
1 Filter Media and Ameliorant Details

3 Figure S.1: Particle size distribution of two filter media types tested

4

5	Table S.1: Filter media composition
5	

	Filter	nedia		
Soil property	Washed sand	Loamy sand		
рН	6.33	6.33		
TOC %	< 0.10	0.25		
TOM % (as ashed free dried mass)	0.11	0.47		
TP (mg/g)	< 0.01	0.01		
TN (mg/g)	0.03	0.11		

6

7 The top 100 mm of the filter media layer in each column was mixed with 37 g of ameliorant

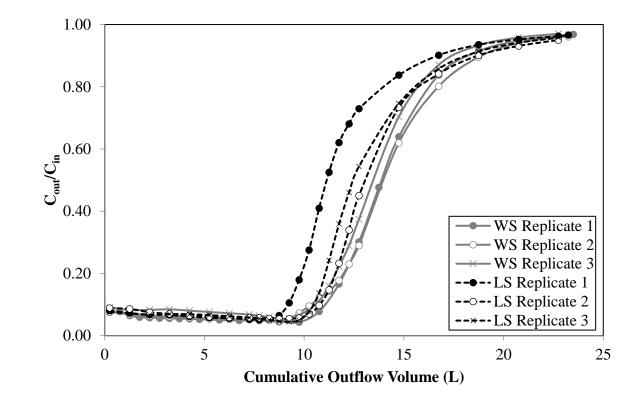
8 made as per the recipe shown in Table S.2.

Name	Quantity
	Kg/100 m ² filter area
Granulated poultry manure fines	50
Superphosphate	2
Magnesium Sulphate	3
Potassium Sulphate	2
Trace Element Mix	1
Fertilizer NPK (16.4.14)	4
Lime	20
Total	82

9 T a	e S.2: Ameliorant Mixture (Adopted from Bratieres et al. (2010))
--------------	--

11 Biofilter Vegetation

12 Table S.3: Biofilter vegetation Details


Name	Short description	Plant during experimental period	Extent of roots after 2 years of operation
Carex appressa	Also known as tall sedge. The most commonly used and recommended biofilter plant species in Australia. Consist of an extensive root system with very fine roots.		
Leptospermum continentale	A small shrub species known as tea tree. Consist of an extensive root system with very fine roots.		
Palmetto buffalo grass	A lawn grass species. Known to have relatively deep roots, however, the root structure is not extensive as the other two species tested.		

14 Tracer Test

The objective of the KCl tracer test was to estimate the submerged zone (SZ) pore volume. 15 16 SZ pore volume was then used to differentiate old SZ water from the from the freshly treated 17 stormwater in the biofilter outflow. Furthermore, the porosity of the SZ media was also 18 derived using the tracer test results. It should be noted that the tracer test was conducted only 19 on three replicates of each un-vegetated columns (WS and LS) to avoid any unnecessary 20 impacts on plants and plant-associated microbes due to the introduction of high salt 21 concentration. Nevertheless, SZ of both vegetated and un-vegetated columns had the similar 22 media layers, as such it was assumed that the results from un-vegetated columns apply to 23 vegetated columns.

24 Dechlorinated tap water (using $0.83 \text{ mg/L Na}_2\text{S}_2\text{O}_3$) was used as the blank solution. Then 25 0.96 g/L KCL was added to the blank solution to prepare the salt solution with a target 26 electrical conductivity of 2000 μ S/cm. Each column was dosed with 26 L of salt solution, and 27 the total outflow was collected into a series of 500 mL samples. Each outflow sample was 28 analyzed for electrical conductivity. It should be noted that at the end of tracer test, each 29 biofilter column was flushed with another 26 L blank solution, but this flushing caused a 30 significant release of fine particles from the filter media (data not shown). As such, all six un-31 vegetated columns used for the tracer test were emptied and re-packed. These columns were 32 subjected to accelerated dosing to receive the same amount of water as the rest of the 33 columns to achieve the same level of hydraulic compaction.

The electrical conductivity of each outflow sample (C_{out}) was normalised to the measured electrical conductivity (C_{in}). The results of the tracer test are shown in Figure S1. It was assumed that the old SZ water was fully displaced when a sudden increase in the initial steady normalised outflow concentration (C_{out}/C_{in}) was observed. The sudden increase in C_{out}/C_{in} was observed when C_{out}/C_{in} reached approximately 0.1, and the cumulative outflow 39 volume reached approximately 10-L. Therefore, the pore volume retained of the SZ was

40 estimated to be 10-L, and the porosity was estimated to be 0.5.

41

Figure S.2: Change of outflow KCl concentration (normalised to the inflow concentration)
with cumulative outflow during the tracer test trail in three replicates of WS and LS unvegetated columns.

	Inflow Concentration									
Stormwater pollutant	Unit	Target (Duncan 1999; Taylor et al. 2005; NHMRC 2009)	Measured Geometric mean (Geometric standard deviation)							
E. coli	MPN/100mL	5.9×10 ⁴	2.8×10 ⁴ (4.16)							
Total suspended solids	mg/L	100	86 (1.44)							
Total phosphorus	mg/L	0.35	0.42 (1.18)							
Total nitrogen	mg/L	2.2	2.92 (1.17)							
Cadmium	mg/L	0.0045	0.0081 (1.40)							
Chromium	mg/L	0.025	0.054 (1.58)							
Copper	mg/L	0.05	0.08 (1.36)							
Lead	mg/L	0.14	0.27 (1.47)							
Manganese	mg/L	0.23	0.19 (1.11)							
Nickel	mg/L	0.031	0.05 (1.30)							
Zinc	mg/L	0.25	0.26 (1.18)							

45 Table S.4: Target and measured semi-synthetic stormwater pollutant concentrations

46 MPN – Most Probable Number; Total suspended solids, total nitrogen, total phosphorus and

47 heavy metal concentrations were measured using standard methods ((APHA/AWWA/WPCF

48 2005; Hsomi and Sudo 1986) and ICP-MS (for metals))

Sampling round	Date	Antecedent dry days	Inflow volume	Inflow <i>E. coli</i> concentration (MPN/100	Outflow <i>E. coli</i> concentration (MPN/100 mL)					Infiltration rate (mm/h)									
			(L)		Geom	etric me	an (Geoi	metric st	andard	Geometric mean (Geometric standard									
				mL)*		deviation)				deviation)									
					WS	LS	CA	LC	PB	WS	LS	CA	LC	PB					
	2/11/2012	2	20	10570	994	1317	265	425	522	298	187	262	272	292					
1	2/11/2012	2	20	18560	(1.79)	(1.15)	(1.32)	(1.65)	(1.55)	(1.12)	(1.30)	(1.09)	(1.05)	(1.11)					
2	16/11/2012	3	20	9160	538	867	263	355	279	333	235	286	295	311					
2	2 16/11/2012	3	20	9100	(1.56)	(1.24)	(1.25)	(1.69)	(1.70)	(1.03)	(1.22)	(1.06)	(1.07)	(1.08)					
3 ^(a)	27/11/2012	4	40	23010	626	1621	630	1108	1045	337	205	291	282	318					
3	27/11/2012	4	40	23010	(1.87)	(1.16)	(1.28)	(1.51)	(1.24)	(1.05)	(1.12)	(1.05)	(1.14)	(1.08)					
Α	4/12/2012	4/12/2012	4/12/2012	4/12/2012	4/10/2012	4/12/2012	4	20	25000	549	1320	442	634	747	259	168	250	210	252
4		2/2012 4	20	25900	(1.31)	(1.32)	(1.27)	(1.91)	(1.58)	(1.12)	(1.08)	(1.06)	(1.51)	(1.09)					
F	11/12/2012	7	20	20.420	380	837	258	413	458	262	185	256	253	274					
5	11/12/2012	7	20	20420	(1.53)	(1.13)	(1.28)	(1.37)	(1.42)	(1.26)	(1.07)	(1.06)	(1.31)	(1.22)					
6 ^(d)	29/01/2013	3	20	132420	3155	1283	383	1872	3027	91	123	53	146	126					

49 Table S.5: Performance in each individual sampling round

					(1.52)	(2.18)	(3.99)	(1.74)	(.145)	(2.00)	(1.48)	(1.48)	(1.33)	(1.19)
7 ^(b, d)	12/02/2012	13	20	104090	1682	2569	3058	4724	2696	337	209	200	253	228
		10		101070	(1.80)	(1.44)	(1.22)	(2.08)	(1.54)	(1.07)	(1.16)	(1.21)	(1.01)	(1.26)
8 ^(a)	19/02/2013	4	40	22030	1365	1237	840	1673	986	251	182	133	214	180
-		10		(1.21)	(1.29)	(1.30)	(1.29)	(1.22)	(1.10)	(1.15)	(1.30)	(1.14)	(1.19)	
9	9 26/02/2013 2	2	20	62680	2306	2040	1199	2447	2606	212	179	80	134	147
		20	02000	(1.40)	(1.25)	(1.49)	(1.13)	(1.540	(1.11)	(1.06)	(1.49)	(1.29)	(1.26)	
10 ^(d)	25/03/2013	29	20	26850	199	155	10279	17131	1247	314	173	243	235	346
10	20,00,2010	_,	20		(1.51)	(1.41)	(3.67)	(1.25)	(1.15)	(1.15)	(1.23)	(1.09)	(1.13)	(1.10)
11 ^(d)	12/04/2013	3	20	21980	1115	892	883	1043	1945	206	167	79	107	217
	12,01,2013	5	20	21700	(1.33)	(1.18)	(1.60)	(1.20)	(1.21)	(1.42)	(1.11)	(1.34)	(2.04)	(1.26)
12 ^(b, d)	24/05/2013	42	20	17930	1029	734	6808	5325	1789	237	114	205	178	177
12	21,00,2013	.2	20	17750	(1.34)	(1.33)	(1.26)	(1.48)	(1.49)	(1.36)	(1.18)	(1.03)	(1.38)	(1.60)
13 ^(a)	4/06/2013	3	40	18030	1508	628	419	378	1189	193	130	63	92	178
15	.,00,2013	5	νr	10050	(1.24)	(1.20)	(1.47)	(2.65)	(1.39)	(1.15)	(1.07)	(1.40)	(2.06)	(1.16)
14 ^(c)	18/06/2013	4	20	0 12160	302	77	60	68	620	60	52	26	32	54
14 (*)	10/00/2013	4	20	12100	(1.70)	(2.98)	(1.55)	(5.22)	(1.19)	(1.64)	(1.63)	(1.26)	(2.15)	(2.47)

15 ^(c, e)	19/06/2013	1	20	190	194	65	52	38	500	47	51	23	27	37
15	15(0,0) 19/06/2013	1	20		(1.72)	(2.31)	(1.99)	(2.30)	(1.04)	(1.65)	(1.56)	(1.32)	(1.94)	(2.29)
16 ^(c)	28/06/2013	5/2013 3	20	12160	210	36	30	28	531	56	42	17	24	69
			3 20		(2.13)	(3.27)	(2.55)	(4.83)	(1.32)	(1.90)	(1.70)	(1.10)	(2.05)	(1.50)

50 Notes: *: Inflow E. coli concentration is rounded for significant digits; (a): High inflow volume events simulating 1 in 3 months ARI events. Three

51 replicates each from WS and LC configurations were tested for other indicators in addition to E. coli; (b): dry weather events; (c); Outflow valves

52 were restricted in three replicates from each configuration to one target infiltration rate (d): Discrete outflow samples were collected for two

53 replicates in WS, CA, LC and PB configurations; (e): No raw sewage was added to inflow mix.

54

55 References

- APHA/AWWA/WPCF. 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington, USA: American Public
 Health Association/ American Water Works Association/Water Pollution Control Federation.
- Bratieres, K., T. Fletcher, A. Deletic, N. Somes, and T. Woodcock. 2010. 'Hydraulic and Pollutant Treatment Performance of Sand Based
 Biofilters'. presented at the NOVATECH, Lyon, France, July.
- Duncan, H. P. 1999. 'Urban Stormwater Quality: A Statistical Overview'. 99/3. Melbourne, Australia: Cooperative Research Centre for
 Catchment Hydrology.
- Hsomi, M., and R. Sudo. 1986. 'Simultaneous Determination of Total Nitrogen and Total Phosphorus in Freshwater Samples Using Persulphate
 Digestion'. *International Journal of Environmental Studies* 27: 267–75.
- 64 NHMRC. 2009. 'Australian Guidelines for Water Recycling (Phase 2): Stormwater Harvesting and Reuse'. Canberra: Natural Resource
- 65 Management Ministerial Council, Environment Protection and Heritage Council, National Health and Medical Research Council.

Taylor, G. D., T. D. Fletcher, T. H. F. Wong, P. F. Breen, and H. P. Duncan. 2005. 'Nitrogen Composition in Urban Runoff - Implications for
 Stormwater Management'. *Water Research* 39: 1982–89. https://doi.org/10.1016/j.watres.2005.03.022.

68