the residuals for 1
and 2. Additional simulation of the histogram of data generated from two Gaussians
with different variances

- Fig.2: fraction of data with Miller triples being a multiple of 3 and fraction of rare
events |C[>3 from these fractions for 1 and 2

- Fig.3: BayCon plots (£,X), X = (I, o, sintl, I,/ & (Io)) and corresponding y* values for
1and 2

- Fig:4: BayCon plots (CZ,X), X = (I, o, sintl, I/ o (I0)) and corresponding y* values for
1land 2

- Fig5: Squared residuals in individual bins of the data sorted by significance 1,/ o (1o);
observed intensity, I,; and resolution (sin 0)/A respectively for 1 and 2

- Fig.6: Correlation coefficients cc(Cz,Gz), cc((;z,Az), cc(A?,6%) for the data sorted in
increasing order of the significance of the observed intensities for 1 and 2

- Fig 7: Diagnostic plots for the neutron diffraction data set oxal4 from Kaminski et a

Description of a simulation for testing the standard deviations sqrt(1/Nref) of the correlation
coefficients with the help of random numbers.
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Fig. 1: Normal probability plots ((a),(b)) and corresponding histograms ((c),(d)) for 1 (left)
and 2 (right). (e):Histogram of 20000 Gaussian random numbers, 10000 of which were
generated:with mean value zero and 6=0.6, and 10000 were generated with mean value
zero and ¢ = 1.2. Note the similiarity of the simulated histogram with the histograms from
the experiment ((c),(d)).
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Fig. 2: Left: 3.7% of all reflections for structure 1 have Miller indices, which are multiples of 3
(A). From all residuals which are absolute larger than 3 (|{[>3) are 29.5% with miller indices,
which are multiples of 3. (C). Right: 3.1% of all reflections for 2 show Miller indices, which are
multiples of three (B). These 3.1% of all reflections contribute to 65.1% of rare events |{[>3 (D).
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Fig. 3: BayCoN plots ({,X) for 1 (left) and 2 (right) with corresponding Chi”2 test against
uniformity of the plot. X = (I, o, sintl, I,/ 6 (I0)) from top to bottom. A value Chi*2 < 149
indicates a uniform distribution. A uniform distribution indicates a uniform joint probability
distribution between residuals € and .X, hence no systematic connection of the residuals with the
property X. Residuals, which are true random numbers as for a fit with no systematic errors
whatsoever show no systematic connections.
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Fig. 4: BayCoN plots ({*,X) for 1 (left) and 2 (right) with corresponding Chi*2 test against
uniformity of the BayCoN plot. X = (I, o, sintl, I,/ ¢ (Io)) from top to bottom. A value Chi*2 <
149 indicates a uniform distribution. A uniform distribution indicates a uniform joint probability
distribution between squared residuals {* and .X, hence no systematic connection of the squared
residuals (strength of the residuals) with the property X.
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Fig. 5: Squared residuals in individual bins of the data sorted by significance I,/ ¢ (I0); observed
intensity, I,; and resolution (sin 0)/A respectively for 1 and 2
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Fig.6: Correlation coefficients cc(C,67), ce(C?,A%), cc(A%,6%) for the data sorted in increasing
order of the significance of the observed intensities for 1 and 2
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Fig 7: Diagnostic plots for the neutron diffraction data set

oxal4 from Kaminski et al..




To investigate into the significance of the correlation coefficients between the squared
residuals and the variances of the observed intensities, cc({%,6 %), the following experiment
was conducted for 1 and 2:

1) The observed intensities lo were extracted from the fco file together with their
respective & (I,) values

2) For each observed intensity a random number was generated with mean value zero and
variance corresponding to the variance of the observed intensity.

3) This random number was added to the observed intensity and called “calculated
intensiy”, I

4) The squared residuals (I, - [[)"2/ c ? (I,) were calculated and written to a list

5) In another list the corresponding ? (I,) values were written

6) A correlation coefficient between these two lists was calculated and written to a list of
correlation coefficients [CC(Cz,G ]

7) Steps 2)-6 were repeated in total 500 times

8) The list of resulting correlation coefficients [cc(Qz,G %)] with 500 entries showed the
following mean values and standard deviations:

1 2

Nref 20711 18435

Mean [ce(,6°)] 0.000319477 | -0.00011532
Variance [cc(C,67)] 0.0000481589 | 0.0000511962
Sqrt(Variance [cc(C,6%)]) 0.00693966 | 0.00715515
Sqrt(1/Nref) 0.00694863 | 0.0073651

The following observations are made:

The mean correlation coefficient is very close to zero indeed in both cases

The corresponding square root of the variance of the list of correlation coefficients (the
standard deviation) is indeed close to sqrt(1/Nref).

It is concluded that Sqrt(1/Nref) is indeed a good estimator for the standard deviation of
the correlation coefficient.



