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Section 1: Using Simulated Data to Compare CFA, Full-ESEM, and Set-ESEM (Study 1).
We begin with path diagrams of a variety of different CFA, Full-ESEM, and Set-ESEM models (see Figure 1 in main text) which are an initial basis of many of the analyses we present with real and simulated data. However, before we explore results based on these models, a number of technical issues need to be addressed in this Section (along with references to further discussion of each).
Section 1.A1: Formal Statistical Basis of ESEM, Identification, Estimation, and Rotation
In the ESEM model (Asparouhov & Muthén, 2009; Marsh et al., 2009; for more technical detail, also see http://www.statmodel.com/esem.shtml), there are p dependent variables Y = (Y1, ..., Yp), q independent variables X = (X1, ..., Xq), and m latent variables η = (η1, ..., ηm): 
Y = ν + Λη + ΚX + ε 							(1)
η = α + Βη + ΓX + ζ 							(2)
Standard assumptions of this model are that the ε and ζ residuals are normally distributed with mean 0 and variance covariance matrix θ and ψ respectively. The first equation represents the measurement model where ν is a vector of intercepts, Λ is a factor loading matrix, η is a vector of continuous latent variables, K is a matrix of Y on X regression coefficients, and ε is a vector of residuals for Y. The second equation represents the latent variable model where α is a vector of latent intercepts, B is a matrix of η on η regression coefficients, Γ is a matrix of η on X regression coefficients, and ζ is a vector of latent variable residuals. The model can be extended to multiple-group analysis, where for each group model (1-2) is estimated and some of the model parameters can be constrained to be invariant over different groups or to include categorical variables and censored variables (Asparouhov & Muthén, 2009). As in CFA, scale of the latent variable is identified either by fixing the variance of latent variables (typically 1) or fixing one of the Λ parameters in each column (typically 1).
In ESEM, η can include multiple sets of ESEM factors defined either as ESEM or CFA factors (noting that in the most basic model with no further constraints, ESEM factors are merely traditional EFA factors). More precisely, the CFA factors are identified as in traditional CFA/SEMs, where each factor is associated with a different set of indicators. Typically, all the ESEM factors are contained within a single block and the indicators of those factors are used to estimate all ESEM factors within the single block. However, it is possible to specify multiple blocks such that distinct sets of indicators are used to estimate factors within each block. For example, suppose the Y1, Y2, …Yc are the indicator variables assigned to an exploratory block, whereas the Yc+1, Yc+2, …Yd are the indicator variables assigned to another exploratory block. This extension of the basic ESEM model is the basis of Set-ESEM considered here. The assignment of items to CFA and/or ESEM factors is usually determined on the basis of a priori theoretical expectations, practical considerations, or, perhaps, post-hoc, based on preliminary tests conducted on the data. The integrative framework provided by ESEM is demonstrated, in that ESEM is appropriate in any combination of ESEM and CFA factors, and is easily extended to accommodate SEMs involving ESEM or CFA factors. 
	When m (m = number of factors) different ESEM factors (m > 1) are posited, further constraints are required to achieve an identified solution (Asparouhov & Muthén, 2009; Marsh et al., 2009). In an initial unconstrained factor structure a total of m2 constraints are required to achieve identification (Asparouhov & Muthén, 2009; Jöreskog, 1969). These constraints can be achieved by specifying the factor variance-covariance matrix as an identity matrix and constraining factor loadings in the right upper (mxm) corner of the factor loading matrix to be 0. For any  m x m square matrix that we refer to as , one can replace the η vector by  in the ESEM model (1-2) which will also alter the parameters in the model as well; Λ to Λ−1, the α vector α, the Γ matrix to Γ, the B matrix to and the Ψ matrix to . Since  has m2 elements, the ESEM model has a total of m2 indeterminacies that must be resolved. We consider two variations of this model such that factors are either orthogonal (Ψ, the factor variance-covariance matrix, is an identity matrix) or oblique (Ψ is an unrestricted correlation matrix or a structured variance-covariance matrix).
For an orthogonal matrix H (i.e., a square  x  matrix  such that . = I such that the factor variance-covariance matrix, Ψ, is an identity matrix), one can replace the η vector by H η and obtain an equivalent model in which the parameters are changed. EFA can resolve this non-identification problem by minimizing 
f(Λ*) = f(Λ−1) 						(3) 
where f is a function called the rotation criteria or simplicity function (Asparouhov & Muthén, 2009; Jennrich & Sampson, 1966), typically such that among all equivalent Λ parameters the simplest solution is obtained. There are a total of m(m−1)/2 constraints in addition to m(m + 1)/2 constraints that are directly imposed on the Ψ matrix for a total of m2 constraints needed to identify the model. The identification for the oblique model is developed similarly by minimizing the simplicity function (3) such that a total of m2 constraints needed to identify the model are imposed (Asparouhov & Muthén, 2009). Asparouhov and Muthén note that the requirement for m2 constraints is only a necessary, but not sufficient, condition to achieve model identification. However, they note that in most cases the model is identified if and only if the Fisher information matrix is not singular (Silvey, 1970). This method can be used in the ESEM framework as well (Asparouhov & Muthén, 2009; also see Hayashi & Marcoulides, 2006).

	The estimation of the ESEM model consists of several steps (Asparouhov & Muthén, 2009). In the first step a SEM model is estimated using the ML estimator. The factor variance covariance matrix for each block of factors is specified as an identity matrix (ψ = I), giving m(m + 1)/2 restrictions. The exploratory factor loading matrix for each block has all entries above the main diagonal fixed to 0 (i.e., for the first m rows and the last m columns in the upper right hand corner of factor loading matrix, Λ), providing the remaining m(m − 1)/2 identifying restrictions. This initial unrotated model provides starting values that can be subsequently rotated into an EFA model with m factors using any of a wide variety of different rotation strategies (Asparouhov & Muthén, 2009). The asymptotic distribution of all parameter estimates in this starting value model is also obtained. Then the ESEM (or each block in Set-ESEM) variance covariance matrix is computed (based only on  and ignoring the remaining part of the model).
Using the delta method, the correlation matrix is computed as well as the joint asymptotic distribution of the correlation matrix, standardization factors and all remaining parameters in the model and are used to obtain the standardized rotated solution based on the correlation matrix and its asymptotic distribution (Asparouhov & Muthén, 2009). This asymptotic covariance is then used to compute the asymptotic distribution of the optimal rotation matrix  and all unrotated parameters which is then used to compute the rotated solution for the model and its asymptotic variance covariance. In Mplus multiple random starting values are used in the estimation process to protect against non-convergence and local minimums in the rotation algorithms. 
With ESEM and Set-ESEM models it is possible to constrain the loadings to be equal across two or more sets of EFA blocks in which the different blocks represent multiple discrete groups or multiple occasions for the same group. This is accomplished by first estimating an unrotated solution with all loadings constrained to be equal across the groups or over time. If the starting solutions in the rotation algorithm are the same, and no loading standardizing is used, the optimal rotation matrix will be the same as well as the subsequent rotated solutions. Thus, obtaining a model with invariant rotated Λ* amounts to simply estimating a model with invariant unrotated Λ, a standard task in maximum likelihood estimation. 
For an oblique rotation it is also possible to test the invariance of the factor variance-covariance matrix (Ψ) matrix across the groups. To obtain non-invariant Ψs an unrotated solution with Ψ = I is specified in the first group and an unrestricted Ψ is specified in all other groups. Note that this unrestricted specification means that Ψ is not a correlation matrix as factor variances are freely estimated. It is not possible in the ESEM framework to estimate a model where in the subsequent groups the Ψ matrix is an unrestricted correlation matrix, because even if the factor variances are constrained to be 1 in the unrotated solution, they will not be 1 in the rotated solution. However, it is possible to estimate an unrestricted Ψ in all but the first group and after the rotation the rotated Ψ can be constrained to be invariant or varying across groups. Similarly, when the rotated and unrotated loadings are invariant across groups, it is possible to test the invariance of the factor intercept and the structural regression coefficients. These coefficients can also be invariant or varying across groups simply by estimating the invariant or group-varying unrotated model. However, in this framework only full invariance can be tested in relation to parameters in Ψ and Λ in that it is not possible to have measurement invariance for one EFA factor but not for the other EFA factors. Similar restrictions apply to the factor variance covariance, intercepts and regression coefficients, although it is possible to have partial invariance in the ε matrix of residuals (it is however, possible to have different blocks of ESEM factors such that invariance constraints are imposed in one block, but not the other). Furthermore, if the ESEM model contains both EFA factors and CFA factors, then all of the typical strategies for the SEM factors can be pursued with the CFA factors 
As in EFA, in ESEM the unrotated factor loading matrix is rotated to achieve a more interpretable, simple structure. The wide range of rotation strategies available with EFA is also available with ESEM (Asparouhov & Muthén, 2009; Marsh et al., 2014). Nevertheless, we have a preference for target rotation that conceptually lies between the mechanical approach to EFA and the hypothesis-driven approach in CFA (see Browne, 2001). This is consistent with our application of ESEM and Set-ESEM as a hypothesis testing tool, and our juxtaposition of ESEM and Set-ESEM with CFA. Nevertheless, particularly in Study 1 based on data generated from a known population generating model, we demonstrate the application of Full-ESEM and Set-ESEM for both target the Geomin rotations. We also note that it is be easy for the applied researcher to make simple adjustments to this syntax (presented Appendices 1.C1-C6 in these Supplemental Materials) to explore the many additional rotations that are available with Mplus.


The target rotation criterion is designed to find a rotated solution ƒ that is closest to a prespecified matrix B. Not all entries in matrix B need to be specified. For identification purposes at least  entries have to be specified in each column for oblique rotation and   entries have to be specified in each column for orthogonal rotation. The rotation function is: 

	 	(3)






[bookmark: MTBlankEqn]Where  if is a target and 0 if is not a target, and  is the targeted value. The most common specification choice for  is 0, but it is possible to specify other fixed values as well. Specifying an increasing number of target loadings as fixed results in an increasingly constrained factor loading matrix. Indeed, specifying all can be a very useful and effective way to rotate the loading structure into a hypothesized simple structure. The known Target invariant loading structures can be described as follows. If all targets in the rotation function are correct then the ƒ matrix minimizes the rotation criteria. In addition, if at least zero targets are specified that satisfy the sufficient conditions 1 and 2 then the ƒ matrix is the unique minimum and therefore it is Target invariant.
Full- and Set-ESEM parameters can be identified with the maximum likelihood (ML), weighted least square, or with robust alternatives. Within a given model, is possible to posit a combination of CFA, Full-ESEM and Set-ESEM factors within the same model. 


Section 1.A2: Goodness-of-fit, Golden Rules, and Interpretation of Parameter Estimates 
In applied CFA/SEM studies, applied researchers have sought universal “golden rules” as to what constitutes an acceptable goodness of fit (Marsh, Balla, & McDonald, 1988; Marsh, Hau, & Wen, 2004). Generally, given the known sensitivity of the chi-square test to sample size, to minor deviations from multivariate normality, and to minor misspecifications, applied SEM research focuses on indices that are relatively sample-size independent (Hu & Bentler, 1999; Marsh, Hau, & Wen, 2004; Marsh, Hau, & Grayson 2005), such as the Root Mean Square Error of Approximation (RMSEA), the Tucker-Lewis Index (TLI), and the Comparative Fit Index (CFI). Population values of TLI and CFI vary along a 0-to-1 continuum, in which values greater than .90 and .95 typically reflect acceptable and excellent fits to the data, respectively. Values smaller than .08 and .06 for the RMSEA support acceptable and good model fits respectively. 
The chi-square difference test can be used to compare two nested models, but this approach suffers from even more problems than does the chi-square test for single models—problems that led to the development of other fit indices (see Marsh, Hau et al., 2005). Cheung and Rensvold (2002) and Chen (2007) suggested that if the decrease in fit for the more parsimonious model is less than .01 for incremental fit indices such as the CFI, there is reasonable support for the more parsimonious model. For indices that incorporate a penalty for lack of parsimony, such as the RMSEA and the TLI, it is also possible for a more restrictive model to result in a better fit than would a less restrictive model. However, it is emphasized that these cut-off values constitute rough guidelines only, rather than “golden rules” (Marsh et al., 2004). Indeed, this emphasis of treating these cut-off values as rough guideline rather than golden rules applies even more strongly to Full- and Set-ESEM where there has not been a sufficient history of application to fully support the usefulness of cut-offs based on CFA models.
	The basic CFA model is nested under the corresponding Set-ESEM, and the Set-ESEM is nested under the Full-ESEM. This nested structure facilitated conventional model comparisons which can be used to compare the fit of three models– along with a detailed evaluation of parameter estimates based on the three approaches. The Set- and Full-ESEMs are most appropriate when they fit the data better than the corresponding CFA model, the multiple ESEM factors are well-defined in the measurement model, and there are substantively important differences in parameter estimates based on the CFA and the ESEM models. Starting with the initial ESEM publications (Marsh, et al., 2009; Muthén & Asparouhov, 2009), Marsh et al. (2014) argued that factor correlations were typically positively biased unless the CFA assumption is met (all cross-loadings are exactly equal to zero in the population). Indeed, even when the ICM-CFA model apparently fits well, CFA factor correlations tend to be larger than ESEM factor correlations. Importantly, simulation studies show that ESEM is typically better at recovering known factor correlations and that even small cross-loadings can result in biased estimates of factor correlations when based on CFAs (Marsh et al., 2014). If ESEMs are sufficiently similar to CFA results, then there is robust support for the factor structure based on the CFA solution. Thus, it is always appropriate to test ESEMs even when CFA models are retained.
Marsh et al., (2014) also acknowledged that ESEM might lack parsimony (particularly in large, complex models based on moderate sample sizes). Set-ESEM was developed in part to achieve a better balance between the goodness-of-fit for the Full-ESEM and the parsimony of the CFA. However, because of the nesting relationship between the three models, parsimony based on the number of freely estimated parameters will always be best for CFA, followed by Set-ESEM, and then Full-ESEM, whereas the goodness of fit for indices that do not control for parsimony (e.g., the chi-square statistics and indices like the CFI that are monotonic with it) will always be better for ESEM, followed by Set-ESEM, and then CFA. However, for indices that control for parsimony (e.g., TLI and RMSEA), it is possible for the CFA model to fit better than the ESEM models, or for Set-ESEM to fit better than the Full-ESEM. Nevertheless, when these three models vary substantially in relation to parsimony, model evaluation should not rely solely – or even primarily – on the basis of goodness of fit. 


Section 1.A3: ESEM-within-CFA (EwC)
Full- and Set-ESEM are highly flexible but, as initially operationalized, many CFA analyses could not be done with ESEM. Marsh, Lüdtke et al. (2013; Morin, Marsh, & Nagengast, 2013) proposed ESEM within CFA (EwC) to resolve most of these limitations of ESEM. Identification of the ESEM requires m2 constraints where M = number of factors. Marsh, Lüdtke, and colleagues proposed that this could be accomplished that by retaining parameters estimates in the final ESEM solution, and fixing m2 factor loadings in initial solution (2013). Thus, for example, fixing the all the factor loadings for the item with the highest factor loading for each factor for all the factors results in m2 constraints (i.e., there are m constraints associated with each of the m factors). The EwC solution is equivalent to the ESEM solution in terms of df, goodness of fit, and parameter estimates. However, the EwC is actually a CFA model based on the ESEM solution, thereby facilitating further models that are possible with CFA. Although previously applied in relation to Full-ESEM the some rationale can be applied to each set of ESEM factors within a Set-ESEM analysis, as illustrated in in the present investigation. 


Section 1.A4: A Priori Correlated Uniquenesses and Complex measurement error structures 
With Set- and Full-ESEM, like CFA, it is possible to model complex error structures, an important advantage that is not available with traditional approaches to EFA. Although typically it is dubious to introduce correlated uniquenesses ex post facto to improve fit, there are numerous situations in which models with a priori CUs should be the default model. Thus, for example, in longitudinal analyses in which the same items are administered across multiple waves, it is critical to incorporate a priori correlated uniquenesses (i.e., estimated correlations between item residuals) relating responses to the same items across multiple waves (Jöreskog, 1979; Marsh, Craven, et al., 2016; Marsh & Hau, 1996; Marsh, Lüdtke et al, 2013). Failure to do so is likely to result in a poor fitting model and in positively biased parameter estimates of stability over time which are likely to result in negatively biased estimates of the effects of other variables leading to that construct. 
Similarly, when different factors in a multidimensional instrument are based on parallel worded items, the a priori model should also include CUs relating items with parallel wording. In models of complex multitrait-multi method (MTMM) data structures, a particularly useful model represents method effects as CUs between indicators representing the method (e.g., those from the same instrument if the multiple instruments are the multiple methods, those from the same informant if the multiple informants are the multiple methods, etc.). Of course, it is always reasonable to compare these a priori CUs with a more parsimonious model with no CUs. Applied researchers might also posit a priori error structures to account for method effects. Importantly, ESEM is similar to CFA/SEM, in terms of this added flexibility that is not available with traditional approaches to EFA (see subsequent discussion).  


Section 1.B: Design of the Simulated Data

	
	Set 1 (Self-concept)
	Set 2 (Interest)

	Variable
	MSC
	SSC
	VSC
	MIN
	SIN
	VIN

	Self-concept
	
	
	
	

	MSC1
	.70
	.25
	.25
	0
	0
	0

	MSC2
	.70
	-.30
	.01
	0
	0
	0

	MSC3
	.70
	-.20
	.01
	0
	0
	0

	MSC4
	.70
	.01
	.01
	0
	0
	0

	MSC5
	.70
	.01
	.15
	0
	0
	0

	SSC1
	.25
	.70
	.25
	0
	0
	0

	SSC2
	.01
	.70
	-.30
	0
	0
	0

	SSC3
	.01
	.70
	-.20
	0
	0
	0

	SSC4
	.01
	.70
	.01
	0
	0
	0

	SSC5
	.15
	.70
	.01
	0
	0
	0

	VSC1
	.25
	.25
	.70
	0
	0
	0

	VSC2
	-.3
	.01
	.70
	0
	0
	0

	VSC3
	.01
	.01
	.70
	0
	0
	0

	VSC4
	.01
	.15
	.70
	0
	0
	0

	VSC5
	-.2
	.01
	.70
	0
	0
	0

	Interest 
	
	
	
	
	
	

	MIN1
	0
	0
	0
	.70
	.25
	.25

	MIN2
	0
	0
	0
	.70
	-.30
	.01

	MIN3
	0
	0
	0
	.70
	-.20
	.01

	MIN4
	0
	0
	0
	.70
	.01
	.01

	MIN5
	0
	0
	0
	.70
	.01
	.15

	SIN1
	0
	0
	0
	.25
	.70
	.25

	SIN2
	0
	0
	0
	.01
	.70
	-.30

	SIN3
	0
	0
	0
	.01
	.70
	-.20

	SIN4
	0
	0
	0
	.01
	.70
	.01

	SIN5
	0
	0
	0
	.15
	.70
	.01

	MIN1
	0
	0
	0
	.25
	.25
	.70

	MIN2
	0
	0
	0
	-.30
	.01
	.70

	MIN3
	0
	0
	0
	.01
	.01
	.70

	MIN4
	0
	0
	0
	.01
	.15
	.70

	MIN5
	0
	0
	0
	-.20
	.01
	.70

	Correlation
	MSC
	SSC
	VSC
	MIN
	SIN
	VIN

	MSC
	1.0
	
	
	
	
	

	SSC
	.30
	1.0
	
	
	
	

	VSC
	.30
	.30
	1.0
	
	
	

	MIN
	.60
	.30
	.30
	1.0
	
	

	SIN
	.30
	.60
	.30
	.30
	1.0
	

	VIN
	.30
	.30
	.60
	.30
	.30
	1.0


Note. Target factor loadings = 0.7; Minor cross-loadings = -.30 to +.25
(see Section 1.D for the population generating model)





Section 1.C1: Syntax to Create Raw Data From the Population Generating Model
      TITLE: Monte Carlo simulation study for SET-ESEM
      MONTECARLO:  NAMES ARE
      MSC1-MSC5 SSC1-SSC5 VSC1-VSC5
      MIN1-MIN5 SIN1-SIN5 VIN1-VIN5 ;
      NOBSERVATIONS = 10000;
      NREPS = 1;
      SEED = 4533;
      REPSAVE = ALL;
      SAVE = SETESEM-N10006fac-*.dat;

      ANALYSIS: ESTIMATOR = MLR;
      Model population:
      !target loading set 1  = .7;
      MSC by MSC1-MSC5@.7;
      SSC by SSC1-SSC5@.7;
      VSC by VSC1-VSC5@.7;
      !cross-loading
      MSC  by SSC1@.25 SSC2@.01 SSC3@.01 SSC4@.01 SSC5@.15
              VSC1@.25 VSC2@-.30 VSC3@.01 VSC4@.01 VSC5@-.20;
      SSC  by MSC1@.25 MSC2@-.30 MSC3@-.20 MSC4@.01 MSC5@.01
              VSC1@.25 VSC2@.01 VSC3@.01 VSC4@.15 VSC5@.01;
      VSC  by MSC1@.25 MSC2@.01 MSC3@.01 MSC4@.01 MSC5@.15
              SSC1@.25 SSC2@-.30 SSC3@-.20 SSC4@.01 SSC5@.01;
      [MSC1-VSC5@0]; MSC1-VSC5@.3;
      MSC-VSC@1;  [MSC-VSC@0];
      MSC-VSC WITH MSC-VSC@.30;
      !target loading set 2
      MIN by MIN1-MIN5@.7;
      SIN by SIN1-SIN5@.7;
      VIN by VIN1-VIN5@.7;
      !cross-loading
      MIN  by SIN1@.25 SIN2@.01 SIN3@.01 SIN4@.01 SIN5@.15
              VIN1@.25 VIN2@-.30 VIN3@.01 VIN4@.01 VIN5@-.20;
      SIN  by MIN1@.25 MIN2@-.30 MIN3@-.20 MIN4@.01 MIN5@.01
              VIN1@.25 VIN2@.01 VIN3@.01 VIN4@.15 VIN5@.01;
      VIN  by MIN1@.25 MIN2@.01 MIN3@.01 MIN4@.01 MIN5@.15
              SIN1@.25 SIN2@-.30 SIN3@-.20 SIN4@.01 SIN5@.01;
      [MIN1-VIN5@0]; MIN1-VIN5@.3;
      MIN-VIN@1;  [MIN-VIN@0];
      MIN-VIN WITH MIN-VIN@.30;

      !correlations set1 with set 2
      MSC with MIN@.6; SSC VSC with MIN@.3;
      SSC with SIN@.6; MSC VSC with SIN@.3;
      VSC with VIN@.6; MSC SSC with VIN@.3;

       OUTPUT: tech9;
Section 1.C2: Syntax for CFA Model (Study 1)
  TITLE: CFA Model (Study 1
  TITLE: Data generation for SET-ESEM;
    DATA:FILE='SETESEM-N10006fac-1.dat';

  Variable: NAMES ARE
  MSC1-MSC5 SSC1-SSC5 VSC1-VSC5
  MIN1-MIN5 SIN1-SIN5 VIN1-VIN5 ;
  ANALYSIS:   ESTIMATOR = MLR;!PROCESSORS = 2;
  MODEL:
  MSC by MSC1-MSC5*;
  SSC by SSC1-SSC5*;
  VSC by VSC1-VSC5*;

  MIN by MIN1-MIN5*;
  SIN by SIN1-SIN5*;
  VIN by VIN1-VIN5*;
  MSC-VIN@1;
  OUTPUT: sampstat sval TECH2 tech4  ;



Section 1.C3: Syntax for Set-ESEM  Target Rotation (Study 1)
    TITLE: Set-ESEM  Target Rotation 
  TITLE: Data generation for SET-ESEM;
          DATA:FILE='SETESEM-N10006fac-1.dat';
  Variable: NAMES ARE
  MSC1-MSC5 SSC1-SSC5 VSC1-VSC5
  MIN1-MIN5 SIN1-SIN5 VIN1-VIN5 ;
      ANALYSIS: ESTIMATOR = MLR;ROTATION=TARGET;
      MODEL:
      MSC by MSC1-MSC5 SSC1-SSC5~0 VSC1-VSC5~0(*1);
      SSC by MSC1-MSC5~0 SSC1-SSC5 VSC1-VSC5~0(*1);
      VSC by MSC1-MSC5~0 SSC1-SSC5~0 VSC1-VSC5(*1);
      MIN by MIN1-MIN5 SIN1-SIN5~0 VIN1-VIN5~0(*2);
      SIN by MIN1-MIN5~0 SIN1-SIN5 VIN1-VIN5~0(*2);
     VIN by MIN1-MIN5~0 SIN1-SIN5~0 VIN1-VIN5 (*2);
  OUTPUT: sampstat stdyx sval TECH2 tech4  ;




Section 1C4: Syntax for Full-ESEM Target Rotation(Study 1)
   TITLE: Full-ESEM Target Rotation(Study 1);
    DATA: FILE = SETESEM-N10006fac-1.dat ;
     Variable: NAMES ARE
    MSC1-MSC5 SSC1-SSC5 VSC1-VSC5
    MIN1-MIN5 SIN1-SIN5 VIN1-VIN5;
    USEVARIABLES = MSC1-VIN5;
    ANALYSIS: ESTIMATOR = MLR;ROTATION=TARGET;

    MODEL:
    MSC by MSC1-MSC5 SSC1-SSC5~0 VSC1-VSC5~0
       MIN1-MIN5~0 SIN1-SIN5~0 VIN1-VIN5~0 (*1);
    SSC by MSC1-MSC5~0 SSC1-SSC5 VSC1-VSC5~0
        MIN1-MIN5~0 SIN1-SIN5~0 VIN1-VIN5~0 (*1);
    VSC by MSC1-MSC5~0 SSC1-SSC5~0 VSC1-VSC5
        MIN1-MIN5~0 SIN1-SIN5~0 VIN1-VIN5~0 (*1);

    MIN by MIN1-MIN5 SIN1-SIN5~0 VIN1-VIN5~0
       MSC1-MSC5~0 SSC1-SSC5~0 VSC1-VSC5~0 (*1);
    SIN by MIN1-MIN5~0 SIN1-SIN5 VIN1-VIN5~0
        MSC1-MSC5~0 SSC1-SSC5~0 VSC1-VSC5~0 (*1);
   VIN by MIN1-MIN5~0 SIN1-SIN5~0 VIN1-VIN5
       MSC1-MSC5~0 SSC1-SSC5~0 VSC1-VSC5~0 (*1);
    OUTPUT: SVAL tech4;



Section 1C5: Syntax for Set-ESEM Geomin Rotation(Study 1)
    TITLE: Set-ESEM Using Geomin 
     DATA: FILE = SETESEM-N1000-71.dat ;
     Variable: NAMES ARE
    MSC1-MSC5 SSC1-SSC5 VSC1-VSC5
    MIN1-MIN5 SIN1-SIN5 VIN1-VIN5;! ASP;
    USEVARIABLES = MSC1-VIN5;
    ANALYSIS: ESTIMATOR = MLR; ROTATION=GEOMIN(OBLIQUE);
  MODEL:
  MSC SSC VSC  by MSC1-MSC5 SSC1-SSC5 VSC1-VSC5 (*1);
  MIN SIN VIN  by MIN1-MIN5 SIN1-SIN5 VIN1-VIN5  (*2) ;
OUTPUT: sampstat TECH2 tech4  ;



Section 1C6: Syntax for Full-ESEM Geomin Rotation(Study 1)
    TITLE: Full-ESEM Geomin Rotation;
     DATA: FILE = SETESEM-N1000-71.dat ;
     Variable: NAMES ARE
    MSC1-MSC5 SSC1-SSC5 VSC1-VSC5
    MIN1-MIN5 SIN1-SIN5 VIN1-VIN5;! ASP;
   USEVARIABLES = MSC1-VIN5;
    ANALYSIS: ESTIMATOR = MLR; ROTATION=GEOMIN(OBLIQUE);
  MODEL:
  MSC SSC VSC MIN SIN VIN by MSC1-MSC5 SSC1-SSC5 VSC1-VSC5
       MIN1-MIN5 SIN1-SIN5 VIN1-VIN5 (*1) ;
  OUTPUT: tech4;



Section 2: Dimensional Comparison Theory over Six Academic Subjects (Study 2)
Dimensional Comparison Theory (DCT; Marsh, Lüdtke, et al., 2015; Marsh et al.,2017) posits that self-evaluations are based on dimensional comparisons (e.g., how my accomplishments in one school subject compare with my accomplishments in another school subject) as well as the more traditional social comparisons (how my accomplishments compare with my peers in the same school subject). For maximally different domains (e.g., math and verbal self-concepts that are at the opposite ends of the theoretical continuum of academic self-concept; See Section 3.A), DCT predicts that achievement in one subject has a positive effect on self-concept in the matching domain (e.g., mathematics achievement on mathematics self-concept) but a negative (contrasting) effect on self-concept in the non-matching domain (e.g., mathematics achievement on verbal self-concept). However, for subjects closer together on the underlying continuum, these negative effects of achievement in one subject on self-concept in another subject are posited to be much weaker or may even be positive (e.g., positive effects of math achievement on physics self-concept; positive effects of native language on foreign language self-concept). 
Here we consider a reanalysis using Set-ESEM of the Marsh, Lüdtke, et al. (2015) study designed to test DCT. The study included six school subjects, three that are classified within the math/science domain (math, physics, biology) and three that are classified within the verbal domain (German, English, History). For each school subject there was a measure of achievement (school grades from student from school records) and a total of six self-belief items designed to measure academic self-concept (e.g., I am good in [subject]) or homework self-efficacy (e.g., If I make an effort, I can solve all the homework in [subject]). The set of six items for each subject had parallel wording. Because the focus of the study was on how self-beliefs in one subject were related to those in different subjects, it was important that responses to the different school subjects were not confounded. For this reason, here we apply Set-ESEM based on six sets, responses to the six self-report items for each of the six school subjects—one for each school subject (see related discussion of the similar model 1D in Figure 1). Indeed, Marsh, Lüdtke, et al. specifically noted that although two of the six items were unambiguously self-concept items and three were clearly self-efficacy items, one reflected both constructs and cross-loaded on both the self-efficacy factor and the self-concept factor for all six school subjects. Although the authors dealt with this problem using CFA with an ex-post facto modification, here we use Set-ESEM in order to demonstrate some interesting features of this approach. 
A critical feature was the parallel wording used to measure each self-concept and self-efficacy factors; the likely item-specific method effects, as well as the possible invariance across the self-concept and self-efficacy factors. In particular, it is well-known (see Marsh & Hau, 1996; Marsh, Lüdtke, et al., 2013) that the use of parallel-worded items results in item-specific method effects. Thus, responses to a pair of items with parallel wording used to measure different factors are likely to be more positively correlated with each other than can be explained in terms of the correlation between the latent factors that each is designed to measure. This issue is similar to that encountered in Study 2 for longitudinal data in which the same items were administered on multiple occasions.  If this feature of the data is not controlled and appropriately incorporated into the model, goodness of fit is likely to be poor and interpretations of parameter estimates will be biased. There are two typical approaches to address this problem. The first is to include a set of correlated uniquenesses between each item (see Model 1E in Figure 1). The second is to incorporate the items with parallel wording into a single item method factor (see Figure 3A). This second approach is similar in logic to the method factors posited in some approaches to MTMM data, but is also similar to the bifactor model. In many respects the use of parallel worded items is a nuisance that must be dealt with in the analysis.  However, the use of parallel-worded items also means that it is possible to test whether factor loadings for the same item are invariant across different domains. Methodologically support for invariance results in a substantially more parsimonious model that might be particularly important for potentially unstable Full-ESEM models that typically lack parsimony. However, support for invariance is also substantively important in relation to comparing results based on different domains (i.e., school subjects in this application). 
Validity of Self-Belief Factors in Relation to Achievement 
In Models M4 and M5 (Table 2.1 and Figures 3A & 3B) we tested the validity of the self-belief factors in relation to 6 achievement measures (school grades for each of the six subjects corresponding to the six domains for the self-concept and self-efficacy measures). For present purposes, our primary focus is on the correlations among the six self-concept factors, the six self-efficacy factors, and the six achievement scores for the Set-ESEM model M4. In support of the domain specificity and convergent validity of the self-concept factors, each self-concept factor was substantially correlated with the matching self-efficacy factor (rs vary from .52 to .64; Supplemental Table 2.2) and for matching domains of achievement (rs vary from .50 to .69). In support of their discriminant validity, these correlations were consistently much larger than correlations among the self-concept factors (rs vary from -.23 to .45) and correlations between self-concept and non-matching achievements (rs vary from -.14 to .28). There was also support for the convergent validity of homework self-efficacy in relation to achievement (rs vary from .30 to .42). Although weaker than correlations between matching domains of self-concept and achievement, these convergent validities were still substantially higher than correlations of self-efficacy factors to non-matching areas of achievement (rs vary from -.16 to .22). In summary, results provide good support for the convergent and discriminant validity of self-concept and self-efficacy factors in relation to each other and to achievement. 
The pattern of results based on the Set-ESEM solution is also reflected in the CFA solution. Indeed, the only major difference is for the correlations among the self-concept and self-efficacy items. The correlations are substantially higher for the CFA solution – particularly for the matching domains (rs vary from .65 to .81) but also for the non-matching domains (rs vary from -.15 to .36). Hence, the differentiation between self-concept and self-efficacy is much stronger for the Set-ESEM solution than for the CFA solution. This follows from earlier discussion where Marsh, Lüdtke, et al. (2015) noted that one of the items designed to measure self-efficacy was actually reflected, at least in part, by self-concept. Forcing this item to load only on the CFA factors meant that the relation between CFA self-concept and self-efficacy factors are systematically inflated relative to the corresponding Set-ESEM factors where this item loaded substantially on both the self-concept and self-efficacy factors for each domain.
Model M5 (Supplemental Table 2.2; Figure 3B in main text) was especially designed to test DCT predictions when the 12 self-belief factors are regressed on the six achievement scores. Specifically, achievements at either end of the achievement continuum are posited to have substantial positive effects on matching self-belief factors, but negative effects on self-belief factors at the opposite end (e.g., math and physics achievement on German and English self-beliefs; German and English achievement on math and physics self-beliefs). It is important to emphasize that M4 and M5 are equivalent models in the sense that both have the same df and goodness of fit; the correlations relating achievement and the self-belief factors in M4 are replaced with path coefficients in M5. The Set-ESEM model provides good support for DCT predictions, particularly in relation to self-concept. For example (see Supplemental Table 2.3), English self-concept is positively predicted by English achievement (.631) but also German achievement (.108), but significantly negatively predicted by achievements in math (-.137) and physics (-.129). In contrast physics self-concept is significantly positively predicted by achievements in physics (.492) but also math (.147), but significantly negatively predicted by achievements in German (-.104) and English (-.133). Although support for predictions based on self-efficacy responses is weaker, the pattern of results is similar. Again, we note that the CFA results largely parallel those based on Set-ESEM. Whereas our focus is on the application of Set-ESEM, the substantive implications are discussed in more detail by Marsh, Lüdtke, et al. (2015). 
	In summary, the factor structure underlying the self-concept and homework self-efficacy responses is well-defined and consistent with a priori expectations. Compared to typical EFAs, the Set-ESEM approach used here is critical in terms of taking into account the complex measurement structure and cross-loadings of the item reflecting both self-concept and self-efficacy. The superiority of Set-ESEM over the traditional Full-ESEM was also clear in that the Full-ESEM M1 did not result in a well-defined factor structure and M2 did not even converge. Furthermore, even if the Full-ESEM M2 had converged and resulted in a well-defined factor structure, there is no straight-forward way to test invariance as in model M3 tested in both the CFA and Set-ESEM analyses. However, it is also important to note that the pattern of results was surprisingly similar for the CFA and Set-ESEM solutions, with the exception of the inflated CFA correlations between matching self-concept and self-efficacy factors. Nevertheless, the empirical similarity of the two sets of results should not be seen as a weakness of Set-ESEM, but merely supports the robustness of the substantive interpretations of the results. Our preference is for the Set-ESEM models (particularly M3, M4 and M5 that were nearly as parsimonious as the corresponding CFA models), because of issues with the substantial cross-loading of one of the self-efficacy items on the self-concept factor. However, even if researchers were to argue for the CFA instead of Set-ESEM approach, the juxtaposition of the two approaches—showing that the more parsimonious CFA fits nearly as well as the Set-ESEM -- is stronger than results based on either one or the other of the two approaches. Furthermore, the results provide a clear example of the superiority of the Set-ESEM approach over the typical Full-ESEM approach.


Section 2A: Theoretical Model of the Continuum of Academic Self-Concept Constructs 
(along a continuum that varies from verbal to math. Contrast is posited be greater for school subjects that are more distant along the academic continuum)
[image: ]
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Supplemental Table 2A1 
Correlations Among Self-Concepts, Self-Efficacies, Achievements (CFA Above Main Diagonal, Set-ESEM Below)				
	
	DSC
	ESC
	GSC
	BSC
	PSC
	MSC
	 DSEf   
	 ESEf   
	 GSEf   
	 BSEf   
	 PSEf   
	 MSEf   
	DAch   
	 Ach   
	GAch   
	BAch   
	PAch   
	MAch   

	Self-concept (SC)

	 DSC
	1.00
	.31
	.19
	.29
	-.12
	-.10
	.65
	.24
	.17
	.09
	-.15
	-.15
	.58
	.14
	.16
	.16
	-.02
	-.07

	 ESC
	.32
	1.00
	.04
	.16
	-.25
	-.17
	.26
	.81
	.13
	.24
	-.14
	-.13
	.32
	.65
	.08
	.19
	-.07
	-.06

	 GSC
	.21
	.06
	1.00
	.21
	.26
	.05
	.31
	.20
	.79
	.30
	.14
	.06
	.06
	.05
	.61
	.07
	.22
	.02

	 BSC
	.27
	.18
	.19
	1.00
	.22
	.11
	.26
	.28
	.24
	.77
	.14
	.15
	.18
	.12
	.19
	.53
	.20
	.02

	 PSC
	-.12
	-.23
	.26
	.17
	1.00
	.45
	-.01
	-.11
	.18
	.15
	.76
	.31
	-.15
	-.07
	.20
	.12
	.55
	.27

	 MSC
	-.09
	-.18
	.07
	.07
	.45
	1.00
	.01
	-.05
	.08
	.12
	.36
	.77
	-.08
	-.03
	.10
	.16
	.28
	.59

	Self-Efficacy (SEf)

	 DSEf   
	.50
	.21
	.19
	.21
	-.09
	-.03
	1.00
	.59
	.57
	.50
	.10
	.20
	.35
	.16
	.18
	.21
	.06
	.05

	 ESEf   
	.18
	.71
	.14
	.26
	-.16
	-.06
	.63
	1.00
	.40
	.48
	.08
	.14
	.22
	.46
	.06
	.16
	-.06
	-.03

	 GSEf   
	.14
	.10
	.67
	.23
	.09
	.08
	.61
	.46
	1.00
	.52
	.30
	.26
	.01
	.06
	.34
	.11
	.18
	.01

	 BSEf   
	.06
	.19
	.22
	.69
	.06
	.09
	.53
	.52
	.54
	1.00
	.28
	.29
	.09
	.10
	.19
	.35
	.15
	.05

	 PSEf   
	-.14
	-.16
	.11
	.16
	.62
	.34
	.21
	.17
	.36
	.34
	1.00
	.52
	-.17
	-.07
	.02
	.07
	.38
	.17

	 MSEf   
	-.17
	-.15
	-.03
	.13
	.23
	.69
	.28
	.23
	.33
	.37
	.54
	1.00
	-.16
	-.11
	-.02
	.06
	.14
	.39

	Achievement (Ach)

	 DAch   
	.57
	.31
	.05
	.20
	-.14
	-.08
	.33
	.22
	.03
	.07
	-.16
	-.14
	1.00
	.31
	.15
	.23
	-.03
	.10

	 EAch   
	.16
	.64
	.05
	.12
	-.06
	-.04
	.10
	.42
	.04
	.08
	-.08
	-.10
	.31
	1.00
	.20
	.24
	.14
	.16

	 GAch   
	.17
	.08
	.62
	.20
	.21
	.13
	.15
	.04
	.30
	.15
	.00
	-.06
	.16
	.20
	1.00
	.30
	.34
	.26

	 BAch   
	.15
	.18
	.04
	.52
	.12
	.15
	.21
	.18
	.13
	.34
	.08
	.08
	.23
	.25
	.29
	1.00
	.25
	.16

	 PAch   
	-.02
	-.07
	.21
	.21
	.54
	.28
	.05
	-.05
	.17
	.13
	.34
	.14
	-.04
	.14
	.34
	.25
	1.00
	.31

	 MAch   
	-.07
	-.06
	.01
	.01
	.28
	.59
	.03
	-.04
	.00
	.04
	.14
	.36
	.10
	.16
	.26
	.16
	.32
	1.00


																			
Note. For each construct (SC = self-concept; SEf = homework self-efficacy; Ach = achievement) there are six domains representing six school subjects (D = German; E = English; G = Geography; B = biology; P = Physics; M = Math). Coefficients in white (outlined in black) are between matching self-concept and self-efficacies. Correlations shaded in gray are between achievement and matching domains of self-concept and self-efficacy. 



Supplemental Table 2.A2 
Path Coefficients Leading from Achievements (Ach) to Self-Belief Constructs (ASC = self-concept; Self-efficacy =SEff) for CFA and Set-ESEM solutions		
Self  ACH     				Set-ESEM               
 D            	SC          SEff                SC          SEff          
      DACH   .587(.045)  .314(.055)    .568(.049)  .302(.051)  
      EACH  -.051(.060)  .015(.059)   -.016(.059) -.032(.054)  
      GACH   .111(.065)  .103(.078)    .122(.066)  .070(.073)  
      BACH   .029(.065)  .101(.071)    .004(.070)  .127(.057)  
      PACH   .012(.062)  .021(.079)    .013(.064)  .024(.072)  
      MACH  -.161(.061) -.036(.055)   -.158(.062) -.040(.048)  
 E                              
      DACH   .120(.053)  .071(.057)    .108(.053)  .084(.057)  
      EACH   .638(.049)  .452(.058)    .631(.050)  .402(.058)  
      GACH  -.008(.047) -.009(.056)    .003(.045) -.029(.064)  
      BACH   .063(.047)  .080(.071)    .048(.046)  .104(.064)  
      PACH  -.125(.043) -.106(.061)   -.129(.043) -.095(.059)  
      MACH  -.138(.042) -.088(.045)   -.137(.040) -.087(.050)  
 G                              
      DACH   .020(.061) -.032(.072)    .006(.059) -.013(.070)  
      EACH  -.044(.065)  .003(.071)   -.035(.069) -.018(.061)  
      GACH   .665(.055)  .342(.085)    .684(.054)  .283(.090)  
      BACH  -.115(.063)  .010(.073)   -.147(.064)  .051(.068)  
      PACH   .077(.063)  .087(.070)    .070(.063)  .090(.068)  
      MACH  -.159(.058) -.104(.056)   -.157(.058) -.104(.052)  
 B                              
      DACH   .087(.047)  .005(.056)    .108(.051) -.002(.053)  
      EACH  -.033(.063)  .001(.056)   -.040(.064) -.014(.052)  
      GACH   .025(.065)  .089(.062)    .044(.072)  .049(.068)  
      BACH   .497(.075)  .312(.065)    .477(.070)  .324(.062)  
      PACH   .105(.075)  .051(.074)    .116(.082)  .044(.072)  
      MACH  -.104(.052) -.040(.057)   -.116(.059) -.036(.055)  
 P                              
      DACH  -.111(.043) -.133(.055)   -.104(.044) -.116(.055)  
      EACH  -.133(.047) -.090(.050)   -.133(.048) -.101(.051)  
      GACH   .025(.060) -.115(.068)    .042(.061) -.122(.069)  
      BACH   .019(.051)  .045(.065)    .013(.053)  .062(.058)  
      PACH   .505(.059)  .379(.065)    .492(.057)  .355(.064)  
      MACH   .134(.050)  .103(.067)    .147(.051)  .074(.062)  
 M                              
      DACH  -.121(.047) -.163(.051)   -.118(.047) -.145(.052)  
      EACH  -.108(.047) -.126(.043)   -.122(.047) -.117(.040)  
      GACH  -.083(.064) -.126(.056)   -.042(.066) -.164(.056)  
      BACH   .117(.056)  .091(.061)    .100(.057)  .110(.053)  
      PACH   .103(.072)  .039(.072)    .103(.069)  .049(.073)  
      MACH   .591(.041)  .429(.056)    .584(.040)  .401(.052)  
										
Note. For each construct (SC = self-concept; Seff = homework self-efficacy; Ach = achievement) there are six domains representing six school subjects (D = German; E = English; G = Geography; B = biology; P = Physics; M = Math). Values in parentheses are standard errors. Path coefficients that differ from zero by more than 1.96 SEs are statistically significant (p < .05). 

Section 2.B: Mplus syntax For Set-ESEM
TITLE: DCT model based on homework data;
DATA: FILE IS  six subject study Sept2016mplus.dat;
MISSING ARE all (-99);
USEVARIABLES ARE
rskb1_e, skb2_e,rexp1_e,exp2_e,exp3_e,exp4_e,
rskb1_m, skb2_m,rexp1_m,exp2_m,exp3_m,exp4_m,
rskb1_d, skb2_d,rexp1_d,exp2_d,exp3_d,exp4_d,
rskb1_g, skb2_g,rexp1_g,exp2_g,exp3_g,exp4_g,
rskb1_b, skb2_b,rexp1_b,exp2_b,exp3_b,exp4_b,
rskb1_p, skb2_p,rexp1_p,exp2_p,exp3_p,exp4_p,
;
cluster is idCLASS; 
! Complex design option is used to adjust for students nested within classes
ANALYSIS: ROTATION=target (oblique); ESTIMATOR=MLR; type=complex;
MODEL:
!Self-concept factors in six school subjects;
    eSC by  rskb1_e skb2_e rEXP1_e-exp4_e~0(*te1 1);
    dSC by  rskb1_d skb2_d rEXP1_d-exp4_d~0(*td1 1);
    gSC by  rskb1_g skb2_g rEXP1_g-exp4_g~0(*tg1 1);
    bSC by  rskb1_b skb2_b rEXP1_b-exp4_b~0(*tb1 1);
    pSC by  rskb1_p skb2_p rEXP1_p-exp4_p~0(*tp1 1);
    mSC by  rskb1_m skb2_m rEXP1_m-exp4_m~0(*tm1 1);
!the 6 items defining each SC factor has the same factor loadings across the 6 subjects
! because the all end in "1). For example, the factor loading of rskb1_e on eSC is the 
!same as the rskb1_d loading on the dSC factor. 
!This is reasonable because of the parallel item wording

!Homework Self-efficacy factors in six school subjects;
    eHWK by  rskb1_e-skb2_e~0,rEXP1_e-exp4_e(*te1 2);
    dHWK by  rskb1_d-skb2_d~0,rEXP1_d-exp4_d(*td1 2);
    gHWK by  rskb1_g-skb2_g~0,rEXP1_g-exp4_g(*tg1 2);
    bHWK by  rskb1_b-skb2_b~0,rEXP1_b-exp4_b(*tb1 2);
    pHWK by  rskb1_p-skb2_p~0,rEXP1_p-exp4_p(*tp1 2);
    mHWK by  rskb1_m-skb2_m~0,rEXP1_m-exp4_m(*tm1 2);
!the 6 items defining each HWK factor have the same factor loadings across the 6 subjects
! because the all end in "1—i.e. )

!For each subject, the SC and HWK are defined to be a single set 
!(e.g, the "(*te1 " at the end of the esc and eHWK factors)

      ITEM1 by rskb1_e* rskb1_m rskb1_d rskb1_g rskb1_b rskb1_p ;
      ITEM2 by skb2_e* skb2_m skb2_d skb2_g skb2_b skb2_p ;
      item3 by rEXP1_e* rEXP1_m rEXP1_d rEXP1_g rEXP1_b rEXP1_p;
      item4 by exp2_e* exp2_m exp2_d exp2_g exp2_b exp2_p;
      item5 by exp3_e* exp3_m exp3_d exp3_g exp3_b exp3_p;
      item6 by exp4_e* exp4_m exp4_d exp4_g exp4_b exp4_p;
    ITEM1@1;ITEM2@1;ITEM3@1;ITEM4@1;ITEM5@1;ITEM6@1;
! A separate item-method factor is defined for each of the 6 items;
       dSC eSC-msc  dHWK-MhWK WITH ITEM1-ITEM6@0;
      ITEM1-Item6 WITH ITEM1-Item6@0;
!Item method-factors are defined to be uncorrelated with each other and all other factors;
      OUTPUT: TECH1 TECH4 TECH8 STDYX sampstat svalues MODINDICES(ALL) ;


Section 3.A:Target Factor Loadings for 15 Well-Being Factors (Study 3)

	Target Factor Loadings For:

	
	Full-ESEM
	SET-ESEM
	CFA
	
	

	 SSC      BY
	
	
	
	
	

	    SDQ_SS1 
	0.88
	0.95
	0.91
	
	

	    SDQ_SS2 
	0.72
	0.81
	0.88
	
	

	    SDQ_SS3 
	0.81
	0.93
	0.92
	
	

	 SSA      BY
	
	
	
	
	

	    SDQ_SS4 
	0.53
	0.70
	0.86
	
	

	    SDQ_SS5 
	0.78
	0.91
	0.82
	
	

	    SDQ_SS6 
	0.71
	0.88
	0.84
	
	

	 HOPE     BY
	
	
	
	
	

	    HOP_1   
	0.60
	0.79
	0.70
	
	

	    HOP_2   
	0.63
	0.76
	0.75
	
	

	    WB_1    
	0.56
	0.61
	0.85
	
	

	    HOP_3   
	0.67
	0.87
	0.79
	
	

	 POSEM    BY
	
	
	
	
	

	    P_PA_1  
	0.70
	0.82
	0.91
	
	

	    P_PA_2  
	0.82
	1.01
	0.92
	
	

	    P_PA_3  
	0.63
	0.74
	0.83
	
	

	 SEW      BY
	
	
	
	
	

	    SDQ_SE1 
	0.26
	0.48
	0.90
	
	

	    SDQ_SE2 
	0.73
	0.86
	0.90
	
	

	    SDQ_SE3 
	0.75
	0.91
	0.86
	
	

	    SDQ_SE4 
	0.92
	0.99
	0.79
	
	

	 SEP      BY
	
	
	
	
	

	    SDQ_SE5 
	0.52
	0.55
	0.83
	
	

	    SDQ_SE6 
	0.58
	0.67
	0.72
	
	

	    SDQ_SE7 
	0.63
	0.78
	0.74
	
	

	    SDQ_SE8 
	0.66
	0.83
	0.85
	
	

	 ABUOY    BY
	
	
	
	
	

	    ABUOY_1 
	0.80
	0.82
	0.70
	
	

	    ABUOY_2 
	0.74
	0.75
	0.80
	
	

	    ABUOY_3 
	0.57
	0.63
	0.78
	
	

	    ABUOY_4 
	0.83
	0.85
	0.78
	
	

	 HEAL     BY
	
	
	
	
	

	    HEAL_2  
	0.68
	0.78
	0.87
	
	

	    HEAL_3  
	0.79
	0.90
	0.89
	
	

	    HEAL_4  
	0.60
	0.74
	0.73
	
	

	 VIT      BY
	
	
	
	
	

	    VIT_1   
	0.51
	0.66
	0.84
	
	

	    VIT_2   
	0.78
	0.89
	0.88
	
	

	    VIT_3   
	0.42
	0.62
	0.68
	
	

	    VIT_4   
	0.97
	1.04
	0.89
	
	

	 FRS      BY
	
	
	
	
	

	    SDT_F1  
	0.80
	0.84
	0.88
	
	

	    SDT_F2  
	0.78
	0.89
	0.91
	
	

	    SDT_F3  
	0.77
	0.81
	0.76
	
	

	 CRS      BY
	
	
	
	
	

	    SDT_C1  
	0.91
	0.93
	0.90
	
	

	    SDT_C2  
	0.78
	0.82
	0.87
	
	

	    SDT_C3  
	0.88
	0.89
	0.87
	
	

	 TRS      BY
	
	
	
	
	

	    SDT_T1  
	0.83
	0.86
	0.88
	
	

	    SDT_T2  
	0.84
	0.89
	0.90
	
	

	    SDT_T3  
	0.83
	0.87
	0.87
	
	

	 PEERRS   BY
	
	
	
	
	

	    PEER_1  
	0.84
	0.83
	0.81
	
	

	    PEER_3  
	0.77
	0.80
	0.78
	
	

	    PEER_4  
	0.76
	0.79
	0.83
	
	

	 CIAI     BY
	
	
	
	
	

	    CI_AI1  
	0.76
	0.81
	0.87
	
	

	    CI_AI2  
	0.78
	0.86
	0.85
	
	

	    CI_AI3  
	0.45
	0.55
	0.69
	
	

	 CICI     BY
	
	
	
	
	

	    CI_CI1  
	0.32
	0.30
	0.61
	
	



	
	Target Factor Loadings For:

	
	Full-ESEM
	SET-ESEM
	CFA

	SSC      BY
	
	
	

	    SDQ_SS1 
	0.88
	0.95
	0.91

	    SDQ_SS2 
	0.72
	0.81
	0.88

	    SDQ_SS3 
	0.81
	0.93
	0.92

	 SSA      BY
	
	
	

	    SDQ_SS4 
	0.53
	0.7
	0.86

	    SDQ_SS5 
	0.78
	0.91
	0.82

	    SDQ_SS6 
	0.71
	0.88
	0.84

	 HOPE     BY
	
	
	

	    HOP_1   
	0.6
	0.79
	0.7

	    HOP_2   
	0.63
	0.76
	0.75

	    WB_1    
	0.56
	0.61
	0.85

	    HOP_3   
	0.67
	0.87
	0.79

	 POSEM    BY
	
	

	    P_PA_1  
	0.7
	0.82
	0.91

	    P_PA_2  
	0.82
	1.01
	0.92

	    P_PA_3  
	0.63
	0.74
	0.83

	 SEW      BY
	
	
	

	    SDQ_SE1 
	0.26
	0.48
	0.9

	    SDQ_SE2 
	0.73
	0.86
	0.9

	    SDQ_SE3 
	0.75
	0.91
	0.86

	    SDQ_SE4 
	0.92
	0.99
	0.79

	 SEP      BY
	
	
	

	    SDQ_SE5 
	0.52
	0.55
	0.83

	    SDQ_SE6 
	0.58
	0.67
	0.72

	    SDQ_SE7 
	0.63
	0.78
	0.74

	    SDQ_SE8 
	0.66
	0.83
	0.85

	 ABUOY    BY
	
	

	    ABUOY_1 
	0.8
	0.82
	0.7

	    ABUOY_2 
	0.74
	0.75
	0.8

	    ABUOY_3 
	0.57
	0.63
	0.78

	    ABUOY_4 
	0.83
	0.85
	0.78

	 HEAL     BY
	
	
	

	    HEAL_2  
	0.68
	0.78
	0.87

	    HEAL_3  
	0.79
	0.9
	0.89

	    HEAL_4  
	0.6
	0.74
	0.73

	 VIT      BY
	
	
	

	    VIT_1   
	0.51
	0.66
	0.84

	    VIT_2   
	0.78
	0.89
	0.88

	    VIT_3   
	0.42
	0.62
	0.68

	    VIT_4   
	0.97
	1.04
	0.89

	 FRS      BY
	
	
	

	    SDT_F1  
	0.8
	0.84
	0.88

	    SDT_F2  
	0.78
	0.89
	0.91

	    SDT_F3  
	0.77
	0.81
	0.76

	 CRS      BY
	
	
	

	    SDT_C1  
	0.91
	0.93
	0.9

	    SDT_C2  
	0.78
	0.82
	0.87

	    SDT_C3  
	0.88
	0.89
	0.87

	 TRS      BY
	
	
	

	    SDT_T1  
	0.83
	0.86
	0.88

	    SDT_T2  
	0.84
	0.89
	0.9

	    SDT_T3  
	0.83
	0.87
	0.87

	 PEERRS   BY
	
	

	    PEER_1  
	0.84
	0.83
	0.81

	    PEER_3  
	0.77
	0.8
	0.78

	    PEER_4  
	0.76
	0.79
	0.83

	 CIAI     BY
	
	
	

	    CI_AI1  
	0.76
	0.81
	0.87

	    CI_AI2  
	0.78
	0.86
	0.85

	    CI_AI3  
	0.45
	0.55
	0.69

	 CICI     BY
	
	
	

	    CI_CI1  
	0.32
	0.3
	0.61



Note. Target loadings for the items designed to measure each of the 15 Well-being factors based on the non-Set Full-ESEM , Set-ESEM, and CFA. For CFA non-target loadings are all constrained to be zero. In the full-ESEM there are 670 non-target loadings (i.e., 15 factors x 50 items less 50 target loadings), whereas in the SET-ESEM there are 76 non-target loadings (the remaining 594 non-target loadings are constrained to be zero (see Figure 4 in main text)


Section 3.B: Factor Correlations Among 15 Well-Being Factors (Study3)
	CFA
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 SSC    
	1.00
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 SSA     
	0.81
	1.00
	
	
	
	
	
	
	
	
	
	
	
	
	

	 HOPE    
	0.65
	0.62
	1.00
	
	
	
	
	
	
	
	
	
	
	
	

	 POSEM   
	0.62
	0.57
	0.81
	1.00
	
	
	
	
	
	
	
	
	
	
	

	 SEW     
	0.56
	0.56
	0.81
	0.81
	1.00
	
	
	
	
	
	
	
	
	
	

	 SEP     
	0.69
	0.78
	0.75
	0.72
	0.61
	1.00
	
	
	
	
	
	
	
	
	

	 ABUOY   
	0.51
	0.54
	0.62
	0.63
	0.65
	0.81
	1.00
	
	
	
	
	
	
	
	

	 HEAL    
	0.56
	0.56
	0.69
	0.62
	0.53
	0.62
	0.65
	1.00
	
	
	
	
	
	
	

	 VIT     
	0.57
	0.58
	0.78
	0.74
	0.61
	0.72
	0.65
	0.81
	1.00
	
	
	
	
	
	

	 FRS     
	0.44
	0.42
	0.65
	0.65
	0.46
	0.66
	0.59
	0.55
	0.62
	1.00
	
	
	
	
	

	 CRS     
	0.48
	0.39
	0.59
	0.60
	0.49
	0.58
	0.54
	0.53
	0.57
	0.64
	1.00
	
	
	
	

	 TRS     
	0.61
	0.49
	0.63
	0.63
	0.49
	0.57
	0.57
	0.55
	0.57
	0.55
	0.61
	1.00
	
	
	

	 PEERRS  
	0.43
	0.32
	0.45
	0.46
	0.41
	0.40
	0.44
	0.40
	0.39
	0.34
	0.45
	0.49
	1.00
	
	

	 CIAI    
	0.38
	0.32
	0.47
	0.41
	0.41
	0.45
	0.40
	0.41
	0.42
	0.45
	0.50
	0.39
	0.34
	1.00
	

	 CICI    
	0.39
	0.36
	0.44
	0.38
	0.41
	0.40
	0.42
	0.40
	0.37
	0.40
	0.49
	0.38
	0.36
	0.80
	1.00

	
	8.70
	7.50
	8.69
	7.65
	6.06
	6.20
	5.26
	4.65
	3.94
	3.37
	3.04
	2.26
	1.70
	1.80
	1.00

	Full ESEM
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 SSC    
	1.00
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 SSA     
	0.68
	1.00
	
	
	
	
	
	
	
	
	
	
	
	
	

	 HOPE    
	0.52
	0.41
	1.00
	
	
	
	
	
	
	
	
	
	
	
	

	 POSEM   
	0.50
	0.35
	0.65
	1.00
	
	
	
	
	
	
	
	
	
	
	

	 SEW     
	0.42
	0.35
	0.65
	0.69
	1.00
	
	
	
	
	
	
	
	
	
	

	 SEP     
	0.55
	0.60
	0.58
	0.54
	0.68
	1.00
	
	
	
	
	
	
	
	
	

	 ABUOY   
	0.41
	0.37
	0.47
	0.54
	0.57
	0.47
	1.00
	
	
	
	
	
	
	
	

	 HEAL    
	0.42
	0.37
	0.51
	0.43
	0.44
	0.43
	0.37
	1.00
	
	
	
	
	
	
	

	 VIT     
	0.46
	0.40
	0.65
	0.60
	0.61
	0.48
	0.52
	0.69
	1.00
	
	
	
	
	
	

	 FRS     
	0.32
	0.24
	0.50
	0.52
	0.55
	0.45
	0.36
	0.39
	0.50
	1.00
	
	
	
	
	

	 CRS     
	0.41
	0.25
	0.49
	0.52
	0.50
	0.42
	0.43
	0.41
	0.51
	0.56
	1.00
	
	
	
	

	 TRS     
	0.53
	0.33
	0.53
	0.52
	0.47
	0.44
	0.42
	0.42
	0.49
	0.46
	0.56
	1.00
	
	
	

	 PEERRS  
	0.36
	0.17
	0.33
	0.37
	0.32
	0.34
	0.37
	0.29
	0.31
	0.25
	0.41
	0.43
	1.00
	
	

	 CIAI    
	0.21
	0.10
	0.27
	0.20
	0.24
	0.19
	0.25
	0.17
	0.23
	0.27
	0.35
	0.23
	0.23
	1.00
	

	 CICI    
	0.28
	0.24
	0.32
	0.28
	0.30
	0.29
	0.34
	0.28
	0.28
	0.29
	0.45
	0.32
	0.32
	0.65
	1.00

	
	7.06
	5.18
	6.95
	6.21
	5.67
	4.51
	4.05
	3.65
	3.33
	2.82
	2.77
	1.98
	1.55
	1.65
	1.00

	Set-ESEM
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 SSC    
	1.00
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 SSA     
	0.80
	1.00
	
	
	
	
	
	
	
	
	
	
	
	
	

	 HOPE    
	0.65
	0.62
	1.00
	
	
	
	
	
	
	
	
	
	
	
	

	 POSEM   
	0.61
	0.55
	0.77
	1.00
	
	
	
	
	
	
	
	
	
	
	

	 SEW     
	0.55
	0.55
	0.78
	0.80
	1.00
	
	
	
	
	
	
	
	
	
	

	 SEP     
	0.69
	0.78
	0.74
	0.69
	0.76
	1.00
	
	
	
	
	
	
	
	
	

	 ABUOY   
	0.49
	0.51
	0.58
	0.63
	0.63
	0.55
	1.00
	
	
	
	
	
	
	
	

	 HEAL    
	0.56
	0.55
	0.69
	0.61
	0.61
	0.64
	0.51
	1.00
	
	
	
	
	
	
	

	 VIT     
	0.56
	0.56
	0.76
	0.72
	0.70
	0.63
	0.59
	0.80
	1.00
	
	
	
	
	
	

	 FRS     
	0.43
	0.41
	0.63
	0.64
	0.65
	0.58
	0.44
	0.54
	0.61
	1.00
	
	
	
	
	

	 CRS     
	0.48
	0.39
	0.58
	0.59
	0.57
	0.52
	0.48
	0.52
	0.57
	0.63
	1.00
	
	
	
	

	 TRS     
	0.61
	0.48
	0.62
	0.62
	0.56
	0.56
	0.48
	0.55
	0.56
	0.53
	0.61
	1.00
	
	
	

	 PEERRS  
	0.43
	0.31
	0.43
	0.45
	0.40
	0.42
	0.41
	0.40
	0.38
	0.33
	0.44
	0.48
	1.00
	
	




Note. Factor Correlations among the 15 Well-being factors based on the non-Set Full-ESEM , Set-ESEM, and CFA (see Figure 4)




Section 3.C: Higher-Order Factors Relating the 15 First-order Factors to Second-order and Third-order (Global) Well-being factors. Comparison of solutions with and without Constraints of Residuals 
	
	
	Original (no constraints on residuals)
	With constraints on residuals

	            
	             
	CFA
	
	Set-ESEM
	Full-ESEM
	CFA
	
	Set-ESEM
	FullESEM

	
	
	Est
	SE
	Est
	SE
	Est
	SE
	Est
	SE
	Est
	SE
	Est
	`SE

	Academic
	   Ssc     
	.92
	.02
	.90
	.03
	.99
	.05
	.92
	.02
	.90
	.03
	.99
	.05

	
	   Ssa     
	.89
	.02
	.86
	.03
	.60
	.05
	.89
	.02
	.86
	.03
	.60
	.05

	Psychological
	   Hope    
	.91
	.01
	.88
	.03
	.86
	.04
	.92
	.01
	.92
	.02
	.86
	.04

	
	   Posem   
	.89
	.02
	.81
	.03
	.80
	.03
	.89
	.02
	.83
	.03
	.81
	.02

	Self-Belief
	   Sew     
	.91
	.01
	.87
	.02
	.83
	.03
	.91
	.01
	.87
	.02
	.83
	.03

	
	   Sep     
	.88
	.02
	.86
	.02
	.75
	.05
	.88
	.02
	.86
	.02
	.74
	.05

	
	   Buoy   
	.72
	.03
	.70
	.03
	.71
	.04
	.72
	.03
	.70
	.03
	.71
	.04

	Physical
	   Vit     
	.95
	.02
	.93
	.02
	.99
	.04
	.95
	.02
	.93
	.02
	.99
	.04

	
	   Heal    
	.85
	.02
	.88
	.02
	.69
	.04
	.86
	.02
	.88
	.02
	.68
	.04

	Relationships
	   Frs     
	.77
	.03
	.78
	.03
	.72
	.04
	.77
	.03
	.78
	.03
	.72
	.04

	
	   Crs     
	.77
	.03
	.75
	.03
	.75
	.03
	.77
	.03
	.75
	.03
	.75
	.03

	
	   Trs     
	.77
	.03
	.76
	.03
	.75
	.03
	.77
	.03
	.76
	.03
	.75
	.03

	
	   Peers  
	.56
	.03
	.59
	.04
	.50
	.04
	.56
	.03
	.59
	.04
	.50
	.04

	Community
	   Ciai    
	.92
	.03
	.87
	.04
	.38
	.09
	.92
	.03
	.87
	.04
	.48
	.04

	
	  Cici     
	.87
	.03
	.79
	.06
	1.39
	.38
	.87
	.03
	.79
	.06
	1.00
	.00

	Mean
	
	.84
	.02
	.82
	.03
	.78
	.06
	.84
	.02
	.82
	.03
	.76
	.03

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Global
	   Acad    
	.78
	.02
	.79
	.03
	.66
	.04
	.78
	.02
	.79
	.03
	.66
	.04

	
	   Psychwb 
	1.00
	.01
	1.02
	.02
	1.00
	.03
	.99
	.00
	1.00
	.00
	1.00
	.00

	
	   Self    
	.96
	.01
	.98
	.01
	.95
	.02
	.96
	.01
	.98
	.01
	.95
	.02

	
	   Phwb    
	.87
	.02
	.87
	.02
	.82
	.03
	.87
	.02
	.87
	.02
	.82
	.03

	
	   Rs      
	.91
	.02
	.91
	.02
	.90
	.02
	.91
	.02
	.91
	.02
	.91
	.02

	
	   Ci      
	.57
	.03
	.59
	.03
	.30
	.07
	.57
	.03
	.59
	.03
	.40
	.03

	Mean
	
	.85
	.02
	.86
	.02
	.77
	.04
	.85
	.02
	.86
	.02
	.79
	.02


Note.  SE = standard error. Results from the completely standardized higher-order factor analyses relating the 15 first-order well-being factors to higher-order factors based on the CFA, Set-ESEM, and Full-ESEM solutions (also see Section 4 for syntax). In the second set of analyses, residual variance were all constrained to be non-negative ( >.01). 


Section 3.C (continued)
In the initial analyses, none of these higher-order factor loadings was completely proper in that some of the standardized factor loadings were greater than 1.0, resulting in negative estimates of residual variances. Particularly for the Full-ESEM, the standardized second-order factor loading for the one of the factors is highly is problematic (1.35) with an extremely large standard error relative to those of the of the other factor loadings. 
	The problem with the higher-order factor structure is due in part, to fact that several of the second-order factors are defined by only two first-order factors and two-indicator factors are notoriously unstable. To address this problem, we re-configured the model using the Mplus "model constraint" function (Muthén & Muthén, 2015) to constrain all residual variance components to be greater than a small positive value (.01; see Mplus syntax in Section 3.D). With this added constraint all three solutions were fully proper, and standard errors were systematically smaller (See above for solutions within and without constrained residuals). These constraints had almost no effects on goodness of fit (Table 3.1), the higher-order factor loadings were nearly the same for the CFA and Set-ESEM solutions, and differed only slightly for the Full-ESEM solutions. Indeed, the pattern of results was even more similar across the three solutions when residuals were constrained to be non-negative. The imposition of these constraints also demonstrates that this feature of the traditional CFA model is also easily implemented in Set- and Full-ESEMs. We note that it would have also been possible to merely fix the offending parameters to zero or a small non-negative value. However, this model would have changed the df and distorted measures of fit. 






Section 3D: Mplus Syntax used to test Model B2* in Table 3.1 (also see parameter estimates in Table 3.3)

     TITLE: Higher-Order Set-ESEM Model Using EwC
          DATA: FILE IS
         GAT Primary+Secondary WB Mplus (R18OCT2017l).txt;

        MISSING are all(-999);

          USEVARIABLES ARE
          SDQ_SS1 SDQ_SS2 SDQ_SS3
          SDQ_SS4 SDQ_SS5 SDQ_SS6
          ABUOY_1 ABUOY_2 ABUOY_3  ABUOY_4
          SDT_F1 SDT_F2 SDT_F3 ! SDT_F4
          SDT_C1 SDT_C2 SDT_C3 ! SDT_C4
          SDT_T1 SDT_T2 SDT_T3 !SDT_T4
          PEER_1 PEER_3 PEER_4 ! PEER_2
         HEAL_2 HEAL_3 HEAL_4
         VIT_1 VIT_2 VIT_3 VIT_4
         HOP_1  HOP_2 WB_1 HOP_3
         P_PA_1 P_PA_2 P_PA_3
         SDQ_SE1 SDQ_SE2 SDQ_SE3 SDQ_SE4
         SDQ_SE5 SDQ_SE6 SDQ_SE7 SDQ_SE8
        CI_AI1 CI_AI2 CI_AI3
       CI_CI1 CI_CI2 CI_CI3 ;

    ANALYSIS:  ESTIMATOR = MLR; ROTATION = TARGET;

! Note Based on the EwC transformation of the Set-ESEM solution into an 
! Equivalent CFA model, factor loadings (FL) from the Set-ESEM solution are 
! Used as starting values for the EwC (CFA) model with necessary constraints
! for the model to be identified and equivalent to the Set-ESEM model (see earlier
! discussion of EwC)

       MODEL:
            ssc BY sdq_ss1@0.89437    	(FL1) ;
            ssc BY sdq_ss20.74715    	(FL2) ;
            ssc BY sdq_ss30.94525    	(FL3) ;
            ssc BY sdq_ss4@0.17525   	(FL4) ;
            ssc BY sdq_ss5-0.08329   	(FL5) ;
            ssc BY sdq_ss6-0.03272   	(FL6) ;
            ssa BY sdq_ss4@0.64344    	(FL7) ;
            ssa BY sdq_ss50.87275    	(FL8) ;
            ssa BY sdq_ss60.86559    	(FL9) ;
            ssa BY sdq_ss1@-0.01772   	(FL10) ;
            ssa BY sdq_ss20.11387   	(FL11) ;
            ssa BY sdq_ss3-0.04111   	(FL12) ;

            hope BY hop_1@0.69191    	(FL13) ;
            hope BY hop_20.68247    	(FL14) ;
            hope BY wb_10.62609    	(FL15) ;
            hope BY hop_30.72532    	(FL16) ;
            hope BY p_pa_1@0.18533   	(FL17) ;
            hope BY p_pa_2-0.13731   	(FL18) ;
            hope BY p_pa_30.08180   	(FL19) ;
            posem BY p_pa_1@0.70669  	(FL20) ;
            posem BY p_pa_21.03121  	(FL21) ;
            posem BY p_pa_30.73702  	(FL22) ;
            posem BY hop_1@-0.12387   	(FL23) ;
            posem BY hop_2-0.00859   	(FL24) ;
            posem BY wb_10.22808   	(FL25) ;
            posem BY hop_3-0.00991   	(FL26) ;

            sew BY sdq_se10.33969    	(FL27) ;
            sew BY sdq_se20.86287    	(FL28) ;
            sew BY sdq_se30.80145    	(FL29) ;
            sew BY sdq_se4@0.92031    	(FL30) ;
            sew BY sdq_se50.21112   	(FL31) ;
            sew BY sdq_se60.09340   	(FL32) ;
            sew BY sdq_se7@0.03030   	(FL33) ;
            sew BY sdq_se8-0.02087   	(FL34) ;
            sew BY abuoy_1-0.10197   	(FL35) ;
            sew BY abuoy_20.08725   	(FL36) ;
            sew BY abuoy_3-0.03220   	(FL37) ;
            sew BY abuoy_4@0.04245   	(FL38) ;
            sep BY sdq_se50.50215    	(FL39) ;
            sep BY sdq_se60.60357    	(FL40) ;
            sep BY sdq_se7@0.78927    	(FL41) ;
            sep BY sdq_se80.78135    	(FL42) ;
            sep BY sdq_se10.37345   	(FL43) ;
            sep BY sdq_se2-0.01016   	(FL44) ;
            sep BY sdq_se30.00305   	(FL45) ;
            sep BY sdq_se4@-0.05735   	(FL46) ;
            sep BY abuoy_1-0.02719   	(FL47) ;
            sep BY abuoy_2-0.05084   	(FL48) ;
            sep BY abuoy_30.24531   	(FL49) ;
            sep BY abuoy_4@-0.12098   	(FL50) ;
            abuoy BY abuoy_10.79098  	(FL51) ;
            abuoy BY abuoy_20.70815  	(FL52) ;
            abuoy BY abuoy_30.57294  	(FL53) ;
            abuoy BY abuoy_4@0.82479  	(FL54) ;
            abuoy BY sdq_se10.06863 	(FL55) ;
            abuoy BY sdq_se2-0.00395 	(FL56) ;
            abuoy BY sdq_se30.03945 	(FL57) ;
            abuoy BY sdq_se4@-0.02011 	(FL58) ;
            abuoy BY sdq_se50.05501 	(FL59) ;
            abuoy BY sdq_se60.04899 	(FL60) ;
            abuoy BY sdq_se7@-0.02715 	(FL61) ;
            abuoy BY sdq_se80.07544 	(FL62) ;

            heal BY heal_20.64543    	(FL63) ;
            heal BY heal_3@0.95851    	(FL64) ;
            heal BY heal_40.60358    	(FL65) ;
            heal BY vit_10.27842   	(FL66) ;
            heal BY vit_20.01666   	(FL67) ;
            heal BY vit_30.19112   	(FL68) ;
            heal BY vit_4@-0.18869   	(FL69) ;
            vit BY vit_10.53900    	(FL70) ;
            vit BY vit_20.80707    	(FL71) ;
            vit BY vit_30.37261    	(FL72) ;
            vit BY vit_4@1.02402    	(FL73) ;
            vit BY heal_20.19130   	(FL74) ;
            vit BY heal_3@-0.08230   	(FL75) ;
            vit BY heal_40.11115   	(FL76) ;

            frs BY sdt_f1@0.85252    	(FL77) ;
            frs BY sdt_f20.82254    	(FL78) ;
            frs BY sdt_f30.78268    	(FL79) ;
            frs BY sdt_c1@-0.00578   	(FL80) ;
            frs BY sdt_c20.03655   	(FL81) ;
            frs BY sdt_c3-0.02151   	(FL82) ;
            frs BY sdt_t1@0.01665   	(FL83) ;
            frs BY sdt_t2-0.01135   	(FL84) ;
            frs BY sdt_t30.00190   	(FL85) ;
            frs BY peer_10.01407   	(FL86) ;
            frs BY peer_30.05527   	(FL87) ;
            frs BY peer_4@-0.06738   	(FL88) ;
            crs BY sdt_c1@0.90582    	(FL89) ;
            crs BY sdt_c20.79949    	(FL90) ;
            crs BY sdt_c30.85553    	(FL91) ;
            crs BY sdt_f1@-0.00396   	(FL92) ;
            crs BY sdt_f20.04585   	(FL93) ;
            crs BY sdt_f3-0.03292   	(FL94) ;
            crs BY sdt_t1@0.01399   	(FL95) ;
            crs BY sdt_t20.00697   	(FL96) ;
            crs BY sdt_t3-0.01949   	(FL97) ;
            crs BY peer_1-0.01889   	(FL98) ;
            crs BY peer_3-0.01030   	(FL99) ;
            crs BY peer_4@0.02735   	(FL100) ;
            trs BY sdt_t1@0.83361    	(FL101) ;
            trs BY sdt_t20.89508    	(FL102) ;
            trs BY sdt_t30.84957    	(FL103) ;
            trs BY sdt_f1@0.03592   	(FL104) ;
            trs BY sdt_f2-0.01457   	(FL105) ;
            trs BY sdt_f3-0.01365   	(FL106) ;
            trs BY sdt_c1@0.01069   	(FL107) ;
            trs BY sdt_c2-0.02689   	(FL108) ;
            trs BY sdt_c30.01624   	(FL109) ;
            trs BY peer_1-0.00248   	(FL110) ;
            trs BY peer_3-0.01610   	(FL111) ;
            trs BY peer_4@0.02316   	(FL112) ;
            peers BY peer_10.79125  	(FL113) ;
            peers BY peer_30.77754  	(FL114) ;
            peers BY peer_4@0.81684  	(FL115) ;
            peers BY sdt_f1@-0.01120 	(FL116) ;
            peers BY sdt_f20.03188 	(FL117) ;
            peers BY sdt_f3-0.02023 	(FL118) ;
            peers BY sdt_c1@-0.00782 	(FL119) ;
            peers BY sdt_c20.03807 	(FL120) ;
            peers BY sdt_c3-0.02794 	(FL121) ;
            peers BY sdt_t1@0.02831 	(FL122) ;
            peers BY sdt_t2-0.01202 	(FL123) ;
            peers BY sdt_t3-0.01062 	(FL124) ;

            ciai BY ci_ai1@0.81262  	(FL125) ;
            ciai BY ci_ai20.79772    	(FL126) ;
            ciai BY ci_ai30.55366    	(FL127) ;
            ciai BY ci_ci10.25166   	(FL128) ;
            ciai BY ci_ci2@-0.20783   	(FL129) ;
            ciai BY ci_ci30.23710   	(FL130) ;
            cici BY ci_ci10.37716    	(FL131) ;
            cici BY ci_ci2@1.06847    	(FL132) ;
            cici BY ci_ci30.59961    	(FL133) ;
            cici BY ci_ai1@0.03387   	(FL134) ;
            cici BY ci_ai20.01703   	(FL135) ;
            cici BY ci_ai30.13889   	(FL136) ;

           SSC-cici WITH  SSC-cici@0;

          acad by SSc ssa ;
          psychwb by hope posem ;
          SELF by sew  sep abuoy;
          Phwb by  vit heal  ;
          rs by frs crs trs peerRS;
          CI by CIAI CICI;
          gwb by  acad psychwb SELF phwb rs CI;

ssc-cici (resid1-resid15);
     acad psychwb SELF phwb rs CI (resid16-resid21);
! Note: Residuals for all first- and second-order factors are constrained
! to be non-negative.
model constraint:
  resid1 >  .01; resid2 >  .01; resid3 >  .01;  resid4 >  .01; resid5 >  .01;
  resid6 >  .01; resid7 >  .01; resid8 >  .01; resid9 >  .01; resid10  >  .01; 
  resid11  >  .01; resid12  >  .01; resid13  >  .01; resid14  >  .01; 
  resid15  >  .01; resid16  >  .01; resid17  >  .01; resid18  >  .01; resid19  >  .01; 
  resid20  >  .01; resid21  >  .01;  
OUTPUT: sampstat stdyx  TECH1 tech4 sval;!ODINDICES (ALL);


Section 4. Supplemental Materials Based on the Marsh, Nagengast et al. (2011) Study 
In Section 4 we present in greater detail the rationale and results of our reanalysis of the Marsh, Nagengast et al. (2011), but the reader should refer to the original article for further detail – particularly in relation to the substantive implications of the research. Briefly, the 6-factor Adolescent Peer Relations Instrument (APRI) was designed to measure three bully (verbal, social, physical) factors and three victim (verbal, social, physical) factors. Although there is good theoretical support for these six factors, previous research had not identified well differentiated facets of these constructs that met standards of good measurement: goodness-of-fit, measurement invariance, lack of differential item functioning, and well differentiated factors that were not so highly correlated as to detract from their discriminant validity and substantive usefulness in school settings. The reader is referred to the original study for more detail in relation to the substantive issues. As described in the main text, Marsh, Nagengast et al. did not specifically refer to their ESEM as Set-ESEM and did not actually consider a Full-ESEM. We begin with a summary of the parameter estimates based on the three models: CFA (see Figure 5A; also see  figure 1A in main text), Set-ESEM (see Figure 5B, also see Figure 1B in main text), Full-ESEM (see Figure 5C, also see Figure 1C in main text). The goodness-of-fit values for these models are presented in the main text (Table 4C in Supplemental Materials).
Here, however, we focus on the Set-ESEM introduced in this study as a particularly heuristic application. More specifically, Marsh, Nagengast et al. (2011) used Set-ESEM, noting the importance of separating the three bully factors from the three victim factors. This was accomplished by treating the three bully factors as one set of Set-ESEM factors and the three victim factors as a second set of Set-ESEM factors. Thus, in their Set-ESEM, items designed to measure the three bully factors were allowed to cross-load on each of the bully factors, and the items designed to measure the three victim factors were allowed to cross-load in the three victim factors. However, the items from the bully factors were not allowed to load on the victim factors and items from the victim factors were not allowed to load in the bully factors.  We begin by juxtaposing the CFA (Figure 5A), Set-ESEM (Figure 5B), and (non-Set) Full-ESEM (Figure 5C) models. 
13-Model Taxonomy of Invariance. 
Marsh et al. (2009) proposed a taxonomy of 13 ESEMs models (see Section 4.B) designed to test measurement invariance that integrates traditional CFA and IRT approaches that can easily be extended to longitudinal invariance (also see Marsh, et al., 2014). This demonstrates the flexibility of ESEM to incorporate many features typically associated with CFA that are not easily accommodated by traditional EFA models. Our reanalysis of the Marsh, Nagengast et al. (2011) study emphasizes how this taxonomy is easily extended to include Set-ESEM based on longitudinal data (invariance over time) or multiple groups (invariance over gender). 

Multitrait-Multimethod (MTMM) Analysis of Convergent and Discriminant Validity
The multitrait-multimethod (MTMM; Campbell & Fiske, 1959) design is used widely to assess convergent and discriminant validity, and is a standard criterion for evaluating psychological instruments. The MTMM design provides a particularly strong approach to evaluating stability of responses to a multidimensional instrument, as emphasized by Campbell and O’Connell (1967) who specifically operationalized the multiple methods in their MTMM paradigm as multiple occasions. Marsh (Marsh, Ellis et al., 2005; Marsh, Martin & Jackson, 2010) also recommended this approach to evaluate support for the convergent and discriminant validity in relation to temporal stability over time. In this regard, convergent validities refer to stability over time (i.e., test-retest correlations) and the "method" factor is time. Although the design might be considered weak in relation to providing support for convergence based on maximally different methods (e.g., multiple respondents – self, peer, teacher; multiple instruments designed to measure the same traits), it provides a "best case" test in relation to discriminant validity. Thus, if there is not support for discriminant validity in relation to convergent validity based on time as the method factor, support for discriminant validity is unlikely to be found with other, more demanding tests of convergent validity.
Although Campbell and Fiske’s original guidelines are still widely used to evaluate MTMM data, important problems with their guidelines are well known (see reviews by Marsh, 1988, 1993; Marsh & Grayson, 1995). Ironically, even in highly sophisticated CFA approaches to MTMM data, a single scale score—often an average of multiple items—is typically used to represent each trait–method combination. Marsh (1993; Marsh & Hocevar, 1988), however, argued that it is stronger to incorporate the multiple indicators explicitly into the MTMM design. When multiple indicators are used to represent each scale, CFAs and ESEMs at the item level results in a MTMM matrix of latent correlations, thereby eliminating many of the objections to the Campbell–Fiske guidelines. We argue that because our analysis starts with a latent correlation matrix in which factors are represented by multiple factors, our approach overcomes most of the limitations widely attributed to the original Campbell-Fiske guidelines. For this reason, the actual summary of the MTMM results based on the latent MTMM correlation matrix better represents the logic and intuitive appeal of the original Campbell-Fiske guidelines than do most current approaches to MTMM data. Marsh, Nagengast et al. (2011) applied this approach with both CFA and Set-ESEM to test the hypothesis that support for discriminant validity is stronger for Set-ESEM than CFA. 
In the text we provide only a superficial coverage of our extension of our MTMM analysis. In particular, the application of the MTMM logic here is somewhat more complicated than in the typical MTMM design has two facets (traits and methods). However, here there is a three facet design: trait domain (bully and victim); trait subdomain (verbal, social, and physical); and method (represented by the three occasions). Thus, there are actually are two distinct “instruments” (bully and victim), each containing verbal, social, and physical subdomains. However, for example, the physical bullying factor is clearly a different construct than the physical victimization factor. Also, whilst the three time waves are considered as method factors, it is reasonable to assume that relations between matching factors should be higher for adjacent time points (e.g., physical-bullying at T1 and T2, or at T2 and T3) than at non-adjacent time points (e.g., physical-bullying at T1 and T3). Consistent with these various distinctions, Marsh, Nagengast et al. (2011) classified correlations into 11 categories (rather than the four used by Campbell and Fiske) based on various combinations of traits, time (near or far comparisons), and instruments (same or different) as depicted in Section 4.C and 4.D.
Consistent with results from the Set-ESEM models based on a single wave of data, the fit of the CFA model positing strong factorial invariance over time (factor loadings and intercepts invariant) was reasonable (CFI=.937, TLI=.935, RMSEA = .020) but not as good as the corresponding Set-ESEM model (CFI=.961, TLI=.959, RMSEA = .016). The critical issue here is to test the a priori prediction that support for the discriminant validity for the CFA model is substantially poorer than for the Set-ESEM model. Because we had already shown that the traditional Full-ESEM solution confounded bully and trait factors that was the critical distinction in the MTMM analyses, this model was not evaluated as part of the MTMM analyses
For both the CFA and Set-ESEM results there is good support for convergent validity (stability over time), particularly for adjacent time points. Although support for convergent validity is slightly higher for the CFA model than the corresponding Set-ESEM model (.624 vs. .616 for “near” convergent validities in category a, .490 vs. .481 for “far” convergent validities in category b), these differences are very small.
In the most demanding test of discriminant validity in the MTMM approach, convergent validities are compared to correlations among different traits measured with the same method (or same occasion and same instrument here). Whilst there is reasonable support for the discriminant validity of Set-ESEM factors (mean convergent validity in category a = .616, compared to mean comparison correlations in category c = .525), there is a complete lack of support for the discriminant validity based on the CFA factors (mean convergent validity in category a = .624, compared to mean comparison correlation in category c = .818). 
Support for discriminant validity of the APRI factors varies depending upon whether comparison correlations are based on different factors collected at the same time (category c), adjacent “near” times (category d), or non-adjacent “far” times (category e), and whether convergent validities are based on convergence of same traits administered in adjacent “near” times or non-adjacent “far” times. However, across all combinations of these convergent validities and comparison correlations, the support for the discriminant validity is systematically stronger for Set-ESEM factors than CFA factors (Section 4.C and 4.D). In summary, these results support the convergent and discriminant validity of the Set-ESEM factors and provide clear evidence for our claim that Set-ESEM factors are substantially better than the corresponding CFA factors in terms of discriminant validity.

Construct Validity: Relation to other Constructs. 
In order to evaluate the construct validity of the APRI responses, Marsh, Nagengast et al. (2011) related the six Set-ESEM factors to a diverse set of other psycho-social variables specifically designed to address key questions about the nature of bullying. Results (Table 4.2 in main text) and a brief summary of their interpretation are presented in the main text (see Marsh, Nagengast et al., 2011, for further detail). In Section 4.F we present a more detailed description of the other psycho-social variables used to validate the APRI.  





[image: ]
Figure 4.1 Study 4. Path Diagrams of CFA (A), Set-ESEM (B), and Full-ESEM (C). In each of the models there are three bully factors (physical, social, and verbal) and three victim factors (physical, social, and verbal). In the CFA model, each item loads on one and only one factor. In the Set-ESEM model, all bully items load on the three bully factors and all victim items load on the three victim factor. In the Full-ESEM model, all item load on all factors. Note that path diagram figures are only intended to be illustrative as providing detailed labels would make the diagrams too large to present.

A
B

















Figure 4.2 Study 4. Path Diagrams of CFA (A) and Set-ESEM (B) models of longitudinal data. These longitudinal models build on the models for a single wave (Figure 4.1). In each of the models there are three bully factors (physical, social, and verbal) and three victim factors (physical, social, and verbal) measured across three waves. In the CFA model, each item loads on only one factor. In the Set-ESEM model, all bully items load on the three bully factors in the same wave and all victim items load on the three victim factor in the same wave. However, items from one wave do not cross-load on factors from different waves. Note that path diagram figures are only intended to be illustrative as providing detailed labels would make the diagrams too large to present. 

41


Set-ESEM 54

	

Section 4.A: Factor Structures: Set-ESEM, CFA, and non-Set Full-ESEM 
SET-ESEM factor solution					ICM–CFA solution			Full-ESEM factor solution (no SET)			
Factor loading						Factor loading			Factor loading			
Bully 			Victim 								Bully 			Victim 		
Factor/model 	Verbal	 Social	 Physical	 Verbal	 Social	 Physical	 R2			R2		Verbal	 Social	 Physical	 Verbal	 Social	 Physical	 R2
Bully–verbal
BV1		  .66	  .03	  .14				  .57		  .74	  .54		.65	.01	.15	.04	.02	.02	.57
BV2		  .64	  .06	  .21				  .64		  .80	  .63		.66	.04	.19	.00	.04	.02	.65
BV3		  .70	  .11	  .04				  .60		  .75	  .56		.70	.10	.03	.04	.00	-.01	.60
BV4		  .48	  .08	  .31				  .55		  .74	  .55		.47	.09	.31	.08	-.02	.00	.55
BV5		  .43	  .30	  .14				  .50		  .70	  .49		.44	.31	.11	.01	-.02	.03	.50
BV6		  .69	  .16	  .07				  .67		  .81	  .66		.67	.17	.07	.08	-.02	.01	.66
Bully–social							
BS1		  .08	  .59	  .08				  .46		  .67	  .45		.09	.59	.08	.01	.01	.01	.45
BS2		  .05	  .53	  .23				  .48		  .70	  .49		.05	.53	.23	-.01	.06	-.01	.49
BS3		  .04	  .58	  .08				  .40		  .62	  .38		.04	.58	.07	.01	-.03	.02	.40
BS4		  .04	  .72	  .01				  .55		  .70	  .50		.04	.70	.03	.00	.00	.02	.54
BS5		  .14	  .51	  .11				  .41		  .66	  .43		.14	.49	.12	-.03	.07	-.01	.41
BS6		  .20	  .46	  .06				  .37		  .61	  .38		.18	.44	.09	.03	.06	-.07	.36
Bully–physical							
BP1		  .25	  .02	  .56				  .53		  .72	  .53		.26	.03	.53	-.01	.00	.09	.54
BP2		  .20	  .19	  .45				  .48		  .71	  .50		.21	.20	.44	-.01	-.01	.03	.49
BP3 		 -.06	  .20	  .56				  .41		  .60	  .36		-.02	.22	.50	-.03	.04	.05	.39
BP4		  .09	  .04	  .68				  .55		  .72	  .52		.12	.08	.61	.03	-.05	.04	.53
BP5		  .19	  .09	  .58				  .56		  .76	  .58		.23	.12	.52	-.03	-.04	.09	.55
BP6		  .09	  .13	  .57				  .49		  .69	  .47		.10	.15	.56	.03	.04	.01	.49
Victim–verbal							
VV1					  .74	  .00	  .14	  .66		  .79	  .61		.01	-.04	.09	.73	.09	.05	.67
VV2					  .65	  .10	  .18	  .67		  .81	  .65		.07	-.05	.10	.62	.21	.08	.67
VV3					  .67	  .20	  .08	  .71		  .84	  .70		.04	.03	.00	.66	.21	.07	.71
VV4					  .59	  .20	  .10	  .61		  .79	  .62		.03	.05	-.05	.59	.16	.14	.61
VV5					  .46	  .28	  .24	  .66		  .81	  .66		.06	.06	-.07	.46	.20	.31	.67
VV6					  .72	  .14	  .08	  .72		  .85	  .72		.06	.02	-.06	.72	.09	.13	.73
Victim–social							
VS1					  .19	  .54	  .09	  .52		  .73	  .53		-.07	-.04	.11	.16	.65	.03	.58
VS2					  .16	  .60	  .01	  .49		  .69	  .47		.03	-.02	.02	.10	.69	-.03	.54
VS3					  .16	  .68	  .05	  .64		  .78	  .61		.00	.05	-.03	.13	.66	.10	.64
VS4					  .06	  .64	  .12	  .56		  .73	  .54		.00	.06	-.05	.04	.60	.18	.55
VS5					  .24	  .42	  .26	  .58		  .76	  .58		.02	.14	-.09	.25	.30	.36	.60
VS6					  .02	  .56	  .28	  .57		  .74	  .55		.04	.05	-.11	.02	.45	.39	.57
Victim–physical							
VP1					  .22 	 -.04	  .66	  .59		  .74	  .55		-.05	-.08	.23	.24	.05	.51	.56
VP2					  .08	  .06	  .71	  .61		  .76	  .58		-.03	-.04	.20	.12	.10	.60	.59
VP3					  .20	  .11	  .57	  .58		  .77	  .59		-.02	.00	.10	.23	.12	.52	.57
VP4					  .03	  .33	  .52	  .58		  .75	  .57		.02	.07	-.01	.05	.23	.58	.60
VP5					  .11	  .15	  .62	  .60		  .78	  .60		.08	.00	.05	.11	.11	.62	.61
VP6					  .07	  .23	  .57	  .57		  .75	  .57		.05	.03	.02	.08	.16	.61	.58
Factor correlations (ICM–CFA above diagonal, ESEM below)								
Bully–verbal 	 1.0	  .72	  .83	  .27	  .14	  .27						1.00						
Bully–social	  .42 	 1.0	  .73	  .17	  .18	  .22						.43	1.00					
Bully–physical	  .53	  .44 	 1.0	  .21	  .13	  .34						.51	.41	1.00				
Victim–verbal	  .27	  .08	  .15 	 1.0	  .84	  .81						.15	.05	.09	1.00			
Victim–social	  .05	  .17	  .01	  .43 	 1.0	  .83						.04	.11	.02	.53	1.00		
Victim–phys	  .22	  .15	  .38	  .51	  .52 	 1.0						.10	.08	.19	.50	.53	1.00	
Note. The exploratory structural equation model (ESEM) solution was based on the 18 items from the bully instrument and 18 items from the victim instrument (see Model TG–ESEM in Section 4C for goodness-of-fit statistics). For both ESEM and independent clusters model–confirmatory factory analysis (ICM–CFA) solutions, all parameter estimates are standardized and a priori target loadings designed to measure each factor are in bold. In order to conserve space, we present the CFA factor loadings in condensed format such that only the target loading relating each item to its a priori factor is presented (as all nontarget loadings are zero). BV = bully–verbal; BS = bully–social; BP = bully–physical; VV = victim–verbal; VS = verbal–social; VP= verbal–physical






Section 4.B
13-Model Taxonomy of Invariance Tests 

	Model
	Parameters Constrained to Be Invariant

	1
	none (configural invariance)

	2
	FL [1] (metric  or weak factorial/measurement invariance)

	3
	FL Uniq  [1, 2]

	4
	FL, FVCV [1, 2]

	5
	FL, Inter [1, 2]  (Scalar or Strong factorial/measurement invariance)

	6
	FL, Uniq, FVCV  [1, 2, 3, 4]

	7
	FL, Uniq, Inter [1, 2, 3, 5] (Strict factorial/measurement invariance)

	8
	FL, FVCV, Inter [1, 2, 4, 5]

	9
	FL, Uniq, FVCV, Inter [1-8]

	10
	FL, Inter, FMn [1, 2, 5] (Latent mean invariance)

	11
	FL, Uniq, Inter, FMn  [1, 2, 3, 5, 7, 10] (Manifest mean invariance)

	12
	FL, FVCV, Inter, FMn  [1, 2, 4, 5, 6, 8, 10]

	13
	FL, Uniq, FVCV, Inter, FMn  [1-12] (complete factorial invariance)



Note. FL= Factor Loadings; FVCV=Factor variance-covariances; Inter = item intercepts; Uniq = item uniquenesses; FMn = Factor Means. Models with latent factor means freely estimated constrain intercepts to be invariant across groups, whilst models where intercepts are free imply that mean differences are a function of intercept differences. Brackets values represent nesting relations in which the estimated parameters of the less general model are a subset of the parameters estimated in the more general model under which it is nested. All models are nested under model 1 (with no invariance constraints) whilst model 13 (complete invariance) is nested under all other models. 




Section 4.C: Goodness-of-Fit Indices for 13 Invariance Models: Multigroup (over gender) and Over Time
Model		 _2 	df 	CFI	 TLI 	Parms 	RMSEA	 _2 	df 	CFI	 TLI 	Parms 	RMSEA	 Invariance  constraints
Total 		group 	analysis—Wave 	1
TG–CFA 	2311 	579 	.943 	.938 	123 	.029 							None
TG–ESEM 	1533 	429 	.964 	.947 	273 	.027 							no SET
TG–ESEM 	1642 	519 	.963 	.955 	183 	.025 							SET
Multiple-group gender invariance—Wave 1	Invariance over Time —Waves 	1–3
MGT–M0							13561 	5337 	.941 	.936 	657 	.019 	None no CUs	
MGG–M1	2212 	1038 	.960 	.952 	366 	.025 	10559 	5229 	.962 	.958 	765 	.016 	None
MGG–M2 	2414 	1128 	.957 	.951 	276 	.025 	10748 	5409 	.962 	.959 	585 	.016 	FL
MGG–M3	4474 	1164 	.888 	.879 	240 	.04 	11487 	5481 	.957 	.955 	513 	.016 	FL, Unq
MGG–M4	3053 	1149 	.936 	.929 	255 	.031 	11490 	5451 	.957 	.954 	543 	.016 	FL, FVCV
MGG–M5	2519 	1158 	.954 	.950 	246 	.026 	10900 	5469 	.961 	.959 	525 	.016 	FL, INT
MGG–M6	5213 	1185 	.864 	.855 	219 	.044 	12281 	5523 	.952 	.949 	471 	.017 	FL, Unq, FVCV
MGG–M7	4604 	1194 	.885 	.878 	210 	.04 	11641 	5541 	.956 	.954 	453 	.016 	FL, Unq, INT
MGG–M8	3161 	1179 	.933 	.928 	225 	.031 	11645 	5511 	.956 	.954 	483 	.017 	FL, FVCV, INT
MGG–M9	5347 	1215 	.860 	.855 	189 	.044 	12438 	5583 	.951 	.949 	411 	.017 	FL, Unq, FVCV, INT
MGG–M10 	2803 	1164 	.945 	.940 	240 	.028 	11099 	5481 	.960 	.958 	513 	.016 	FL, INT, FMn
MGG–M11 	4879 	1200 	.876 	.869 	204 	.042 	11835 	5553 	.955 	.953 	441 	.017 	FL, Unq, INT, FMn
MGG–M12 	3505 	1185 	.922 	.917 	219 	.033 	11820 	5523 	.955 	.953 	471 	.017 	FL, FVCV, INT, FMn
MGG–M13 	5662 	1221 	.850 	.845 	183 	.046 	12609 	5595 	.950 	.948 	399 	.018 	FL, Unq, FVCV, INT, FMn
Note. See Section 4B for a description of the models (M1–M13). CFI = comparative fit index; TLI = Tucker–Lewis index; No. FParm = number of free parameters; RMSEA = root-mean-square error of approximation; TG = total group; CFA = confirmatory factory analysis; ESEM = exploratory structural equation modeling; MMG = multiple-group gender; MGY = multiple-group year; MGT= multiple-group time. For multiple group invariance models, the
parameters constrained to be invariant across the multiple groups (or multiple times for the longitudinal data) are FL = factor loadings; Unq = item uniquenesses; FVCV = factor variance– covariances; INT = item intercepts; FMn = factor means; CWCU = cross-wave-correlated uniquenesses.


Section 4.D: Multi-Trait Multi-Method (MTMM) Matrix of Correlations: set-ESEM above the main diagonal, CFA Below the Main Diagonal (Type of Correlation in parentheses)
     Time 1                           Time 2                           Time 3                         _ 
     Bully           Victim           Bully           Victim           Bully            Victim     _ 	
     BV   BS   BP    VV   VS    VP    BV   BS   BP    VV   VS    VP    BV   BS    BP    VV    VS    VP _ 
Time 1
 BV  1     .47c  .53c  .27f  .05i  .21i  .67a  .34d  .41d  .20g  .06j  .20j  .57b  .26e  .35e  .19h  .07k  .15k
 BS  .73c  1     .48c  .10i  .16f  .18i  .32d  .54a  .32d  .08j  .17g  .16j  .28e  .35b  .25e  .10k  .13h  .14k
 BP  .83c  .73c  1     .16i  .01i  .39f  .36d  .29d  .67a  .11j  .02j  .35g  .30e  .24e  .56b  .14k  .10k  .33h
 VV  .26f  .16i  .21i  1     .53c  .53c  .20g  .09j  .15j  .62a  .33d  .40d  .16h  .07k  .13k  .52b  .26e  .29e
 VS  .15i  .18f  .14i  .84c  1     .40c -.03j  .14g  .04j  .35d  .54a  .38d -.02k  .08h  .03k  .30e  .38b  .27e
 VP  .27i  .22i  .34f  .81c  .83c  1     .15j  .17j  .38g  .38d  .39d  .68a  .16k  .16k  .33h  .33e  .31e  .52b
Time 2
 BV  .67a  .48d  .57d  .20g  .10j  .22j  1     .40c  .51c  .28f  .00i  .22i  .65a  .29d  .38d  .24g  .04j  .16j
 BS  .46d  .57a  .44d  .14j  .15g  .19j  .74c  1     .56c  .12i  .28f  .28i  .28d  .49a  .26d  .13j  .23g  .23j
 BP  .57d  .47d  .67a  .18j  .13j  .31g  .86c  .77c  1     .16i  .12i  .51f  .37d  .33d  .66a  .18j  .16j  .41g
 VV  .21g  .14j  .17j  .64a  .54d  .56d  .29f  .23i  .26i  1     .53c  .56c  .18g  .05j  .12j  .65a  .35d  .36d
 VS  .13j  .18g  .13j  .52d  .59a  .55d  .19i  .29f  .24i  .85c  1     .57c  .00j  .15g  .05j  .34d  .52a  .37d
 VP  .24j  .19j  .30g  .56d  .56d  .68a  .33i  .31i  .44f  .84c .84c  1      .17j  .21j  .37g  .41d  .39d  .62a
Time 3
 BV  .55b  .39e  .47e  .16h  .09k  .20k  .65a  .45d  .56d  .19g .12j  .25j  1      .38c  .48c  .27f  .04i  .19i
 BS  .34e  .38b  .34e  .10k  .11h  .16k  .43d  .51a  .44d  .12j .16g  .21j  .78c  1      .64c  .18i  .42f  .40i
 BP  .46e  .36e  .54b  .15k  .11k  .26h  .54d  .40d  .62a  .17j .14j  .31g  .87c  .82c  1      .22i  .25i  .56f
 VV  .20h  .14k  .20k  .52b  .43e  .46e  .27g  .21j  .26j  .64a .52d  .56d  .35f  .33i  .36i  1      .50c  .57c
 VS  .14k  .15h  .18k  .40e  .45b  .42e  .19j  .25g  .25j  .53d .58a  .56d  .30i  .43f  .38i  .86c  1      .66c
 VP  .21k  .17k  .30h  .41e  .41e  .51b  .28j  .26j  .38g  .53d .51d  .63a  .39i  .43i  .52f  .85c  .89c  1  _
Note. BV=Bully Verbal, BS=Bully Social, BP=Bully Physical, VV=Victim Verbal, VS=Victim Social, VP=Victim Physical. The correlations shaded in grey are convergent validities (correlations between the same trait administered on different occasions when the method is time). Consistent with the design of the analysis, correlations are classified into 11 types represented by the superscripts a – k (see Section 4E for a description).


Section 4.E: Summary of Multitrait Multimethod Correlations (11 categories based on extension to a three-facet design)

	Type Trait Time Instrument 
	Number of correlations
	ESEM
	CFA

	Convergent validities
	
	
	

	A Same Near Same (MtHmMi–near) 
	  
	12
	0.616
	0.624

	B Same Far Same (MtHmMi–far)
	6
	0.481
	0.49

	Total
	
	18
	0.568
	0.578

	Comparison coefficients
	
	
	

	C Different Same Same (HtMmMi)
	18
	0.525
	0.818

	Comparison coefficients
	
	
	

	D Different Near Same (HtHmMi–near) 
	  
	24
	0.351
	0.513

	E Different Far Same (HtHmMi–far)
	36
	0.288
	0.409

	Matching bully and victim traits
	
	

	F Match Same Different (HtMmHi)
	9
	0.351
	0.345

	G Match Near Different (HtHmHi–near)
	12
	0.328
	0.321

	H Match Far Different (HtHmHi–far)  
	   
	6
	0.202
	0.199

	Nonmatching bully and victim traits
	
	

	I Different Same Different (HtMmHi) 
	  
	18
	0.161
	0.271

	J Different Near Different(HtHmHi–near)
	27
	0.133
	0.198

	K Different Far Different (HtHmHi–far)
	  
	12
	0.103
	0.157

	Total 
	
	153
	0.299
	0.397



Note. Each correlation from the extended multitrait multimethod matrix was classified into 11 types depending the trait, method (time), and instrument.  Traits were the same (same trait, same instrument), different, or matching (matching traits from different instruments (e.g., bully–physical vs. victim–physical). Time was the same, near (T1 vs. T2 or T2 vs. T3) or far (T1 vs. T3). Instrument was the same (both bully or both victim) or different (bully vs. victim). MtHmMi–near = mono-trait hetero-method mono-instrument–near time; MtHmMi–far = mono-trait hetero-method mono-instrument– far time; HtMmMi) = hetero-trait mono-method mono-instrument; HtHmMi = hetero-trait hetero-method mono-instrument; HtMmHi = hetero-trait mono-method hetero-instrument; HtHmHi = hetero-trait hetero-method hetero-instrument. 


Section 4.F
Bully and Victim Factors: Relations with Other Constructs
             	 		Bully Factors   		Victim Factors 
           	  		 1    2    3   		 4    5    6  
Bully Factors
1  Verbal   		 1.0          		
2  Social   		 .42 1.0      		
3  Physical 		 .53  .44 1.0 		
Victim Factors
4  Verbal    		 .27  .08  .15 		1.0   
5  Social    		 .05  .17  .01 		 .43 1.0   
6  Physical  		 .22  .15  .38 		 .51  .52  1.0
Participation Factors
7  Active Reinf 		 .45  .48  .52 		 .09  .09  .21
8  Vict Advocate		-.33 -.15 -.19 		 .00  .08 -.06
9  Passive Reinf		 .38  .26  .24 		 .06 -.01  .04
10 Ignore    		-.10 -.05 -.15 		-.03  .04 -.03
Coping Styles Factors
11 Avoidance 		 .11  .17  .10 		 .25  .33  .23
12 Problem Solve		-.13 -.02 -.08 		-.04 -.02 -.01
13 Soc Support		-.15  .03 -.22 		-.03  .02 -.15
Attitudes Factors
14 Pro Bully 		 .49  .39  .47 		 .08  .03  .16
15 Pro Victim  		-.27 -.20 -.34 		 .06  .04 -.07
Locus Of Control Factors
16 Internal  		-.06 -.15 -.18 		-.01 -.07 -.08
17 External  		 .16  .16  .08 		 .22  .26  .24
Anger Management Factors 
18 Control   		-.19 -.12 -.20 		-.11 -.05 -.09
19 Internalize  		 .02  .04 -.06 		 .32  .33  .19
10 Externalize  		 .30  .20  .29 		 .11  .09  .14
Depression 
21 Depression		 .10  .14  .07 		 .38  .40  .26  
Non-Academic Self-Concept Factors
22 Physical  		-.07 -.01  .01 		-.11 -.03 -.02 
23 Appearance 		-.01  .04  .10 		-.13 -.08  .03 
24 Opposite Sex	 	 .12  .09  .12 		-.13 -.12 -.09 
25 Same Sex  		-.07 -.03 -.04 		-.35 -.39 -.32 
26 Parent    		-.22 -.14 -.11 		-.10 -.11 -.07 
27 Honesty   		-.49 -.33 -.36 		-.13 -.06 -.19 
28 Emotional 		 .06 -.07  .10 		-.19 -.24 -.10 
29 Esteem    		-.20 -.09 -.14 		-.11 -.11 -.07 
Academic Self-Concept Factors
30 Math     	 	-.11 -.09 -.09 		-.07 -.09 -.04 
31 Verbal    		-.15 -.10 -.21 		-.06 -.06 -.06 
32 Academic 	 	-.21 -.17 -.23 		-.12 -.13 -.13 
Demographic Variables 
33 Sex       		-.23 -.03 -.38 		-.11  .03 -.30 
34 School Year		 .28  .05  .09 		 .08 -.02  .00 
35 Yr-Sq     		-.14 -.02 -.07 		-.13 -.09 -.09 
36 Sex-Yr    		-.07  .03 -.09 		-.02  .01 -.03 
Note. The first 32 constructs are latent factors (based on multiple indicators, 168 items in total) from an ESEM 
( r ≥ .04 is significant at p <.05). See Supplemental Materials Section 4F for a summary of the constructs related to the bully and victim factors



Section 4.G 
Summary Constructs In Table 2.3 in Main Text (Instrument Reliabilities and Item samples)
APRI Bullying Scales
	Bully Verbal (.89, .90, .92) 6 Items e.g.: Teased them by saying things to them;
Bully Social (.82, .86, .90) 6 Items e.g.: Got my friends to turn against a student; 
	Bully Physical (.85, .87, .90) 6 Items e.g.: Got into a physical fight with a student because I didn't like them 
APRI Victimization (Target of Bullying) Scales
	Victim Verbal (.92, .92, .93); 6 Items e.g.: I was teased by students saying things to me	
	Victim Social (.87, .91, .92); 6 Items e.g.: A student wouldn't be friends with me because 
other people didn't like me	
	Victim Physical (.89, .89, .92); 6 Items e.g.: I was threatened to be physically hurt or harmed	
APRI-PR Participation Roles
	Role Active Reinforcer (.78, .86, .87); 6 Items e.g.: I would join in myself		
	Role Passive Reinforcer (.88, .90, .91); 6 Items e.g.: I would stay to watch what happens
	Role Ignore (.87, .89, .91); 6 Items e.g.: I would pay no attention to it		
	Role Victim Advocate (.89, .91, .92); 6 Items e.g.: I would get my friends to help me stop it	
APRI-A Bully Attitudes
	Pro Bully (.64, .68, .74); 6 Items e.g.:	It's OK to bully others if others are doing it		Pro Victim (.68, .74, .79); 6 Items e.g.: People who are bullied deserve our help		
Coping Style
	Cope Avoidance (.75, .79, .83); 6 Items e.g.: I avoid the problem by spending more time alone
	Cope Problem Solving (.85, .87, .89); 5 Items e.g.: I develop a plan about how to solve the problem before doing anything
	Cope Seek Support (.90, .91, .92); 4 Items e.g.: I go to a friend for advice on how to solve the problem
Locus Of Control
	LOC Internal (.75, .81, .85); 4 Items e.g.: My own efforts and actions are what will determine my future	
	LOC External (.71, .75, .78); 4 Items e.g.: External things mostly control my life		
AEI: Anger Expression
	Anger Control (.85, .87, .88); 4 Items e.g.: I stay steady and in control 		
	Anger Internalise (.67, .69, .75); 4 Items e.g.: No one can tell but I am furious inside	
	Anger Externalise (.66, .68, .71); 4 Items e.g.: I let people see just how angry I am	
CDI- Short: Childhood Depression 
	Depression (.83, .85, .76); 10 Items e.g.: I am sad once in a while; I am sad many times; I am sad all the time
SDQ II Short: Self-Concept
	Physical (.83, .84, .84); 4 Items e.g.: I enjoy things like sports, gym and dance	
	Appearance (.87, .88, .89); 4 Items e.g.: I have a nice looking face			
	Opposite Sex Relations (.85, .84, .85); 4 Items e.g.: I am not very popular with members of the opposite sex
	Same Sex Relations (.79, .82, .83); 5 Items e.g.: It is difficult to make friends with members of my own sex
	Parent Relations (.84, .86, .85); 4 Items e.g.:	I get along well with my parents	
	Honesty/Trustworthy (.79, .81, .81); 6 Items e.g.: I am honest	
	Emotional (.81, .83, .85); 5 Items e.g.: I worry more than I need to			
	General (.82, .84, .85); 6 Items e.g.: Overall I have a lot to be proud of		
Math (.90, .90, .90); 4 Items e.g.: Mathematics is one of my best subjects	
Verbal (.89, .90, .91); 5 Items e.g.: I am hopeless in English classes			
	School (.84, .86, .86); 4 Items e.g.: I get bad marks in most school subjects		
Note. For each scale, the coefficient alpha estimates of reliability are presented for responses at Times 1, 2, and 3 respectively (in parentheses) along with the number of items and sample items from the scales.


Section 4.H: Mplus syntax for Longitudinal Invariance Model 1 (no invariance)


  TITLE:  Bully ESEM Model 1 (no invariance)

  DATA:   FILE is bylyw1w2w3_bullvic_21feb2010.dat;

  VARIABLE:
          NAMES ARE
   id nsex nyr znyr znsex yrxsex ryrsq ryrxsex yrsqxsex ryr2xsex
  T1BV1        T1BV2        T1BV3        T1BV4        T1BV5        T1BV6
  T1BS1        T1BS2        T1BS3        T1BS4        T1BS5        T1BS6
  T1BP1        T1BP2        T1BP3        T1BP4        T1BP5        T1BP6
  T1VV1        T1VV2        T1VV3        T1VV4        T1VV5        T1VV6
  T1VS1        T1VS2        T1VS3        T1VS4        T1VS5        T1VS6
  T1VP1        T1VP2        T1VP3        T1VP4        T1VP5        T1VP6
  T2BV1        T2BV2        T2BV3        T2BV4        T2BV5        T2BV6
  T2BS1        T2BS2        T2BS3        T2BS4        T2BS5        T2BS6
  T2BP1        T2BP2        T2BP3        T2BP4        T2BP5        T2BP6
  T2VV1        T2VV2        T2VV3        T2VV4        T2VV5        T2VV6
  T2VS1        T2VS2        T2VS3        T2VS4        T2VS5        T2VS6
  T2VP1        T2VP2        T2VP3        T2VP4        T2VP5        T2VP6
  T3BV1        T3BV2        T3BV3        T3BV4        T3BV5        T3BV6
  T3BS1        T3BS2        T3BS3        T3BS4        T3BS5        T3BS6
  T3BP1        T3BP2        T3BP3        T3BP4        T3BP5        T3BP6
  T3VV1        T3VV2        T3VV3        T3VV4        T3VV5        T3VV6
  T3VS1        T3VS2        T3VS3        T3VS4        T3VS5        T3VS6
  T3VP1        T3VP2        T3VP3        T3VP4        T3VP5        T3VP6 ;

  USEVARIABLES ARE  T1BV1-T3VP6 ;
          MISSING are  all (0);
   ANALYSIS:
          ROTATION=geomin (OBLIQUE); ESTIMATOR=MLR;
          PROCESSORS = 2;
  model:
  f1-f3 by T1BV1-T1BP6 (*1);
  f4-f6 by T1VV1-T1VP6 (*2);
  f7-f9 by T2BV1-T2BP6 (*3);
  f10-f12 by T2VV1-T2VP6 (*4);
  f13-f15 by T3BV1-T3BP6 (*5);
  f16-f18 by T3VV1-T3VP6 (*6);
   f1-f6 with f7-f12;
   f1-f6 with f13-f18;
   f7-f12 with f13-f18;
          T1BV1-T1VP6 pwith T2BV1-T2VP6;
          T1BV1-T1VP6 pwith T3BV1-T3VP6;
          T2BV1-T2VP6 pwith T3BV1-T3VP6;
       OUTPUT:        TECH1; stdyx; mod;





Section 4.I: Mplus syntax for Longitudinal Invariance Model 5 (factor loadings and intercepts invariant)


TITLE:  Bully ESEM  M5 -- latent means free

  DATA:   FILE is bylyw1w2w3_bullvic_21feb2010.dat;

  VARIABLE:
          NAMES ARE
   id nsex nyr znyr znsex yrxsex ryrsq ryrxsex yrsqxsex ryr2xsex
  T1BV1        T1BV2        T1BV3        T1BV4        T1BV5        T1BV6
  T1BS1        T1BS2        T1BS3        T1BS4        T1BS5        T1BS6
  T1BP1        T1BP2        T1BP3        T1BP4        T1BP5        T1BP6
  T1VV1        T1VV2        T1VV3        T1VV4        T1VV5        T1VV6
  T1VS1        T1VS2        T1VS3        T1VS4        T1VS5        T1VS6
  T1VP1        T1VP2        T1VP3        T1VP4        T1VP5        T1VP6
  T2BV1        T2BV2        T2BV3        T2BV4        T2BV5        T2BV6
  T2BS1        T2BS2        T2BS3        T2BS4        T2BS5        T2BS6
  T2BP1        T2BP2        T2BP3        T2BP4        T2BP5        T2BP6
  T2VV1        T2VV2        T2VV3        T2VV4        T2VV5        T2VV6
  T2VS1        T2VS2        T2VS3        T2VS4        T2VS5        T2VS6
  T2VP1        T2VP2        T2VP3        T2VP4        T2VP5        T2VP6
  T3BV1        T3BV2        T3BV3        T3BV4        T3BV5        T3BV6
  T3BS1        T3BS2        T3BS3        T3BS4        T3BS5        T3BS6
  T3BP1        T3BP2        T3BP3        T3BP4        T3BP5        T3BP6
  T3VV1        T3VV2        T3VV3        T3VV4        T3VV5        T3VV6
  T3VS1        T3VS2        T3VS3        T3VS4        T3VS5        T3VS6
  T3VP1        T3VP2        T3VP3        T3VP4        T3VP5        T3VP6 ;

  USEVARIABLES ARE  T1BV1-T3VP6 ;
          MISSING are  all (0);
   ANALYSIS:
          ROTATION=geomin (OBLIQUE, .5); ESTIMATOR=MLR;
          PROCESSORS = 2;
  model:
      f1-f3 by T1BV1-T1BP6 (*T1 1);
      f4-f6 by T1VV1-T1VP6 (*T2 2);
      f7-f9 by T2BV1-T2BP6 (*T3 1);
      f10-f12 by T2VV1-T2VP6 (*T4 2);
      f13-f15 by T3BV1-T3BP6 (*T5 1);
      f16-f18 by T3VV1-T3VP6 (*T6 2);
    f1-f6 with f7-f12;
    f1-f6 with f13-f18;
    f7-f12 with f13-f18;
          T1BV1-T1VP6 pwith T2BV1-T2VP6;
          T1BV1-T1VP6 pwith T3BV1-T3VP6;
          T2BV1-T2VP6 pwith T3BV1-T3VP6;
  [f7-f18]; !latent means free at T2 T3


    [T1BV1 ]  (600) ;
    [T1BV2 ]  (601) ;
    [T1BV3 ]  (602) ;
    [T1BV4 ]  (603) ;
    [T1BV5 ]  (604) ;
    [T1BV6 ]  (605) ;
    [T1BS1 ]  (606) ;
    [T1BS2 ]  (607) ;
    [T1BS3 ]  (608) ;
    [T1BS4 ]  (609) ;
    [T1BS5 ]  (610) ;
    [T1BS6 ]  (611) ;
    [T1BP1 ]  (612) ;
    [T1BP2 ]  (613) ;
    [T1BP3 ]  (614) ;
    [T1BP4 ]  (615) ;
    [T1BP5 ]  (616) ;
    [T1BP6 ]  (617) ;
    [T1VV1 ]  (618) ;
    [T1VV2 ]  (619) ;
    [T1VV3 ]  (620) ;
    [T1VV4 ]  (621) ;
    [T1VV5 ]  (622) ;
    [T1VV6 ]  (623) ;
    [T1VS1 ]  (624) ;
    [T1VS2 ]  (625) ;
    [T1VS3 ]  (626) ;
    [T1VS4 ]  (627) ;
    [T1VS5 ]  (628) ;
    [T1VS6 ]  (629) ;
    [T1VP1 ]  (630) ;
    [T1VP2 ]  (631) ;
    [T1VP3 ]  (632) ;
    [T1VP4 ]  (633) ;
    [T1VP5 ]  (634) ;
    [T1VP6 ]  (635) ;

    [T2BV1 ]  (600) ;
    [T2BV2 ]  (601) ;
    [T2BV3 ]  (602) ;
    [T2BV4 ]  (603) ;
    [T2BV5 ]  (604) ;
    [T2BV6 ]  (605) ;
    [T2BS1 ]  (606) ;
    [T2BS2 ]  (607) ;
    [T2BS3 ]  (608) ;
    [T2BS4 ]  (609) ;
    [T2BS5 ]  (610) ;
    [T2BS6 ]  (611) ;
    [T2BP1 ]  (612) ;
    [T2BP2 ]  (613) ;
    [T2BP3 ]  (614) ;
    [T2BP4 ]  (615) ;
    [T2BP5 ]  (616) ;
    [T2BP6 ]  (617) ;
    [T2VV1 ]  (618) ;
    [T2VV2 ]  (619) ;
    [T2VV3 ]  (620) ;
    [T2VV4 ]  (621) ;
    [T2VV5 ]  (622) ;
    [T2VV6 ]  (623) ;
    [T2VS1 ]  (624) ;
    [T2VS2 ]  (625) ;
    [T2VS3 ]  (626) ;
    [T2VS4 ]  (627) ;
    [T2VS5 ]  (628) ;
    [T2VS6 ]  (629) ;
    [T2VP1 ]  (630) ;
    [T2VP2 ]  (631) ;
    [T2VP3 ]  (632) ;
    [T2VP4 ]  (633) ;
    [T2VP5 ]  (634) ;
    [T2VP6 ]  (635) ;

    [T3BV1 ]  (600) ;
    [T3BV2 ]  (601) ;
    [T3BV3 ]  (602) ;
    [T3BV4 ]  (603) ;
    [T3BV5 ]  (604) ;
    [T3BV6 ]  (605) ;
    [T3BS1 ]  (606) ;
    [T3BS2 ]  (607) ;
    [T3BS3 ]  (608) ;
    [T3BS4 ]  (609) ;
    [T3BS5 ]  (610) ;
    [T3BS6 ]  (611) ;
    [T3BP1 ]  (612) ;
    [T3BP2 ]  (613) ;
    [T3BP3 ]  (614) ;
    [T3BP4 ]  (615) ;
    [T3BP5 ]   ( 616);
    [T3BP6 ]   ( 617);
    [T3VV1 ]   ( 618);
    [T3VV2 ]   ( 619);
    [T3VV3 ]   ( 620);
    [T3VV4 ]   ( 621);
    [T3VV5 ]   ( 622);
    [T3VV6 ]   ( 623);
    [T3VS1 ]   ( 624);
    [T3VS2 ]   ( 625);
    [T3VS3 ]   ( 626);
    [T3VS4 ]   ( 627);
    [T3VS5 ]   ( 628);
    [T3VS6 ]   ( 629);
    [T3VP1 ]   ( 630);
    [T3VP2 ]   ( 631);
    [T3VP3 ]   ( 632);
    [T3VP4 ]   ( 633);
    [T3VP5 ]   ( 634);
    [T3VP6 ]  (  635);

       OUTPUT:        TECH1; stdyx; mod;




Section 4.J: Mplus Syntax for construct validity Relating 6 Bully/Victim factors to Relevant Factors 
(172 items, 32 latent factors divided into 11 sets such that the multiple factors from the same instrument were treated as separate sets)

      TITLE:  Bully 32-factor CFA;
    DATA:   FILE is    BULLYW1_V179_n3538_30MAR2010_SABULLYW1VAR179_30MAR2010.SAv.dat;
    VARIABLE:    NAMES ARE
  T1bulv1 T1bulv2 T1bulv3 T1bulv4 T1bulv5 T1bulv6
  T1buls1 T1buls2 T1buls3 T1buls4 T1buls5 T1buls6
  T1bulp1 T1bulp2 T1bulp3 T1bulp4 T1bulp5 T1bulp6
  T1vicv1 T1vicv2 T1vicv3 T1vicv4 T1vicv5 T1vicv6
  T1vics1 T1vics2 T1vics3 T1vics4 T1vics5 T1vics6
  T1vicp1 T1vicp2 T1vicp3 T1vicp4 T1vicp5 T1vicp6
  T1PrARf1 T1PrARf2 T1PrARf3 T1PrARf4 T1PrARf5 T1PrARf6
   T1PrADv1 T1PrADv2 T1PrADv3 T1PrADv4 T1PrADv5 T1PrADv6
   T1PrPRf1 T1PrPRf2 T1PrPRf3 T1PrPRf4 T1PrPRf5 T1PrPRf6
  T1prIGN1 T1prIGN2 T1prIGN3 T1prIGN4 T1prIGN5 T1prIGN6
  T1cpAVd1 T1cpAVd2 T1cpAVd3 T1cpAVd4 T1cpAVd5 T1cpAVd6
  T1cpPRs1 T1cpPRs2 T1cpPRs3 T1cpPRs4 T1cpPRs5
  T1cpSS1 T1cpSS2 T1cpSS3 T1cpSS4
  T1ATTPB1 T1ATTPB2 T1ATTPB3 T1ATTPB4 T1ATTPB5 T1ATTPB6
   T1ATTPV1 T1ATTPV2 T1ATTPV3 T1ATTPV4 T1ATTPV5 T1ATTPV6
  T1LOCIN1 T1LOCIN2 T1LOCIN3 T1LOCIN4
  T1LOCEX1 T1LOCEX2 T1LOCEX3 T1LOCEX4
   T1ANGCN1 T1ANGCN2 T1ANGCN3 T1ANGCN4
  T1ANGIN1 T1ANGIN2 T1ANGIN3 T1ANGIN4
  T1ANGEX1 T1ANGEX2 T1ANGEX3 T1ANGEX4
   T1CDI1 T1CDI2 T1CDI3 T1CDI4 T1CDI5 T1CDI6 T1CDI7 T1CDI8 T1CDI9 T1CDI10
   T1SCPh1 T1SCPh2 T1SCPh3 T1SCPh4
  T1SCAp1 T1SCAp2 T1SCAp3 T1SCAp4
  T1SCOP1 T1SCOP2 T1SCOP3 T1SCOP4
  T1SCSM1 T1SCSM2 T1SCSM3 T1SCSM4 T1SCSM5
   T1SCPR1 T1SCPR2 T1SCPR3 T1SCPR4
  T1SCHN1 T1SCHN2 T1SCHN3 T1SCHN4 T1SCHN5 T1SCHN6
  T1SCEM1 T1SCEM2 T1SCEM3 T1SCEM4 T1SCEM5
  T1SCGN1 T1SCGN2 T1SCGN3 T1SCGN4 T1SCGN5 T1SCGN6
  T1SCMA1 T1SCMA2 T1SCMA3 T1SCMA4
  T1SCVB1 T1SCVB2 T1SCVB3 T1SCVB4 T1SCVB5
  T1SCAC1 T1SCAC2 T1SCAC3 T1SCAC4
   nsex nyr Znsex Znyr ryrsq ryrxsex ryr2xsex Nidwave1 t1levto t1lebot;

            USEVARIABLES ARE
  T1bulv1-T1SCAC4 Znsex Znyr ryrsq ryrxsex;
  ! nsex nyr Znsex Znyr ryrsq ryrxsex ryr2xsex;
            MISSING are  all (-999);

     ANALYSIS:
            ROTATION=geomin (OBLIQUE, .5); ESTIMATOR=MLR;
            PROCESSORS = 4;

    MODEL:  ! Wave 1
  bul1-bul3       by  T1bulv1- T1bulp6 (*1);
  vic1-vic3       by  T1vicv1-T1vicp6 (*2);
  Part1-Part4     by T1PrARf1-T1prIGN6 (*3);
  COPE1-COPe3     by T1cpAVd1-T1cpSS4 (*4);
  ATTD1-ATTD2     by T1ATTPB1-T1ATTPV6 (*5);
  LOC1-LOC2       by T1LOCIN1-T1LOCEX4 (*6);
  ANGER1-ANGER3   by T1ANGCN1-T1ANGEX3 T1ANGEX4 (*7);
  CDI             by T1CDI1-T1CDI10 (*8);
  SDQ1-SDQ8       by  T1SCPh1-T1SCGN6 (*9);
  SDQ9-SDQ11      by  T1SCMA1-T1SCAC4 (*10);
  bul1-sdq11 with Znsex Znyr ryrsq ryrxsex;
  Znsex with Znyr ryrsq ryrxsex ;Znyr with ryrsq ryrxsex ;ryrsq with ryrxsex ;


  !bul1-SDQ11      with nsex nyr Znsex Znyr ryrsq ryrxsex ryr2xsex;

  OUTPUT: TECH1 tech4 STDYX MODINDICES;! (ALL);


References 
(Note References listed with an * also appear in the published article)
*Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111-150.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105. doi:10.1037/h0046016
*Campbell, D. T., & O'Connell, E. J. (1967). Methods factors in multitrait-multimethod matrices: Multiplicative rather than additive? Multivariate Behavioral Research, 2(4), 409-426. doi:10.1207/s15327906mbr0204_1
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14, 464-504.
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9, 233-255.
Hayashi, K., & Marcoulides, G. A. (2006). Identification issues in factor analysis. Structural Equation Modeling, 13(4), 631-645.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1-55 .
Jennrich, R.I. & Sampson (1966). Rotation to simple loadings. Psychometrika, 31, 313-323. 
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
Marsh, H. W. (1988). Multitrait multimethod analysis. In J P. Keeves (Ed.), Educational research methodology, measurement and evaluation: An international handbook (pp. 570-580).  Oxford: Pergamon Press.
Marsh, H. W. (1993). Multitrait-multimethod analyses: Inferring each trait-method combination with multiple indicators. Applied Measurement in Education, 6(1), 49-81. doi:10.1207/s15324818ame0601_4
Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103, 391-410.
Marsh, H. W., Craven, R. G., Parker, P. D., Parada, R. H., Guo, J., Dicke, T., & Abduljabbar, A. S. (2016). Temporal ordering effects of adolescent depression, relational aggression, and victimization over six waves: Fully latent reciprocal effects models. Developmental Psychology, 52(12), 1994-2009. doi:10.1037/dev0000241
Marsh, H. W., Ellis, L., Parada, L., Richards, G. & Heubeck, B. G. (2005). A short version of the Self Description Questionnaire II: Operationalizing criteria for short-form evaluation with new applications of confirmatory factor analyses. Psychological Assessment, 17, 81-102.Marsh, et al., 2005; 
Marsh, H. W., & Grayson, D. (1995). Latent-variable models of multitrait-multimethod data. In R. H. Hoyle (Ed.), Structural equation modeling: Issues and applications (pp. 177-198). Thousand Oaks: Sage. 
*Marsh, H. W., & Hau, K-T. (1996). Assessing goodness of fit: Is parsimony always desirable? Journal of Experimental Education, 64, 364-390.
Marsh, H. W. & Hocevar, D. (1988). A new, more powerful approach to multitrait-multimethod analyses: Application of 2nd-order confirmatory factor analysis. Journal of Applied Psychology, 73, 107-111.
Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in over-generalizing Hu & Bentler’s (1999) findings. Structural Equation Modeling: A Multidisciplinary Journal, 11, 320-341.
*Marsh, H. W., Lüdtke, O., Nagengast, B., Morin, A. J. S., & Von Davier, M. (2013). Why Item Parcels Are (Almost) Never Appropriate: Two Wrongs Do Not Make a Right—Camouflaging Misspecification With Item Parcels in CFA Models. Psychological Methods. Advance online publication. doi:10.1037/a0032773  
*Marsh, H. W., Lüdtke, O., Nagengast, B., Trautwein, U., Abduljabbar, A. S. (2015). Dimensional Comparison Theory: Paradoxical relations between self-beliefs and achievements in multiple domains. Learning and Instruction, 35, 16-32 
Marsh, H. W., Martin, A. J. & Jackson, S. (2010). Introducing A short version of the Physical Self Description Questionnaire: New strategies, short-form evaluative criteria, and applications of factor analyses. Journal of Sport & Exercise Psychology,32, 438-482. 
Marsh, H. W.; Martin, A. J.; Yeung, A. S. & Craven, R. G. (2017). In Elliot, Andrew J. (Ed); Dweck, Carol S. (Ed) & Yeager, David S. (Ed). Handbook of competence and motivation: Theory and application, 2nd ed. (pp. 85-115). New York, NY, US: Guilford Press, xiv, 722 pp.
*Marsh, H.W., Morin, A.J.S., Parker, P., & Kaur, G. (2014). Exploratory Structural Equation Modeling: An Integration of the best Features of Exploratory and Confirmatory Factor Analysis. Annual Review of Clinical Psychology, 10, 85-110 
*Marsh, H. W., Muthén, B., Asparouhov. T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to students’ evaluations of university teaching. Structural Equation Modeling: A Multidisciplinary Journal, 16, 439-476.
*Marsh, H. W., Nagengast, B., Morin, A. J. S., Parada, R. H., Craven, R. G., & Hamilton, L. R. (2011). Construct validity of the multidimensional structure of bullying and victimization: An application of exploratory structural equation modeling. Journal of Educational Psychology, 103, 701-732.
*Morin, A.J.S., Marsh, H.W., & Nagengast, B. (2013). Exploratory Structural Equation Modeling: An Introduction. In G.R. Hancock & R.O. Mueller (Eds.), Structural Equation Modeling: A Second Course (2nd Edition, pp. 395-436. Greewich, Connecticut : IAP. 
Muthén, L. K., & Muthén, B. O. (2015). Mplus user’s guide. Los Angeles: Muthén & Muthén. 
Silvey, S.D. (1970). Statistical Inference. Harmondsworth: Penguin Books.

image2.emf



m−1










m-1


oleObject2.bin

image3.emf



(m−1) / 2










(m-1)/2


oleObject3.bin

image4.emf



f (Λ) =
i=1



p



∑
j=1



m



∑aij (λij − bij )2










f

(

L

)

=

i

=

1

p

å

j

=

1

m

å

a

ij

(

l

ij

-

b

ij

)

2


oleObject4.bin

image5.emf



aij = 1










a

ij

=

1


oleObject5.bin

image6.emf



λij










l

ij


oleObject6.bin

oleObject7.bin

image7.emf



bij










b

ij


oleObject8.bin

oleObject9.bin

image8.emf



m(m−1)










m(m-1)


oleObject10.bin

image9.png




image10.jpeg
=74

.





image11.emf

image12.emf

image13.emf

image14.emf

image1.emf



ΛΛT +Θ










LLT+Q


oleObject1.bin

