Supplemental Online Materials

Table S1. Unconstrained polychoric correlations at wave one (above the diagonal) and wave two (below the diagonal).

PHQ1 PHQ2 PHQ3 PHQ4 PHQ5 PHQ6 PHQ7 PHQ8 PHQ9 GAD1 GAD2 GAD3 GAD4 GAD5 GAD6 GAD7																
PHQ1		0.80	0.62	0.70	0.55	0.69	0.65	0.64	0.65	0.48	0.60	0.59	0.57	0.51	0.59	0.51
PHQ2	0.84	-	0.63	0.65	0.57	0.76	0.63	0.66	0.78	0.59	0.68	0.67	0.59	0.54	0.63	0.62
PHQ3	0.63	0.54	-	0.75	0.57	0.55	0.54	0.49	0.44	0.54	0.62	0.56	0.58	0.54	0.52	0.47
PHQ4	0.77	0.66	0.72		0.62	0.56	0.62	0.53	0.49	0.53	0.56	0.59	0.58	0.43	0.59	0.41
PHQ5	0.63	0.60	0.59	0.66	-	0.57	0.58	0.54	0.47	0.36	0.43	0.50	0.40	0.42	0.50	0.46
PHQ6	0.68	0.79	0.47	0.58	0.64	-	0.59	0.59	0.74	0.60	0.65	0.66	0.56	0.52	0.56	0.62
PHQ7	0.69	0.63	0.63	0.69	0.61	0.60	-	0.64	0.55	0.48	0.55	0.57	0.60	0.60	0.61	0.46
PHQ8	0.72	0.66	0.58	0.62	0.61	0.59	0.72		0.69	0.47	0.51	0.51	0.49	0.62	0.55	0.52
PHQ9	0.68	0.77	0.51	0.57	0.47	0.79	0.58	0.61	-	0.51	0.54	0.57	0.46	0.44	0.43	0.52
GAD1	0.51	0.63	0.53	0.56	0.43	0.56	0.54	0.56	0.56	-	0.77	0.72	0.69	0.61	0.49	0.61
GAD2	0.61	0.70	0.56	0.56	0.48	0.64	0.58	0.56	0.59	0.81	-	0.91	0.73	0.60	0.53	0.71
GAD3	0.63	0.68	0.51	0.59	0.51	0.65	0.52	0.52	0.54	0.75	0.86	-	0.75	0.61	0.53	0.69
GAD4	0.64	0.63	0.57	0.68	0.54	0.56	0.62	0.58	0.57	0.76	0.74	0.73	-	0.73	0.58	0.62
GAD5	0.57	0.54	0.49	0.50	0.45	0.40	0.62	0.70	0.45	0.65	0.63	0.57	0.67	-	0.63	0.60
GAD6	0.65	0.58	0.49	0.62	0.55	0.52	0.60	0.56	0.54	0.58	0.57	0.60	0.65	0.62	-	0.51
GAD7	0.55	0.61	0.52	0.52	0.54	0.59	0.54	0.58	0.54	0.69	0.76	0.71	0.64	0.62	0.59	-

Table S2. All six pairwise comparisons using the complementary metrics for network comparison among the four individually estimated PTSD symptom networks in Fried et al. (2018).

Network characteristic	Complementary metric for comparison	Pairwise Network Comparisons (A vs. B)					
		Sample 1 vs. Sample 2	Sample 1 vs. Sample 3	Sample 1 vs. Sample 4	Sample 2 vs. Sample 3	Sample 2 vs. Sample 4	Sample 3 vs. Sample 4
Non-zero (present) edges	Number in Network A	77	77	77	73	73	77
	Number in Network B	73	77	77	77	77	77
	Total edges estimated in A or B	94	98	100	95	99	95
	Number of edges estimated consistently (present and with the same sign) in A and B	54	54	54	54	51	58
	Number of edges that reversed in sign (e.g., positive to negative)	2	2	0	1	0	1
	Proportion of edges replicated (unreplicated) from Network A	$\begin{aligned} & 70.1 \% \\ & (29.9 \%) \end{aligned}$	$\begin{aligned} & 70.1 \% \\ & (29.9 \%) \end{aligned}$	$\begin{aligned} & 70.1 \% \\ & (29.9 \%) \end{aligned}$	$\begin{aligned} & 74.0 \% \\ & (26.0 \%) \end{aligned}$	$\begin{aligned} & 69.9 \% \\ & (30.1 \%) \end{aligned}$	$\begin{aligned} & 75.3 \% \\ & (24.7 \%) \end{aligned}$
	Proportion of edges replicated (unreplicated) from Network B	$\begin{aligned} & 74.0 \% \\ & (26.0 \%) \end{aligned}$	$\begin{aligned} & 70.1 \% \\ & (29.9 \%) \end{aligned}$	$\begin{gathered} 70.1 \% \\ (29.9 \%) \end{gathered}$	$\begin{aligned} & 70.1 \% \\ & (29.9 \%) \end{aligned}$	$\begin{aligned} & 66.2 \% \\ & (33.8 \%) \end{aligned}$	$\begin{aligned} & 75.3 \% \\ & (24.7 \%) \end{aligned}$
	Proportion of total edges replicated (unreplicated)	$\begin{aligned} & 57.4 \% \\ & (42.6 \%) \end{aligned}$	$\begin{aligned} & 55.1 \% \\ & (44.9 \%) \end{aligned}$	$\begin{aligned} & 54.0 \% \\ & (46.0 \%) \end{aligned}$	$\begin{gathered} 56.8 \% \\ (43.2 \%) \end{gathered}$	$\begin{aligned} & 51.5 \% \\ & (48.5 \%) \end{aligned}$	$\begin{aligned} & 61.1 \% \\ & (38.9 \%) \end{aligned}$
$\begin{aligned} & \text { Zero (absent) } \\ & \text { edges } \end{aligned}$	Number in Network A	43	43	43	47	47	43
	Number in Network B	47	43	43	43	43	43
	Total edges estimated in A or B	64	64	66	65	69	61
	Number of edges estimated consistently (absent) in A and B	26	22	20	25	21	25
	Proportion of edges replicated (unreplicated) from Network A	$\begin{aligned} & 60.5 \% \\ & (39.5 \%) \end{aligned}$	$\begin{gathered} 51.2 \% \\ (48.8 \%) \end{gathered}$	$\begin{aligned} & 46.5 \% \\ & (53.5 \%) \end{aligned}$	$\begin{aligned} & 53.2 \% \\ & (46.8 \%) \end{aligned}$	$\begin{aligned} & 44.7 \% \\ & (55.3 \%) \end{aligned}$	$\begin{aligned} & 58.1 \% \\ & (41.9 \%) \end{aligned}$
	Proportion of edges replicated (unreplicated) from Network B	$\begin{aligned} & 55.3 \% \\ & (44.7 \%) \end{aligned}$	$\begin{aligned} & 51.2 \% \\ & (48.8 \%) \end{aligned}$	$\begin{aligned} & 46.5 \% \\ & (53.5 \%) \end{aligned}$	$\begin{aligned} & 58.1 \% \\ & (41.9 \%) \end{aligned}$	$\begin{aligned} & 48.8 \% \\ & (51.2 \%) \end{aligned}$	$\begin{aligned} & 58.1 \% \\ & (41.9 \%) \end{aligned}$
	Proportion of total edges replicated (unreplicated)	$\begin{aligned} & 40.6 \% \\ & (59.4 \%) \end{aligned}$	$\begin{gathered} 34.4 \% \\ (65.6 \%) \end{gathered}$	$\begin{aligned} & 30.3 \% \\ & (69.7 \%) \end{aligned}$	$\begin{aligned} & 38.5 \% \\ & (61.5 \%) \end{aligned}$	$\begin{aligned} & 30.4 \% \\ & (69.6 \%) \end{aligned}$	$\begin{aligned} & 41.0 \% \\ & (59.0 \%) \end{aligned}$

Table S2. (continued)

Network characteristic	Complementary metric for comparison	Pairwise Network Comparisons (A vs. B)					
		Sample 1 vs. Sample 2	Sample 1 vs. Sample 3	Sample 1 vs. Sample 4	Sample 2 vs Sample 3	Sample 2 vs. Sample 4	Sample 3 vs. Sample 4
Edges with bootstrapped 95\% confidence intervals that do not include zero ("bootnetsignificant)	Number in Network A	26	26	26	17	17	34
	Number in Network B	17	34	27	34	27	27
	Total edges estimated in A or B	34	40	36	37	34	43
	Number of edges estimated consistently (present and with the same sign) in A and B	9	20	17	14	10	18
	Number of edges that reversed in sign (e.g., positive to negative)	0	0	0	${ }^{0}$	${ }^{0}$	${ }^{0}$
	Proportion of edges consistent (inconsistent) from Network A	$\begin{aligned} & 34.6 \% \\ & (65.4 \%) \end{aligned}$	$\begin{aligned} & 76.9 \% \\ & (23.1 \%) \end{aligned}$	$\begin{aligned} & 65.4 \% \\ & (34.6 \%) \end{aligned}$	$\begin{aligned} & 82.4 \% \\ & (17.6 \%) \end{aligned}$	$\begin{aligned} & 58.8 \% \\ & (41.2 \%) \end{aligned}$	$\begin{aligned} & 52.9 \% \\ & (47.1 \%) \end{aligned}$
	Proportion of edges consistent (inconsistent) from Network B	$\begin{aligned} & 52.9 \% \\ & (47.1 \%) \end{aligned}$	$\begin{aligned} & 58.8 \% \\ & (41.2 \%) \end{aligned}$	$\begin{aligned} & 63.0 \% \\ & (37.0 \%) \end{aligned}$	$\begin{aligned} & 41.2 \% \\ & (58.8 \%) \end{aligned}$	$\begin{gathered} 37.0 \% \\ (63.0 \%) \end{gathered}$	$\begin{aligned} & 66.7 \% \\ & (33.3 \%) \end{aligned}$
	Proportion of total edges consistent (inconsistent)	$\begin{aligned} & 26.5 \% \\ & (73.5 \%) \end{aligned}$	$\begin{aligned} & 50.0 \% \\ & (50.0 \%) \end{aligned}$	$\begin{aligned} & 47.2 \% \\ & (52.8 \%) \end{aligned}$	$\begin{aligned} & 37.8 \% \\ & (62.2 \%) \end{aligned}$	$\begin{aligned} & 29.4 \% \\ & (70.6 \%) \end{aligned}$	$\begin{aligned} & 41.9 \% \\ & (58.1 \%) \end{aligned}$
Average \% change in consistent "bootnetsignificant" edges	From A to B	46.5\%	39.4\%	20.9\%	24.9\%	49.3\%	46.7\%
	From B to A	52.1\%	43.5\%	24.6\%	36.0\%	82.2\%	55.7\%
Symptom strength centrality	Spearman's rho	0.50	0.38	0.40	0.42	0.60	0.45
	Kendall's tau-b	0.38	0.25	0.30	0.30	0.45	0.35
	Number and proportion of possible rank-order matches	4 (25\%)	2 (12.5\%)	2 (12.5\%)	0 (0\%)	4 (25\%)	2 (12.5\%)

Figure S1. 95% confidence intervals for edge weights at each wave.
(A)

(B)

Figure S2. Significance of difference tests between edges within each network. (A) Wave 1; (B) Wave 2.

Figure S3. Centrality stability plots based on subsampling participants. (A) Wave one; (B) Wave 2. The CScoefficient for strength was .13 at both waves.

Figure S4. Significance of difference tests between node strength centrality values within each network. (A) Wave 1; (B) Wave 2.

Figure S5. Standardized symptom centrality estimates at each wave (plotted as z-scores, per centralityPlot in the qgraph package in R).

Sample $1(n=526)$

Sample $2(\mathrm{n}=365)$

Sample 3 ($\mathrm{n}=926$)

Sample 4 ($\mathrm{n}=965$)

Figure S6. Individually estimated Gaussian graphical model PTSD symptom networks from Fried et al. (2018) using graphical lasso regularisation with EBIC.

Sample $1(n=526)$

Sample $2(\mathrm{n}=365)$

Sample 3 ($\mathrm{n}=926$)

Sample $4(n=965)$

Figure S7. Inconsistently estimated edges among the four PTSD symptom networks. Orange edges were inconsistently estimated (present/absent), red edges reversed in sign, and dashed edges are negative.

Sample $1(n=526)$

Sample $2(\mathrm{n}=365)$

Sample 3 ($\mathrm{n}=926$)

Sample 4 ($\mathrm{n}=965$)

Figure S8. Subsets of the networks in Figure S5 showing the edges in each network with 95% bootstrapped confidence intervals that did not include zero ("bootnet-significant" edges).

Sample $1(n=526)$
Sample $2(\mathrm{n}=365)$

Sample 3 ($\mathrm{n}=926$)

Sample 4 ($\mathrm{n}=965$)

Figure S9. Inconsistently estimated edges among the four "bootnet-significant" edge networks in Figure S7.

