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Appendix A. Variance of D̃

To find an expression for V (D̃), the delta method is applied. First, defining:

h(D) =

N∑
i=1

(I −H ii)V
(
β̂i

)
(I −H ii)

′ +
∑
k 6=i

H ikV
(
β̂i

)
H ′ik, (A1)

the variance of D̃ equals:

V
(
D̃
)

=
[
h′(D̃)−1

]′
V (vec Sb)

[
h′(D̃)−1

]
,

where h′(D̃) is the derivative of h(D) with respect to D evaluated at D̃ and vec is
the vec-operator. vec A vectorizes a matrix A by stacking its columns.

Assuming that asymptotically b̃i follows a normal distribution, and using some
results of Theorem 4.3 by [1], the variance of vec Sb is:
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where

Cov
(
b̃i, b̃j

)
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(
b̃ib̃
′
j
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,

and Cpq is the commutation matrix for an arbitrary (p× q) matrix A, i.e., the matrix
which, for any (p× q) matrix A, transforms vec A into vec A′.



Appendix B. Random intercept model

Here, the model is expressed as:

Y i|bi ∼ Poisson(µc
i ), (B1)

where µc
i = exp (Xiβ + 1ni

bi) and bi ∼ N(0, d). Then, the conditional variance of Y i

is reduced to,

V (Y i|bi) = exp(bi)Ri, (B2)

where Ri is a (ni × ni) diagonal matrix with the vector exp (Xiβ) at the diagonal.

Using the IRLS estimator for βi, the conditional mean and variance of β̂i are

E(β̂i|bi) = Kiβ + bic and V (β̂i|bi) = exp (−bi)
(
T ′iRiT i

)−1
, (B3)

where c is a q-dimensional single-entry vector with first entry equals to 1 and zero
elsewhere. Then, the marginal variance of β̂i is reduced to,

V
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)
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d

2

)(
T ′iRiT i

)−1
, (B4)

where C is a (q×q) single-entry matrix with entry (1, 1) equals to 1 and zero elsewhere.
The variance of b̃ is,
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(B5)

Then, the estimator of d is based on:

sb =

N∑
i=1

(β̂ −Kiβ̃)′(β̂ −Kiβ̃) =

N∑
i=1

b̃
′
ib̃i. (B6)

A unbiased method-of-moments estimator of d can be found by equating sb with its
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expected value and solving for d. Given that E(b̃i) = 0,
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As before (B7) is non-linear and an iterative procedure is needed to find the solution
for d.

Furthermore, assuming that b̃i follows a normal distribution, the variance of sb is:

V (sb) =

N∑
i=1

tr
[
V
(
b̃i

)
V
(
b̃i

)]
. (B8)

Then, an expression of V
(
d̃
)

can be found using the delta method, as in Section A.

Appendix C. More results of the simulation study

In this section, we compare the cluster-by-cluster estimator of the Poisson-Normal
model with different weighting schemes and the coverage is evaluated. For the Poisson-
Normal-Gamma model, the results are fairly the same.

Weighting scheme comparison

Table C1 displays the MSE ratio of the cluster-by-cluster estimator using proportional
over iterated optimal weights. For all parameters, the use of the latter reduces the MSE,
but by a small (around 5% for fixed effects) or insignificant (less than 1% for variance
components) quantity.

Table C1. MSE ratio of the cluster-by-cluster estimator using proportional weights over iterated optimal

weights.

(a) Fixing N = 50 (b) Fixing µn = 50
µn β0 β1 β2 β3 d00 d01 d11 N β0 β1 β2 β3 d00 d01 d11

20 1.02 1.04 1.03 1.01 1.00 1.00 1.00 20 1.02 1.02 1.02 1.00 1.01 1.01 1.00
50 1.02 1.05 1.04 1.06 1.00 1.00 1.00 50 1.02 1.05 1.04 1.06 1.00 1.00 1.00
100 1.05 1.05 1.04 1.04 1.00 1.00 1.00 100 1.04 1.06 1.02 1.02 1.00 1.00 1.00
150 1.06 1.06 1.06 1.06 1.00 1.00 1.00 150 1.03 1.04 1.07 1.05 1.00 1.00 1.00
200 1.07 1.05 1.07 1.07 1.00 1.00 1.00 200 1.07 1.06 1.03 1.05 1.00 1.00 1.00
250 1.07 1.04 1.06 1.05 1.00 1.00 1.00 250 1.05 1.05 1.05 1.05 1.00 1.00 1.00
400 1.05 1.08 1.05 1.06 1.00 1.00 1.00 400 1.06 1.07 1.04 1.03 1.00 1.00 1.00

Table C2 exhibits the MSE ratio of the method-of-moments estimator of D without
weighting over with proportional weights. For both models, the use of proportional
weights reduces the MSE by roughly 14% when the number of elements per cluster
is small (µn = 20). However, when the number of elements per cluster increases the
unweighted estimators is lightly more efficient (by around 5% when µn = 250).
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Table C2. MSE ratio of the method-of-moments estimator of D without any weights over proportional

weights

(a) Fixing N = 50 (b) Fixing µn = 50
µn d00 d01 d11 N d00 d01 d11

20 1.10 1.17 1.15 20 0.98 0.99 1.00
50 1.01 1.02 1.00 50 1.01 1.02 1.00
100 0.96 0.99 0.98 100 0.99 1.01 1.02
150 0.96 0.96 0.94 150 1.02 1.02 1.01
250 0.95 0.95 0.95 250 1.00 1.01 1.07

Coverage of the 95% confidence interval

Table C3 displays the coverage of the 95% confidence interval of the parameter asso-
ciated with the treatment effect (β3) using the CbC and full ML estimator for the PN
and PNG model in all simulation scenarios. Both estimators provide fairly the same
results, the coverage is close to 0.95 in all scenarios.

Table C3. Coverage of the 95% confidence interval of the parameter associated with the treatment effect
using the cluster-by-cluster (CbC) and full maximum likelihood (ML) estimator for the (a) PN model and (b)

PNG model
(a) Poisson-Normal model

Fixing µn = 50 and varying N Fixing N = 50 and varying µn
Method 20 50 100 150 250 20 50 100 150 250

CbC 0.928 0.938 0.945 0.955 0.951 0.938 0.938 0.938 0.934 0.933
ML 0.932 0.941 0.947 0.953 0.951 0.942 0.941 0.941 0.933 0.935

(b) Poisson-Normal-Gamma model
Fixing µn = 50 and varying N Fixing N = 50 and varying µn

CbC 0.927 0.944 0.964 0.950 0.957 0.938 0.944 0.941 0.940 0.935
ML 0.936 0.948 0.965 0.951 0.955 0.935 0.948 0.944 0.943 0.938
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