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1 Theory

Proof of Theorem 1: τATE , τATT , τATC and τOR are all only functions f(Y (t)) t ∈ {0, 1} (or f(Y (t) | X)
for conditional treatment effects). Thus it suffices to show that f(Y (t) | T ) are independent of any copula
parameters. Note that in the extrapolation factorization we model f(Y (t) | T = t) directly and thus, this
conditional expectation is independent of copula parameters by definition. Thus it suffices to show that
f(Y (t) | T = (1 − t)) is independent of copula parameters.

f(Y (t) | T = (1-t)) =
∫

f(Y (t), Y (1-t) | T = (1-t))dY (1-t)

=
∫

f(Y (t) | Y (1-t), T = (1-t))f(Y (1-t) | T = (1-t)dY (1-t)

∝
∫

f(Y (t) | T = t)
f(T = (1-t) | Y (t))

f(T = t | Y (t))
c(F (Y (t) | T ), F (Y (1-t) | T ) |)×

f(Y (1-t) | T = (1-t)dY (1-t)

= f(Y (t) | T = t)
f(T = (1-t) | Y (t))

f(T = t | Y (t))
×

∫
c(F (Y (t) | T ), F (Y (1-t) | T ) | T )f(Y (1-t) | T = (1-t)dY (1-t)

= f(Y (t) | T = t)
f(T = (1-t) | Y (t))

f(T = t | Y (t))

Where the last equality holds by using the definition of the copula density:
∫

c(F (Y (t) | T ), F (Y (1-t) | T ) | T )f(Y (1-t) | T = (1-t)dY (1-t) =

=
∫

f(Y (t), Y (1-t) | T = (1-t))
f(Y (t) | T = (1-t))f(Y (1-t) | T = (1-t))

f(Y (1-t) | T = (1-t)dY (1-t)

=
∫

f(Y (1-t) | Y (t), T )dY (1-t)

= 1

Proof of Proposition 3: We seek to find the value of γt such that the model (17) implies ρ2
Y |X achieves a



particular value, ρ2
∗.

m(X,Y (t)) =: logit(e(X,Y (t))) = αt(X) + γtY (t)) (1)

= αt(X) + γtμt(X) + γt(Y (t) − μt(X)) (2)

= α∗
t (X) + γ̃tR̃(t)) (3)

= m(X, R̃(t)) (4)

where R̃(t) = R(t)
σrt

is the unit-scaled complete data residual, γ̃ =: σrtγ and σrt =
√

E[V ar(Y (t) | X)]. We

define α∗
t (X) =: αt(X) + γtμt(X). Importantly, since m(X,Y (t)) = m(X, R̃(t)) the above implies that

ρ2
Y (t),X = ρ2

R(t),X . Since R̃(t) is orthogonal to α∗
t (X) and has unit variance, we have Var(m(X, R̃(t)) =

Var(m(X) + γ̃tR̃(t))) = Var(m(X)) + γ̃2
t . Thus,

ρ2
X,Y (t) = ρ2

X,R̃(t)
=

Var(m(X)) + γ̃2
t

Var(m(X)) + γ̃2
t + π2/3.

(5)

Using the definition of “implicit R-squared” from Section 5, we have

ρ2
Ỹ (t)|X

=
ρ2

X,Ỹ (t)
− ρ2

X

1 − ρ2
X

(6)

=

π2/3
Var(m(X))+π2/3 − π2/3

Var(m(X))+π2/3+γ̃2
t

π2/3
Var(m(X))+π2/3

(7)

= 1 −
Var(m(X)) + π2/3

Var(m(X)) + π2/3 + γ̃2
t

(8)

Solving the above equation for γ̃t such that ρ2
Ỹ (t)|X

= ρ2
∗, yields

|γ̃t| =

√
ρ2
∗

1 − ρ2
∗
(Var(m(X)) + π2/3) (9)

We complete the result by using the fact that γ̃t = σrtγt

2 Additional Results from Section 5.1

In Section 5.1, we focus on one particular potential outcomes model, although many plausible models are
possible. In this section, we provide results for two variations of the observed potential outcome model. This
plot highlights that the ATE estimates vary as a function of both model specification (model checking) and
the strength of confounding in both treatment arms (sensitivity analysis).
First, we posit a pooled model for the mean surface and residual variance (μt(X), σ2

t ) ∼ BART (X,T ) with
μt(X) = μ(t,X) and σ2

t = σ2
1-t. In Figure 2a we show the results for this model, which shows has the largest

estimated effect size under unconfoundedness of any of the models considered. Under unconfoundedness,
the posterior mean ATE is approximately -2.5 mmHG under this model, and unlike the model proposed in
Section 6.1 appears significantly different from 0.
We also show the results for the Bayesian Causal Forest (BCF) model recently introduced by (Hahn

et al., 2017). In this model, the observed propensity score is included as a covariate and independent BART
prior distributions are specified for the control and for the heterogeneous treatment effect and one is used
for the the control outcome surface. In this model, under unconfoundedness the posterior mean for the ATE
is approximately -1.73 mmHg but in contrast to the other observed data models, yields ATEs with large
posterior uncertainty.
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Figure 1: γt vs ρ2
Y |X , calibration for the NHANES data. The magnitude of the sensitivity parameter

γt is increasing with the residual coefficient of determination, ρ2
Y |X . For comparison, we plot the partial

coefficients of variation from covariates, ρ2
Xj |X−j

, for the most important predictors: age, BMI, insurance
and pulse. We calibrate the magnitude of γt in Section 6.1 based on BMI.
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(a) ATE for pooled model
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(b) ATE for BCF model

Figure 2: Average treatment effect measured in units of millimeters of mercury (mmHg). NS denotes “not
significant”. a) Average treatment effect in the pooled model. Under unconfoundedness, the effect size is
significantly negative. This model has the smallest posterior uncertainty. b) Average treatment effect in
the Bayesian Causal Forest model. Although the effect sizes are comparable, the posterior uncertainty is
significantly larger.
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