Supporting information

-for-

Catalytic effect of water, water dimer and water trimer on the NO₂ + H₂O formations from the HNO₂ + HO reaction in

tropospheric conditions†

Qingzhu Wang^{a,*}, Na Li^{b,#}, Longmei Lv^{b,#}, Yongqi Zhang^{b,#}, Guang Chai^b, Xiru Cao^b, Rui Wang^{b,*}

^a Analytical and Testing Center, Sichuan University of Science & Engineering, Zigong 643000, Sichuan Province, P. R. China

^b Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China;

^{*} Corresponding authors. E-mail: wangzq128@163.com (Zhuqing Wang); wangrui830413@163.com (Rui Wang).

[#] Na Li, Longmei Lv and Yongqi Zhang contributed equally to this work

Fig. S1 Geometrical parameters for the naked reaction of $HNO_2 + HO$ optimized at the B3LYP/6-311+G(3*df*,2*pd*) level of theory.

the $HNO_2 + HO$ re	eaction ^a			C ···		.,
Species	ZPE	S	$\triangle(E + ZPE)$	$\triangle E$	riangle H	riangle G
$HNO_2 + OH$	19.1	99.5	0.0	0.0	0.0	0.0
IM	20.5	76.2	-3.4	-4.9	-3.8	3.2
TS	19.3	76.9	-2.3	-2.6	-2.8	3.9
IMF	19.6	89.5	-48.8	-49.4	-47.9	-45.0
$NO_2 + H_2O$	18.9	102.4	-47.2	-47.1	-46.9	-47.8

Table S1 Zero point energy (ZPE/(kcal·mol⁻¹)), relative energies (ΔE and $\Delta(E + ZPE)/(kcal·mol⁻¹)$), enthalpies ($\Delta H(298)/(kcal·mol⁻¹)$), and free energies ($\Delta G(298)/(kcal·mol⁻¹)$) for the HNO₂ + HO reaction ^a

^{*a*} ZPE and S values obtained at B3LYP/6-311+G(3*df*,2*pd*) level of theory; The energy values are obtained at CCSD(T)/CBS level whereas the *H* and *G* corrections are taken from the B3LYP/6-311+G(3*df*,2*pd*) level.

Fig. S2 The geometrical structures for the optimized transitions state, intermediates, and complexes involved in water-assisted Channels occurring through H_2O , $(H_2O)_2$, $(H_2O)_3$, H_2O --HO, HO--(H_2O)_2a, HNO2---(H_2O)_2a, HNO2---(H_2O)_3a, HNO2---(H_2O)_3a complexes

Table S2 Zero point energy (ZPE/(kcal·mol⁻¹)), entropies (S/ (cal·mol⁻¹·K⁻¹)), relative energies $(\Delta E \text{ and } \Delta(E + \text{ZPE})/(\text{kcal·mol}^{-1}))$, enthalpies $(\Delta H(298)/(\text{kcal·mol}^{-1}))$, and free energies $(\Delta G(298)/(\text{kcal·mol}^{-1}))$ for the binary complexes (HO····H₂O, H₂O····HO, H₂O····HNO₂ and HNO₂····(H₂O)₂, the trinary complexes HNO₂····(H₂O)₂, HNO₂····(H₂O)₂a, HO····(H₂O)₂ and HO····(H₂O)₂a and the quadruple complexes (HNO₂····(H₂O)₃, HNO₂····(H₂O)₃a, HO····(H₂O)₃

Species	ZPE	S	$\Delta(E + \text{ZPE})$	ΔE	ΔH	ΔG
$H_2O + HO$	18.7	87.7	0.0	0.0	0.0	0.0
$HO \cdots H_2O$	20.1	70.1	-2.2	-3.6	-2.6	2.7
H ₂ O…HO	20.8	66.6	-3.8	-5.9	-4.5	1.8
$H_2O + HNO_2$	27.1	102.0	0.0	0.0	0.0	0.0
H_2O ···HNO ₂	28.5	82.9	-1.1	-2.5	-1.1	4.6
HNO_2 ···H ₂ O	28.5	83.9	-2.2	-3.5	-2.1	3.3
$H_2O + H_2O$	26.8	92.9	0.0	0.0	0.0	0.0
(H ₂ O) ₂	29.0	69.4	-3.0	-5.2	-3.5	2.7
$(H_2O)_2 + HNO_2$	42.7	126.3	0.0	0.0	0.0	0.0
$HNO_2 \cdots (H_2O)_2$	45.0	89.1	-12.3	-14.6	-13.0	-2.0
HNO ₂ ···(H ₂ O) ₂ a	45.2	88.1	-12.6	-15.0	-13.4	-2.0
$(H_2O)_2 + HO$	34.3	112.0	0.0	0.0	0.0	0.0
HO…(H ₂ O) ₂	37.2	79.2	-7.5	-10.3	-8.8	1.0
HO…(H ₂ O) ₂ a	37.0	80.3	-7.2	-9.9	-8.4	1.0
$(H_2O)_2 + H_2O$	42.4	115.8	0.0	0.0	0.0	0.0
(H ₂ O) ₃	45.8	79.5	-7.7	-11.1	-9.0	1.4
$(H_2O)_3 + HNO_2$	59.5	136.3	0.0	0.0	0.0	0.0
HNO_2 ···(H_2O) ₃	60.9	103.2	-12.7	-14.1	-12.9	-3.0
HNO ₂ ···(H ₂ O) ₃ a	60.6	105.4	-12.6	-13.7	-12.6	-3.3
$HO + (H_2O)_3$	51.1	122.0	0.0	0.0	0.0	0.0
HO…(H ₂ O) ₃	53.4	91.9	-8.4	-10.7	-9.3	-0.4
НО…(Н2О)за	53.2	93.5	-8.2	-10.3	-9.0	-0.5

<i>T</i> /K	HO•••H ₂ O	H ₂ O•••HO	H ₂ O•••HNO ₂	HNO ₂ •••H ₂ O	$HNO_2 \bullet \bullet \bullet (H_2O)_2$	$HNO_2 \bullet \bullet \bullet (H_2O)_2 a$
240	5.48×10 ⁻²²	5.06×10 ⁻²¹	2.35×10 ⁻²³	8.20×10 ⁻²³	1.09×10 ⁻¹⁶	6.92×10 ⁻¹⁷
250	4.56×10 ⁻²²	3.61×10 ⁻²¹	2.02×10 ⁻²³	7.06×10 ⁻²³	3.77×10 ⁻¹⁷	2.32×10 ⁻¹⁷
278	2.97×10 ⁻²²	1.61×10 ⁻²¹	1.43×10 ⁻²³	5.00×10 ⁻²³	2.92×10 ⁻¹⁸	1.68×10^{-18}
288	2.61×10 ⁻²²	1.26×10 ⁻²¹	1.30×10 ⁻²³	4.52×10 ⁻²³	1.32×10 ⁻¹⁸	7.45×10 ⁻¹⁹
298	2.32×10 ⁻²²	1.00×10 ⁻²¹	1.19×10 ⁻²³	4.13×10 ⁻²³	6.35×10 ⁻¹⁹	3.50×10 ⁻¹⁹
308	2.08×10 ⁻²²	8.08×10 ⁻²²	1.09×10 ⁻²³	3.80×10 ⁻²³	3.20×10 ⁻¹⁹	1.73×10 ⁻¹⁹
325	1.77×10 ⁻²²	5.83×10 ⁻²²	9.68×10 ⁻²⁴	3.37×10 ⁻²³	1.10×10 ⁻¹⁹	5.78×10 ⁻²⁰
<i>T</i> /K	HO•••(H ₂ O) ₂	HO•••(H ₂ O) ₂ a	$HNO_2 \bullet \bullet \bullet (H_2O)_3$	HNO ₂ •••(H ₂ O) ₃ a	HO•••(H ₂ O) ₃	HO•••(H ₂ O) ₃ a
<i>T</i> /K 240	HO••••(H ₂ O) ₂ 1.89×10 ⁻¹⁹	HO••••(H ₂ O) ₂ a 2.03×10 ⁻¹⁹	HNO ₂ •••(H ₂ O) ₃ 9.58×10 ⁻¹⁶	HNO ₂ •••(H ₂ O) ₃ a 1.41×10 ⁻¹⁵	HO••••(H ₂ O) ₃ 3.81×10 ⁻¹⁸	HO••••(H ₂ O) ₃ a 4.26×10 ⁻¹⁸
<i>T</i> /K 240 250	HO•••(H ₂ O) ₂ 1.89×10 ⁻¹⁹ 9.53×10 ⁻²⁰	HO•••(H ₂ O) ₂ a 2.03×10 ⁻¹⁹ 1.04×10 ⁻¹⁹	HNO ₂ •••(H ₂ O) ₃ 9.58×10 ⁻¹⁶ 3.28×10 ⁻¹⁶	HNO ₂ •••(H ₂ O) ₃ a 1.41×10 ⁻¹⁵ 4.96×10 ⁻¹⁶	HO•••(H ₂ O) ₃ 3.81×10 ⁻¹⁸ 1.80×10 ⁻¹⁸	HO••••(H ₂ O) ₃ a 4.26×10 ⁻¹⁸ 2.06×10 ⁻¹⁸
T/K 240 250 278	$\begin{array}{c} HO \bullet \bullet \bullet (H_2O)_2 \\ 1.89 \times 10^{-19} \\ 9.53 \times 10^{-20} \\ 1.83 \times 10^{-20} \end{array}$	$\begin{array}{c} \text{HO}\bullet\bullet\bullet(\text{H}_2\text{O})_2\text{a} \\ \hline 2.03{\times}10^{-19} \\ 1.04{\times}10^{-19} \\ 2.09{\times}10^{-20} \end{array}$	$\frac{\text{HNO}_{2}^{\bullet\bullet\bullet}(\text{H}_{2}\text{O})_{3}}{9.58 \times 10^{-16}}$ 3.28×10^{-16} 2.50×10^{-17}	$\frac{\text{HNO}_{2} \cdots (\text{H}_{2}\text{O})_{3} a}{1.41 \times 10^{-15}}$ 4.96×10^{-16} 4.03×10^{-17}	$\begin{array}{c} \text{HO}\bullet\bullet\bullet(\text{H}_2\text{O})_3\\ \hline 3.81{\times}10^{-18}\\ 1.80{\times}10^{-18}\\ 2.94{\times}10^{-19} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_3\text{a} \\ \\ 4.26 \times 10^{-18} \\ 2.06 \times 10^{-18} \\ 3.58 \times 10^{-19} \end{array}$
T/K 240 250 278 288	$\begin{array}{c} HO \bullet \bullet \bullet (H_2O)_2 \\ 1.89 \times 10^{-19} \\ 9.53 \times 10^{-20} \\ 1.83 \times 10^{-20} \\ 1.10 \times 10^{-20} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_2\text{a} \\ \hline 2.03 \times 10^{-19} \\ 1.04 \times 10^{-19} \\ 2.09 \times 10^{-20} \\ 1.28 \times 10^{-20} \end{array}$	HNO ₂ •••(H ₂ O) ₃ 9.58×10 ⁻¹⁶ 3.28×10 ⁻¹⁶ 2.50×10 ⁻¹⁷ 1.13×10 ⁻¹⁷	$\begin{array}{c} \text{HNO}_{2} \bullet \bullet \bullet (\text{H}_{2}\text{O})_{3}\text{a} \\\\ 1.41 \times 10^{-15} \\\\ 4.96 \times 10^{-16} \\\\ 4.03 \times 10^{-17} \\\\ 1.86 \times 10^{-17} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_3 \\ \hline 3.81 \times 10^{-18} \\ 1.80 \times 10^{-18} \\ 2.94 \times 10^{-19} \\ 1.68 \times 10^{-19} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_3\text{a} \\ \\ 4.26 \times 10^{-18} \\ 2.06 \times 10^{-18} \\ 3.58 \times 10^{-19} \\ 2.09 \times 10^{-19} \end{array}$
T/K 240 250 278 288 298	$\begin{array}{c} HO \bullet \bullet \bullet (H_2O)_2 \\ 1.89 \times 10^{-19} \\ 9.53 \times 10^{-20} \\ 1.83 \times 10^{-20} \\ 1.10 \times 10^{-20} \\ 6.80 \times 10^{-21} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_2\text{a} \\ \hline 2.03 \times 10^{-19} \\ 1.04 \times 10^{-19} \\ 2.09 \times 10^{-20} \\ 1.28 \times 10^{-20} \\ 8.03 \times 10^{-21} \end{array}$	$\begin{array}{c} HNO_{2}\bullet\bullet\bullet(H_{2}O)_{3}\\ \hline 9.58{\times}10^{-16}\\ 3.28{\times}10^{-16}\\ 2.50{\times}10^{-17}\\ 1.13{\times}10^{-17}\\ 5.39{\times}10^{-18} \end{array}$	$\begin{array}{c} \text{HNO}_2 \bullet \bullet \bullet (\text{H}_2\text{O})_3 a \\ \hline 1.41 \times 10^{-15} \\ 4.96 \times 10^{-16} \\ 4.03 \times 10^{-17} \\ 1.86 \times 10^{-17} \\ 9.08 \times 10^{-18} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_3 \\ \hline 3.81 \times 10^{-18} \\ 1.80 \times 10^{-18} \\ 2.94 \times 10^{-19} \\ 1.68 \times 10^{-19} \\ 9.95 \times 10^{-20} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_3\text{a} \\ \\ 4.26 \times 10^{-18} \\ 2.06 \times 10^{-18} \\ 3.58 \times 10^{-19} \\ 2.09 \times 10^{-19} \\ 1.26 \times 10^{-19} \end{array}$
T/K 240 250 278 288 298 308	$\begin{array}{c} HO \bullet \bullet \bullet (H_2O)_2 \\ 1.89 \times 10^{-19} \\ 9.53 \times 10^{-20} \\ 1.83 \times 10^{-20} \\ 1.10 \times 10^{-20} \\ 6.80 \times 10^{-21} \\ 4.36 \times 10^{-21} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_2\text{a} \\ \hline 2.03 \times 10^{-19} \\ 1.04 \times 10^{-19} \\ 2.09 \times 10^{-20} \\ 1.28 \times 10^{-20} \\ 8.03 \times 10^{-21} \\ 5.22 \times 10^{-21} \end{array}$	$\begin{array}{c} HNO_{2}\bullet\bullet\bullet(H_{2}O)_{3}\\ \hline 9.58{\times}10^{-16}\\ 3.28{\times}10^{-16}\\ 2.50{\times}10^{-17}\\ 1.13{\times}10^{-17}\\ 5.39{\times}10^{-18}\\ 2.71{\times}10^{-18} \end{array}$	$\begin{array}{c} \text{HNO}_2 \bullet \bullet \bullet (\text{H}_2\text{O})_3 a \\ \hline 1.41 \times 10^{-15} \\ 4.96 \times 10^{-16} \\ 4.03 \times 10^{-17} \\ 1.86 \times 10^{-17} \\ 9.08 \times 10^{-18} \\ 4.65 \times 10^{-18} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_3 \\ \hline 3.81 \times 10^{-18} \\ 1.80 \times 10^{-18} \\ 2.94 \times 10^{-19} \\ 1.68 \times 10^{-19} \\ 9.95 \times 10^{-20} \\ 6.11 \times 10^{-20} \end{array}$	$\begin{array}{c} \text{HO} \bullet \bullet \bullet (\text{H}_2\text{O})_3\text{a} \\ \hline 4.26 \times 10^{-18} \\ 2.06 \times 10^{-18} \\ 3.58 \times 10^{-19} \\ 2.09 \times 10^{-19} \\ 1.26 \times 10^{-19} \\ 7.87 \times 10^{-20} \end{array}$

Table S3 The equilibrium constants of the relevant complexes HO····H₂O, H₂O···HO, H₂O···HNO₂,HNO₂····(H₂O), HNO₂····(H₂O)₂, HNO₂····(H₂O)₂a, HO····(H₂O)₂, HO····(H₂O)₂a, HNO₂····(H₂O)₃,HNO₂····(H₂O)₃a, HO····(H₂O)₃, HO····(H₂O)₃a at 240 - 325 K.^{a, b}

^a Equilibrium constants in units of cm³ molecule⁻¹.

^b All equilibrium constants were calculated by using energies computed at the CCSD(T)/aug-cc-pVTZ level and partition functions obtained at the B3LYP/6-311+G(3*df*,2*dp*) level.

^c The concentration of the corresponding complexes at 298 K.

Fig. S3 The geometrical structures of the optimized transitions state, intermediates, and complexes involved in water-assisted channels occurring through HO \cdots H₂O + HNO₂, H₂O \cdots HO + HNO₂, H₂O \cdots HO + HNO₂, H₂O \cdots HO and HNO₂ \cdots H₂O + HO reactions

Species	ZPE	S	$\triangle(E + ZPE)$	$\triangle E$	$\triangle H$	$\triangle G$
$HO \bullet \bullet H_2O + HNO_2$	33.9	127.0	0.0	0.0	0.0	0.0
H_2O ••• $HNO_2 + HO$	33.8	125.4	1.1	0.1	1.5	1.9
IM_WM1	36.3	89.5	-9.0	-11.5	-9.7	1.4
TS_WM1	33.4	79.4	2.5	3.0	0.5	14.7
IMF_WM1	35.8	98.5	-51.0	-52.9	-50.8	-42.3
$H_2O \bullet \bullet H_2O + NO_2$	34.5	126.7	-48.0	-48.6	-47.9	-47.8
H_2O ••• $HO + HNO_2$	34.6	123.5	0.0	0.0	0.0	0.0
H_2O ••• $HNO_2 + HO$	33.8	125.4	2.6	2.3	3.4	2.8
IM_WM2	36.6	88.8	-5.5	-7.5	-6.0	4.3
TS_WM2	35.1	85.1	-5.6	-6.2	-6.7	4.8
IMF_WM2	35.9	98.5	-49.4	-50.7	-48.9	-41.4
$H_2O \bullet \bullet H_2O + NO_2$	34.5	126.7	-46.4	-46.4	-46.0	-46.9
$HNO_2 \bullet \bullet H_2O + HO$	33.8	126.5	0.0	0.0	0.0	0.0
IM_WM3	34.8	107.7	-2.3	-3.3	-2.3	6.7
TS_WM3	34.1	100.2	-2.2	-2.5	-2.8	7.5
$NO_2 \bullet \bullet \bullet H_2O + H_2O$	33.3	135.2	-45.6	-45.0	-45.0	-2.2

Table S4 Zero point energy (ZPE/(kcal·mol⁻¹)), relative energies (ΔE and $\Delta(E+ZPE)/(kcal·mol⁻¹)$), enthalpies ($\Delta H(298)/(kcal·mol⁻¹)$), and free energies ($\Delta G(298)/(kcal·mol⁻¹)$) for water-assisted the formation of NO₂ + H₂O from the HNO₂ + HO reaction ^a

^{*a*} ZPE values obtained at B3LYP/6-311+G(3*df*,2*pd*) level of theory; The energy values are obtained at CCSD(T)/CBS level whereas the *H* and *G* corrections are taken from the B3LYP/6-311+G(3*df*,2*pd*) level.

Fig. S4 The geometrical structures of the optimized transitions state, intermediates, and complexes involved in water-assisted channels occurring through $HNO_2\cdots(H_2O)_2 + HO$, $HNO_2\cdots(H_2O)_2a + HO$, $HO\cdots(H_2O)_2 + HNO_2$ and $HO\cdots(H_2O)_2a + HNO_2$ reactions

Species	ZPE	S	$\Delta(E + \text{ZPE})$	ΔE	ΔH	ΔG
HNO_2 ···(H_2O) ₂ + HO	50.3	131.7	0.0	0.0	0.0	0.0
IM_WD1	52.1	108.5	-0.8	-2.6	-1.2	5.7
TS_WD1	51.7	104.7	-1.5	-2.3	-2.2	5.9
IM_WD2	52.2	105.8	-1.2	-3.0	-1.8	6.0
TS_WD2	50.1	102.8	-1.6	-1.4	-2.6	6.0
IMF_WD2	51.4	118.4	-43.8	-44.9	-43.1	-39.2
$NO_2 + (H_2O)_3$	51.3	136.7	-42.8	-43.7	-43.1	-44.6
HNO_2 ···(H_2O) ₂ a + HO	50.5	130.7	0.0	0.0	0.0	0.0
IM_WD1a	52.4	107.2	-2.9	-4.8	-3.3	3.7
TS_WD1a	51.8	106.6	-1.0	-2.3	-1.4	5.8
IM_WD2a	52.4	103.7	-1.3	-3.3	-2.0	6.1
TS_WD2a	50.4	100.7	-1.6	-1.4	-2.6	6.3
IMF_WD2a	51.6	115.3	-43.9	-45.1	-43.3	-38.8
$NO_2 + (H_2O)_3$	51.3	136.7	-42.3	-43.1	-42.5	-44.3
HO ···(H_2O) ₂ + HNO_2	50.9	136.0	0.0	0.0	0.0	0.0
IM_WD3	53.0	100.8	-3.5	-5.6	-3.8	6.7
TS_WD3	50.8	104.0	-1.6	-1.4	-1.7	7.8
IMF_WD3	51.8	117.6	-49.9	-50.8	-48.9	-43.4
$NO_2 + (H_2O)_3$	51.3	136.7	-47.5	-47.9	-47.2	-47.4
HO ···· $(H_2O)_2a + HNO_2$	50.7	137.2	0.0	0.0	0.0	0.0
IM_WD3a	53.0	100.6	-3.6	-5.9	-4.0	6.9
TS_WD3a	50.3	104.5	0.9	1.2	0.6	10.4
IMF_WD3a	51.8	117.6	-50.0	-51.1	-49.2	-43.3
$NO_2 + (H_2O)_3$	51.3	136.7	-47.8	-48.4	-47.6	-47.5

Table S5 Zero point energy (ZPE/(kcal·mol⁻¹)), relative energies (ΔE and $\Delta (E + ZPE)/(kcal·mol⁻¹)$), enthalpies ($\Delta H(298)/(kcal·mol⁻¹)$), and free energies ($\Delta G(298)/(kcal·mol⁻¹)$) for the HNO₂ + HO with two water molecule reaction

^{*a*} ZPE and S values obtained at B3LYP/6-311+G(3df,2*pd*) level of theory; The energy values are obtained at CCSD(T)/CBS level whereas the *H* and *G* corrections are taken from the B3LYP/6-311+G(3df,2*pd*) level.

Fig. S5 The geometrical structures of the optimized transitions state, intermediates involved in water-assisted channels occurring through $HNO_2\cdots(H_2O)_3 + HO$, $HNO_2\cdots(H_2O)_3a + HO$, and $HO\cdots(H_2O)_3 + HNO_2$, $HO\cdots(H_2O)_3a + HNO_2$ reactions

Species	ZPE	S	$\Delta(E + ZPE)$	ΔE	ΔH	ΔG
HNO_2 ···(H_2O) ₃ + HO	66.2	145.8	0.0	0.0	0.0	0.0
IM_WT1	68.1	121.9	-3.0	-4.8	-3.4	3.7
TS_WT1	67.2	122.0	-0.9	-1.9	-1.2	5.9
IM_WT2	67.7	118.5	-0.5	-2.1	-1.1	7.0
TS_WT2	65.4	120.7	0.1	1.0	-0.6	6.9
IMF_WT2	67.3	131.9	-41.9	-43.0	-41.2	-37.1
$NO_{2}+(H_{2}O)_{4}$	67.5	149.3	-43.6	-45.0	-44.1	-45.2
HNO2····(H2O)3a+ HO	66.0	148.0	0.0	0.0	0.0	0.0
IM_WT1a	67.8	124.9	-3.4	-5.3	-3.9	3.0
TS_WT1a	67.6	116.8	-1.0	-2.6	-1.8	7.5
IM_WT2a	67.7	118.5	-0.7	-2.4	-1.4	7.3
TS_WT2a	66.3	108.1	0.4	0.1	-1.6	10.3
IMF_WT2a	67.2	133.7	-41.5	-42.8	-40.9	-36.6
$NO_2 + (H_2O)_4$	67.2	152.0	-43.0	-44.2	-43.4	-44.6
HO ···(H_2O) ₃ + HNO_2	67.1	148.8	0.0	0.0	0.0	0.0
IM_WT3	68.1	118.9	-6.2	-7.2	-6.0	2.9
TS_WT3	67.1	114.8	-3.4	-3.3	-3.6	6.5
IMF_WT3	68.1	128.3	-50.4	-51.4	-49.5	-43.4
$NO_2 + (H_2O)_4$	67.5	149.3	-47.9	-48.4	-47.7	-47.8
$HO^{\dots}(H_2O)_3a + HNO_2$	66.9	150.3	0.0	0.0	0.0	0.0
IM_WT3a	68.0	119.4	-5.6	-6.7	-5.5	3.8
TS_WT3a	67.1	114.7	-4.7	-4.9	-5.1	5.6
IMF_WT3a	67.8	130.6	-51.1	-52.0	-50.1	-44.2
$NO_2 + (H_2O)_4$	67.2	152.0	-47.6	-47.9	-47.2	-47.7

Table S6 Zero-point energy (ZPE/(kcal·mol⁻¹)), relative energies (ΔE and $\Delta(E+ZPE)/(kcal·mol⁻¹)$), enthalpies ($\Delta H(298)/(kcal·mol⁻¹)$), and free energies ($\Delta G(298)/(kcal·mol⁻¹)$) for the HNO₂ + HO with water trimer ^a

^{*a*} ZPE values obtained at B3LYP/6-311+G(3df,2pd) level of theory; The energy values are obtained at CCSD(T)/CBS level whereas the *H* and *G* corrections are taken from the B3LYP/6-311+G(3df,2pd) level.

T/K	K _{eq} (IM)	kīs	$k_{\rm R1}$	Keq (IM_WM1)	<i>k</i> (TS_WM1)
240	1.59×10 ⁻²⁴	1.71×10^{12}	2.72×10 ⁻¹²	8.90×10 ⁻²⁰	5.74×10^{2}
250	1.49×10 ⁻²⁴	1.90×10^{12}	2.83×10 ⁻¹²	4.06×10 ⁻²⁰	9.49×10^{2}
278	1.29×10 ⁻²⁴	2.44×10^{12}	3.15×10 ⁻¹²	6.14×10 ⁻²¹	3.69×10 ³
288	1.24×10 ⁻²⁴	2.63×10 ¹²	3.27×10 ⁻¹²	3.43×10 ⁻²¹	5.85×10 ³
298	1.20×10 ⁻²⁴	2.83×10 ¹²	3.40×10 ⁻¹²	2.00×10 ⁻²¹	9.12×10 ³
308	1.16×10 ⁻²⁴	3.04×10 ¹²	3.53×10 ⁻¹²	1.21×10 ⁻²¹	1.40×10^{4}
325	1.11×10- ²⁴	3.38×10 ¹²	3.77×10 ⁻¹²	5.53×10 ⁻²²	2.79×10^{4}
<i>T</i> /K	<i>k</i> (WM1)	<i>k</i> '(WM1)	Keq (IM_WM1a)	<i>k</i> (TS_WM1a)	<i>k</i> (WM1a)
240	5.11×10 ⁻¹⁷	2.90×10 ⁻²¹	2.35×10 ⁻²³	5.74×10^{2}	1.35×10 ⁻²⁰
250	3.85×10 ⁻¹⁷	4.57×10 ⁻²¹	2.02×10 ⁻²³	9.49×10^{2}	1.92×10 ⁻²⁰
278	2.27×10 ⁻¹⁷	3.23×10 ⁻²¹	1.43×10 ⁻²³	3.69×10 ³	5.28×10 ⁻²⁰
288	2.01×10 ⁻¹⁷	4.03×10 ⁻²¹	1.30×10 ⁻²³	5.85×10 ³	7.61×10 ⁻²⁰
298	1.82×10 ⁻¹⁷	3.64×10 ⁻²¹	1.19×10 ⁻²³	9.12×10 ³	1.09×10 ⁻¹⁹
308	1.69×10 ⁻¹⁷	5.29×10 ⁻²¹	1.09×10 ⁻²³	1.40×10^{4}	1.53×10 ⁻¹⁹
325	1.54×10 ⁻¹⁷	6.28×10 ⁻²¹	9.68×10 ⁻²⁴	2.79×10^4	2.70×10 ⁻¹⁹
<i>T</i> /K	<i>k</i> '(WM1a)	K_{eq} (IM_WM2)	$k(TS_WM2)$	<i>k</i> (WM2)	<i>k</i> '(WM2)
240	3.29×10 ⁻²⁶	1.64×10 ⁻²⁰	2.09×10^{12}	3.42×10 ⁻⁸	1.79×10 ⁻¹¹
250	1.01×10 ⁻²⁵	8.44×10 ⁻²¹	2.11×10^{12}	1.78×10 ⁻⁸	1.67×10 ⁻¹¹
278	3.62×10 ⁻²⁵	1.70×10 ⁻²¹	2.16×10^{12}	3.67×10 ⁻⁹	2.84×10 ⁻¹²
288	7.61×10 ⁻²⁵	1.04×10 ⁻²¹	2.17×10^{12}	2.25×10-9	2.18×10 ⁻¹²
298	1.11×10 ⁻²⁴	6.54×10 ⁻²²	2.18×10^{12}	1.43×10 ⁻⁹	1.23×10 ⁻¹²
308	2.50×10 ⁻²⁴	4.25×10 ⁻²²	2.20×10^{12}	9.33×10 ⁻¹⁰	1.13×10 ⁻¹²
325	6.01×10 ⁻²⁴	2.17×10 ⁻²²	2.21×10^{12}	4.81×10 ⁻¹⁰	6.45×10 ⁻¹³
<i>T</i> /K	Keq (IM_WM2a)	$k(TS_WM2a)$	<i>k</i> (WM2a)	<i>k</i> '(WM2a)	$K_{eq}(IM_WM3)$
240	1.52×10 ⁻²²	2.09×10^{12}	3.18×10 ⁻¹⁰	2.70×10 ⁻¹⁵	3.35×10 ⁻²²
250	9.45×10 ⁻²³	2.11×10^{12}	1.99×10 ⁻¹⁰	3.65×10 ⁻¹⁵	2.86×10 ⁻²²
278	3.03×10 ⁻²³	2.16×10^{12}	6.54×10 ⁻¹¹	1.57×10 ⁻¹⁵	1.97×10 ⁻²²
288	2.14×10 ⁻²³	2.17×10^{12}	4.65×10 ⁻¹¹	1.62×10 ⁻¹⁵	1.76×10 ⁻²²
298	1.55×10 ⁻²³	2.18×10^{12}	3.38×10 ⁻¹¹	1.20×10 ⁻¹⁵	1.60×10 ⁻²²
308	1.15×10 ⁻²³	2.20×10^{12}	2.52×10 ⁻¹¹	1.44×10 ⁻¹⁵	1.46×10 ⁻²²
325	7.23×10 ⁻²⁴	2.21×10^{12}	1.60×10 ⁻¹¹	1.24×10 ⁻¹⁵	1.27×10 ⁻²²
<i>T</i> /K	k(TS_WM3)	<i>k</i> (WM3)	<i>k</i> '(WM3)	K _{eq} (IM_WD2)	k(TS_WD2)
240	3.28×10 ¹¹	1.10×10 ⁻¹⁰	7.48×10 ⁻¹⁷	3.97×10 ⁻²⁴	8.51×10 ¹¹
250	3.30×10 ¹¹	9.43×10 ⁻¹¹	1.47×10 ⁻¹⁶	3.71×10 ⁻²⁴	8.70×10^{11}
278	3.34×10 ¹¹	6.58×10 ⁻¹¹	7.41×10 ⁻¹⁶	3.18×10 ⁻²⁴	9.19×10 ¹¹
288	3.35×10 ¹¹	5.91×10 ⁻¹¹	1.14×10 ⁻¹⁵	3.04×10 ⁻²⁴	9.35×10 ¹¹
298	3.36×10 ¹¹	5.37×10 ⁻¹¹	1.69×10 ⁻¹⁵	2.92×10 ⁻²⁴	9.50×10 ¹¹
308	3.37×10 ¹¹	4.91×10 ⁻¹¹	2.45×10 ⁻¹⁵	2.82×10 ⁻²⁴	9.66×10 ¹¹
325	3.39×10 ¹¹	4.30×10 ⁻¹¹	4.40×10 ⁻¹⁵	2.68×10 ⁻²⁴	9.90×10 ¹¹
T/K	<i>k</i> (WD1)	<i>k'</i> (WD1)	K _{eq} (IM_WD2a)	k(TS_WD2a)	<i>k</i> (WD1a)

Table S7 Effective Rate constants (cm³·molecules⁻¹·s⁻¹) for the HNO₂ + HO \rightarrow NO₂ + H₂O reaction with and without (H₂O)_n (n = 1-3) within the temperature range of 240 – 325 K.

240	1.70×10 ⁻¹¹	1.29×10 ⁻¹⁷	2.66×10 ⁻²²	6.39×10 ¹⁰	3.38×10 ⁻¹²
250	5.46×10 ⁻¹⁰	7.83×10 ⁻¹⁶	2.09×10 ⁻²²	7.82×10^{10}	3.23×10 ⁻¹²
278	3.18×10 ⁻¹⁰	1.96×10 ⁻¹⁵	1.17×10 ⁻²²	1.27×10^{11}	2.92×10 ⁻¹²
288	2.70×10-10	2.22×10-15	9.80×10 ⁻²³	1.48×10^{11}	2.84×10 ⁻¹²
298	2.32×10 ⁻¹⁰	2.49×10-15	8.33×10 ⁻²³	1.71×10^{11}	2.78×10 ⁻¹²
308	2.01×10 ⁻¹⁰	2.73×10-15	7.16×10 ⁻²³	1.95×10 ¹¹	2.72×10 ⁻¹²
325	1.62×10 ⁻¹⁰	3.19×10 ⁻¹⁵	5.68×10 ⁻²³	2.38×10 ¹¹	2.65×10 ⁻¹²
<i>T</i> /K	<i>k'</i> (WD1a)	Keq (IM_WD3)	<i>k</i> (TS_WD3)	<i>k</i> (WD2)	<i>k'</i> (WD2)
240	1.63×10 ⁻¹⁸	1.33×10 ⁻²⁴	2.96×10 ¹¹	3.93×10 ⁻¹³	5.18×10 ⁻²²
250	2.85×10 ⁻¹⁸	9.86×10 ⁻²⁵	3.69×10 ¹¹	3.64×10 ⁻¹³	1.32×10 ⁻²¹
278	1.03×10 ⁻¹⁷	4.86×10 ⁻²⁵	6.32×10 ¹¹	3.07×10 ⁻¹³	1.18×10 ⁻²⁰
288	1.32×10 ⁻¹⁷	3.92×10 ⁻²⁵	7.48×10^{11}	2.93×10 ⁻¹³	2.00×10 ⁻²⁰
298	1.64×10 ⁻¹⁷	3.21×10 ⁻²⁵	8.76×10 ¹¹	2.81×10 ⁻¹³	3.24×10 ⁻²⁰
308	1.99×10 ⁻¹⁷	2.68×10 ⁻²⁵	1.02×10^{12}	2.72×10 ⁻¹³	5.02×10 ⁻²⁰
325	2.74×10 ⁻¹⁷	2.02×10 ⁻²⁵	1.28×10^{12}	2.59×10 ⁻¹³	1.01×10 ⁻¹⁹
<i>T</i> /K	Keq (IM_WD3a)	<i>k</i> (TS_WD3a)	<i>k</i> (WD2a)	<i>k'</i> (WD2a)	Keq (IM_WT2)
240	1.07×10 ⁻²⁴	1.70×10 ¹¹	1.81×10 ⁻¹³	2.57×10 ⁻²²	2.58×10 ⁻²²
250	7.80×10 ⁻²⁵	2.19×10 ¹¹	1.71×10 ⁻¹³	6.77×10 ⁻²²	2.01×10 ⁻²²
278	3.68×10 ⁻²⁵	4.09×10 ¹¹	1.50×10 ⁻¹³	6.64×10 ⁻²¹	1.11×10 ⁻²²
288	2.92×10 ⁻²⁵	4.97×10 ¹¹	1.45×10 ⁻¹³	1.15×10 ⁻²⁰	9.28×10 ⁻²³
298	2.37×10 ⁻²⁵	5.98×10 ¹¹	1.41×10 ⁻¹³	1.92×10 ⁻²⁰	7.85×10 ⁻²³
308	1.94×10 ⁻²⁵	7.10×10^{11}	1.38×10 ⁻¹³	3.05×10 ⁻²⁰	6.73×10 ⁻²³
325	1.44×10 ⁻²⁵	9.31×10 ¹¹	1.34×10 ⁻¹³	6.38×10 ⁻²⁰	5.31×10 ⁻²³
<i>T</i> /K	$k(TS_WT2)$	<i>k</i> (WT1)	<i>k</i> '(WT1)	Keq (IM_WT2a)	<i>k</i> (TS_WT2a)
240	9.81×10 ⁹	2.53×10 ⁻¹²	4.11×10 ⁻²¹	4.11×10 ⁻²¹	2.59×10 ⁸
250	1.31×10 ¹⁰	2.63×10 ⁻¹²	1.05×10 ⁻²⁰	1.05×10 ⁻²⁰	3.41×10 ⁸
278	2.64×10 ¹⁰	2.93×10 ⁻¹²	9.01×10 ⁻²⁰	9.01×10 ⁻²⁰	6.66×10 ⁸
288	3.28×10 ¹⁰	3.04×10 ⁻¹²	1.39×10 ⁻¹⁹	1.39×10 ⁻¹⁹	8.19×10 ⁸
298	4.01×10^{10}	3.15×10 ⁻¹²	2.04×10 ⁻¹⁹	2.04×10 ⁻¹⁹	9.94×10 ⁸
308	4.84×10^{10}	3.26×10 ⁻¹²	2.87×10 ⁻¹⁹	2.87×10 ⁻¹⁹	1.19×10 ⁹
325	6.47×10 ¹⁰	3.44×10 ⁻¹²	4.97×10 ⁻¹⁹	4.97×10 ⁻¹⁹	1.57×10 ⁹
<i>T</i> /K	<i>k</i> (WT1a)	<i>k</i> '(WT1a)	Keg (IM WT3)	k(TS WT3)	<i>k</i> (WT2)
240			iic q (iiii <u>c</u>)	m(10_(12))	
	2.39×10 ⁻¹³	6.09×10 ⁻²²	1.31×10 ⁻²²	1.49×10 ¹¹	7.21×10 ⁻¹¹
250	2.39×10 ⁻¹³ 2.38×10 ⁻¹³	6.09×10 ⁻²² 1.52×10 ⁻²¹	1.31×10 ⁻²² 8.96×10 ⁻²³	1.49×10 ¹¹ 1.66×10 ¹¹	7.21×10 ⁻¹¹ 5.05×10 ⁻¹¹
250 278	2.39×10 ⁻¹³ 2.38×10 ⁻¹³ 2.36×10 ⁻¹³	6.09×10 ⁻²² 1.52×10 ⁻²¹ 1.24×10 ⁻²⁰	1.31×10 ⁻²² 8.96×10 ⁻²³ 3.64×10 ⁻²³	1.49×10 ¹¹ 1.66×10 ¹¹ 2.14×10 ¹¹	7.21×10 ⁻¹¹ 5.05×10 ⁻¹¹ 2.17×10 ⁻¹¹
250 278 288	2.39×10 ⁻¹³ 2.38×10 ⁻¹³ 2.36×10 ⁻¹³ 2.37×10 ⁻¹³	6.09×10^{-22} 1.52×10^{-21} 1.24×10^{-20} 1.87×10^{-20}	1.31×10 ⁻²² 8.96×10 ⁻²³ 3.64×10 ⁻²³ 2.77×10 ⁻²³	1.49×10 ¹¹ 1.66×10 ¹¹ 2.14×10 ¹¹ 2.32×10 ¹¹	7.21×10 ⁻¹¹ 5.05×10 ⁻¹¹ 2.17×10 ⁻¹¹ 1.68×10 ⁻¹¹
250 278 288 298	2.39×10 ⁻¹³ 2.38×10 ⁻¹³ 2.36×10 ⁻¹³ 2.37×10 ⁻¹³ 2.37×10 ⁻¹³	6.09×10^{-22} 1.52×10^{-21} 1.24×10^{-20} 1.87×10^{-20} 2.72×10^{-20}	$\begin{array}{r} 1.31\times10^{-22} \\ 8.96\times10^{-23} \\ 3.64\times10^{-23} \\ 2.77\times10^{-23} \\ 2.16\times10^{-23} \end{array}$	$\frac{1.49 \times 10^{11}}{1.66 \times 10^{11}}$ $\frac{2.14 \times 10^{11}}{2.32 \times 10^{11}}$ $\frac{2.49 \times 10^{11}}{2.49 \times 10^{11}}$	7.21×10 ⁻¹¹ 5.05×10 ⁻¹¹ 2.17×10 ⁻¹¹ 1.68×10 ⁻¹¹ 1.33×10 ⁻¹¹
250 278 288 298 308	2.39×10^{-13} 2.38×10^{-13} 2.36×10^{-13} 2.37×10^{-13} 2.37×10^{-13} 2.38×10^{-13}	6.09×10^{-22} 1.52×10^{-21} 1.24×10^{-20} 1.87×10^{-20} 2.72×10^{-20} 3.77×10^{-20}	$\begin{array}{r} 1.31\times10^{-22} \\ 8.96\times10^{-23} \\ 3.64\times10^{-23} \\ 2.77\times10^{-23} \\ 2.16\times10^{-23} \\ 1.71\times10^{-23} \end{array}$	1.49×10^{11} 1.66×10^{11} 2.14×10^{11} 2.32×10^{11} 2.49×10^{11} 2.67×10^{11}	7.21×10^{-11} 5.05×10^{-11} 2.17×10^{-11} 1.68×10^{-11} 1.33×10^{-11} 1.07×10^{-11}
250 278 288 298 308 325	2.39×10^{-13} 2.38×10^{-13} 2.36×10^{-13} 2.37×10^{-13} 2.37×10^{-13} 2.38×10^{-13} 2.40×10^{-13}	$\begin{array}{c} 6.09 \times 10^{-22} \\ 1.52 \times 10^{-21} \\ 1.24 \times 10^{-20} \\ 1.87 \times 10^{-20} \\ 2.72 \times 10^{-20} \\ 3.77 \times 10^{-20} \\ 6.41 \times 10^{-20} \end{array}$	$\begin{array}{r} 1.31\times10^{-22} \\ 8.96\times10^{-23} \\ 3.64\times10^{-23} \\ 2.77\times10^{-23} \\ 2.16\times10^{-23} \\ 1.71\times10^{-23} \\ 1.20\times10^{-23} \end{array}$	1.49×10^{11} 1.66×10^{11} 2.14×10^{11} 2.32×10^{11} 2.49×10^{11} 2.67×10^{11} 2.98×10^{11}	7.21×10^{-11} 5.05×10^{-11} 2.17×10^{-11} 1.68×10^{-11} 1.33×10^{-11} 1.07×10^{-11} 7.63×10^{-12}
250 278 288 298 308 325 <i>T</i> /K	2.39×10^{-13} 2.38×10^{-13} 2.36×10^{-13} 2.37×10^{-13} 2.37×10^{-13} 2.38×10^{-13} 2.40×10^{-13} $k'(WT2)$	$\begin{array}{c} 6.09 \times 10^{-22} \\ 1.52 \times 10^{-21} \\ 1.24 \times 10^{-20} \\ 1.87 \times 10^{-20} \\ 2.72 \times 10^{-20} \\ 3.77 \times 10^{-20} \\ 6.41 \times 10^{-20} \\ \\ \mathbf{K}_{eq} \left(\mathbf{IM}_{w}\mathbf{T3a}\right) \end{array}$	$\frac{1.31\times10^{-22}}{8.96\times10^{-23}}$ $\frac{3.64\times10^{-23}}{2.77\times10^{-23}}$ $\frac{2.16\times10^{-23}}{1.71\times10^{-23}}$ $\frac{1.20\times10^{-23}}{1.20\times10^{-23}}$	$\frac{1.49 \times 10^{11}}{1.66 \times 10^{11}}$ $\frac{1.66 \times 10^{11}}{2.14 \times 10^{11}}$ $\frac{2.32 \times 10^{11}}{2.49 \times 10^{11}}$ $\frac{2.67 \times 10^{11}}{2.98 \times 10^{11}}$ $k(WT2a)$	7.21×10^{-11} 5.05×10^{-11} 2.17×10^{-11} 1.68×10^{-11} 1.33×10^{-11} 1.07×10^{-11} 7.63×10^{-12} $k'(WT2a)$
250 278 288 298 308 325 <i>T/K</i> 240	2.39×10^{-13} 2.38×10^{-13} 2.36×10^{-13} 2.37×10^{-13} 2.37×10^{-13} 2.38×10^{-13} 2.40×10^{-13} $k'(WT2)$ 4.97×10^{-22}	$\begin{array}{c} 6.09 \times 10^{-22} \\ 1.52 \times 10^{-21} \\ 1.24 \times 10^{-20} \\ 1.87 \times 10^{-20} \\ 2.72 \times 10^{-20} \\ 3.77 \times 10^{-20} \\ 6.41 \times 10^{-20} \\ \hline K_{eq} (IM_WT3a) \\ 1.68 \times 10^{-22} \end{array}$	$\frac{11.31\times10^{-22}}{1.31\times10^{-23}}$ $\frac{3.64\times10^{-23}}{2.77\times10^{-23}}$ $\frac{2.16\times10^{-23}}{1.71\times10^{-23}}$ $\frac{1.20\times10^{-23}}{1.20\times10^{-23}}$ $\frac{k(TS_WT3a)}{4.30\times10^{11}}$	$\frac{1.49 \times 10^{11}}{1.66 \times 10^{11}}$ $\frac{1.66 \times 10^{11}}{2.14 \times 10^{11}}$ $\frac{2.32 \times 10^{11}}{2.49 \times 10^{11}}$ $\frac{2.67 \times 10^{11}}{2.98 \times 10^{11}}$ $\frac{k(WT2a)}{1.95 \times 10^{-11}}$	7.21×10^{-11} 5.05×10^{-11} 2.17×10^{-11} 1.68×10^{-11} 1.33×10^{-11} 1.07×10^{-11} 7.63×10^{-12} $k'(WT2a)$ 1.41×10^{-22}
250 278 288 298 308 325 <i>T/K</i> 240 250	2.39×10^{-13} 2.38×10^{-13} 2.36×10^{-13} 2.37×10^{-13} 2.37×10^{-13} 2.38×10^{-13} 2.40×10^{-13} $k'(WT2)$ 4.97×10^{-22} 1.17×10^{-21}	$\begin{array}{c} 6.09 \times 10^{-22} \\ 1.52 \times 10^{-21} \\ 1.24 \times 10^{-20} \\ 1.87 \times 10^{-20} \\ 2.72 \times 10^{-20} \\ 3.77 \times 10^{-20} \\ 6.41 \times 10^{-20} \\ \hline \mathbf{K}_{eq} (\mathbf{IM}_{w} \mathbf{T3a}) \\ 1.68 \times 10^{-22} \\ 1.11 \times 10^{-22} \end{array}$	$\begin{array}{r} 1.31\times10^{-22} \\ 8.96\times10^{-23} \\ 3.64\times10^{-23} \\ 2.77\times10^{-23} \\ 2.16\times10^{-23} \\ 1.71\times10^{-23} \\ 1.20\times10^{-23} \\ \hline k(TS_WT3a) \\ 4.30\times10^{11} \\ 4.53\times10^{11} \end{array}$	$\frac{1.49 \times 10^{11}}{1.66 \times 10^{11}}$ $\frac{1.66 \times 10^{11}}{2.14 \times 10^{11}}$ $\frac{2.32 \times 10^{11}}{2.49 \times 10^{11}}$ $\frac{2.67 \times 10^{11}}{2.98 \times 10^{11}}$ $\frac{k(WT2a)}{1.95 \times 10^{-11}}$ $\frac{1.48 \times 10^{-11}}{1.48 \times 10^{-11}}$	7.21×10^{-11} 5.05×10^{-11} 2.17×10^{-11} 1.68×10^{-11} 1.33×10^{-11} 1.07×10^{-11} 7.63×10^{-12} $k'(WT2a)$ 1.41×10^{-22} 3.71×10^{-22}

288	1.20×10 ⁻²⁰	3.15×10 ⁻²³	5.34×10 ¹¹	6.42×10 ⁻¹²	5.40×10 ⁻²¹
298	1.67×10 ⁻²⁰	2.39×10 ⁻²³	5.54×10 ¹¹	5.38×10 ⁻¹²	8.14×10 ⁻²¹
308	2.23×10 ⁻²⁰	1.86×10 ⁻²³	5.73×10 ¹¹	4.57×10 ⁻¹²	1.17×10 ⁻²⁰
325	3.55×10 ⁻²⁰	1.26×10 ⁻²³	6.05×10 ¹¹	3.56×10 ⁻¹²	2.10×10 ⁻²⁰

 $k_{\rm R}$ is the rate constant of Channel R; $k_{\rm eq}({\rm IM})$ is the rate constant of the process of HNO₂ + HO \rightarrow IM. $k_{\rm TS}$ is the rate constant of the process of IM \rightarrow TS \rightarrow NO₂ + H₂O. $k_{\rm R}$ is the rate constant of the process of HNO₂ + HO \rightarrow IM \rightarrow TS \rightarrow NO₂ + H₂O. $k_{\rm R} = k_{\rm eq}({\rm IM}) \cdot k_{\rm TS}$.

 $K_{eq}(IM_WM1)$ is the equilibrium constant for the process of HO^{...}H₂O + HNO₂ \rightarrow IM_WM1; $K_{eq}(IM_WM1a)$ is the equilibrium constant for the process of H_2O ···HNO₂ + OH \rightarrow IM_WM1a; K_{eq}(IM_WM2) is the equilibrium constant for the process of H₂O···HO + HNO₂ \rightarrow IM_WM2; K_{eq}(IM_WM2a) is the equilibrium constant for the process of HNO_2 ··· $H_2O + OH \rightarrow IM_WM2a$; $K_{eq}(IM_WM3)$ is the equilibrium constant for the process of HNO_2 ··· $H_2O + HO \rightarrow IM_WM3$. $k_{(TS WM1)}$ is the rate constant for the process of IM_WM1 \rightarrow TS_WM1 \rightarrow $IMF_WM1 \rightarrow (H_2O)_2 + NO_2$, $k_{(TS_WM1a)}$ is the rate constant for the process of $IM_WM1a \rightarrow TS_WM1a \rightarrow$ $IMF_WM1a \rightarrow (H_2O)_2 + NO_2$, $k_{(TS_WM2)}$ is the rate constant for the process of $IM_WM2 \rightarrow TS_WM2 \rightarrow TS_WM2$ $IMF_WM2 \rightarrow (H_2O)_2 + NO_2$, $k_{(TS_WM2a)}$ is the rate constant for the process of $IM_WM2a \rightarrow TS_WM2a \rightarrow$ $IMF_WM2a \rightarrow (H_2O)_2 + NO_2$, $k_{(TS_WM3)}$ is the rate constant for the process of $IM_WM3 \rightarrow TS_WM3 \rightarrow$ IMF_WM3 \rightarrow NO₂···H₂O + H₂O, respectively. k(WM1), k(WM1a), k(WM2), k(WM2a) and k(WM3) is the rate constant of water-assisted Channels WM1, WM1a, WM2, WM2a, and WM3. k'(WM1), k'(WM1a), k'(WM2) k'(WM2a) and k'(WM3) is the effective rate constant of water-assisted Channels WM1, WM1a, WM2, WM2a and WM3. $k(WM1) = K_{eq}(IM_WM1) \cdot k_{(TS_WM1)}, \quad k(WM1a) = K_{eq}(IM_WM1a) \cdot k_{(TS_WM1a)}, \quad k(WM2) = k_{eq}(IM_WM1a) \cdot k_{(TS_WM1a)}, \quad k(WM2) = k_{eq}(IM_WM1a) \cdot k_{(TS_WM1a)}, \quad k(WM1a) = k_{eq}(IM_WM1a) \cdot k_{(TS_WM1a)}, \quad k(W1a) = k_{eq}(IM_$ $K_{eq}(IM_WM2) \cdot k_{(TS_WM2)}, k(WM2a) = K_{eq}(IM_WM2a) \cdot k_{(TS_WM2a)}, k(WM3) = K_{eq}(IM_WM3) \cdot k_{(TS_WM3)}, respectively;$ $k'(WM1) = k(WM1) \cdot K_{eq}(HO \cdot H_2O) \cdot [H_2O], k'(WM1) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot K_{eq}(H_2O \cdot HO_2) \cdot [H_2O], k'(WM2) = k(WM1a) \cdot (HO_2) \cdot [H_2O \cdot HO_2) \cdot [H_2O], k'(WA2) + k(WA2) \cdot [H_2O \cdot HO_2) \cdot [H_2O], k'(WA2) = k(WA2 \cdot HO_2) \cdot [H_2O \cdot HO_2) \cdot [H_2O], k'(WA2) + k(WA2 \cdot HO_2) \cdot [H_2O \cdot HO_$ $k_{(WM2a)}\cdot K_{eq}(HNO_2\cdots H_2O)\cdot [H_2O],$ $k_{(WM2)}\cdot K_{eq}(H_2O\cdots HO)\cdot [H_2O],$ *k*'(WM2a) = *k*'(WM3) = $k(WM3)\cdot K_{eq}(HNO_2\cdots H_2O)\cdot [H_2O]$, respectively.

 $K_{eq}(IM_WD2)$ is the equilibrium constant for the process of HNO_2 ···($H_2O)_2 + HO \rightarrow IM_WD2$, $K_{eq}(IM_WD2a)$ is the equilibrium constant for the process of HNO₂···(H₂O)₂a + HO \rightarrow IM_WD2a, K_{eq}(IM_WD3) is the equilibrium constant for the process of HO^{$\cdot\cdot\cdot$}(H₂O)₂ + HNO₂ \rightarrow IM_WD3, K_{eq}(IM_WD3a) is the equilibrium constant for the process of HO···(H₂O)₂a + HNO₂ \rightarrow IM_WD3a, respectively. $k_{(TS_WD2)}$ is the rate constant for the process of $IM_WD2 \rightarrow TS_WD2 \rightarrow IMF_WD2 \rightarrow (H_2O)_3 + NO_2, k_{(TS_WD2a)}$ is the rate constant for the process of IM_WD2a; $k_{(TS_WD3)}$ is the rate constant for the process of IM_WD3 \rightarrow TS_WD3 \rightarrow IMF_WD3 \rightarrow (H₂O)₃ + NO₂, $k_{(TS_WD3a)}$ is the rate constant for the process of IM_WD3a \rightarrow TS_WD3a \rightarrow IMF_WD3a \rightarrow (H₂O)₃ + NO₂, respectively. *k*(WD2) is the rate constant for the process of HNO₂···(H₂O)₂ + HO \rightarrow IM_WD1 \rightarrow TS_WD1 \rightarrow IM_WD2 \rightarrow TS_WD2 \rightarrow IMF_WD2 \rightarrow (H₂O)₃ + NO₂ k(WD2a) is the rate constant for the process of HO + HNO₂···(H₂O)₂a \rightarrow $IM_WD1a \rightarrow TS_WD1a \rightarrow IM_WD2a \rightarrow TS_WD2a \rightarrow IMF_WD2a \rightarrow (H_2O)_3 + NO_2$, respectively. k(WD3) is the rate constant for the process of HO···(H₂O)₂ + HNO₂ \rightarrow IM_WD₃ \rightarrow TS_WD₃ \rightarrow IMF_WD₃ \rightarrow (H₂O)₃ + NO₂, k(WD3a) is the rate constant for the process of HNO₂ + HO···(H₂O)₂a \rightarrow IM_WD3a \rightarrow TS_WD3a \rightarrow $IMF_WD3a \rightarrow (H_2O)_3 + NO_2$, respectively. k'(WD2) is the effective rate constant for the process of HO + $HNO_{2} \cdots (H_{2}O)_{2} \rightarrow IM_WD1 \rightarrow TS_WD1 \rightarrow IM_WD2 \rightarrow TS_WD2 \rightarrow IMF_WD2 \rightarrow (H_{2}O)_{3} + NO_{2}, k'(WD2a) \text{ is } NO_{2},$ the effective rate constant for the process of HO + HNO₂...(H₂O)₂a \rightarrow IM_WD1a \rightarrow TS_WD1a \rightarrow IM_WD2a \rightarrow TS_WD2a \rightarrow IMF_WD2a \rightarrow (H₂O)₃ + NO₂, respectively, k'(WD3) is the effective rate constant for the process of $HNO_2 + HO \cdots (H_2O)_2 \rightarrow IM_WD3 \rightarrow TS_WD3 \rightarrow IMF_WD3 \rightarrow (H_2O)_3 + NO_2, k'(WD3a)$ is the effective rate constant for the process of HNO₂ + HO···(H₂O)₂ \rightarrow IM_WD3a \rightarrow TS_WD3a \rightarrow IMF_WD3a \rightarrow (H₂O)₃ + NO₂. respectively. k(WD1), k(WD2) is the rate constant of water dimer-assisted Channels WD1, WD2, respectively. k'(WD1), k'(WD2) is the effective rate constant of water dimer-assisted Channels WD1, WD2, respectively. $k_{(WD1)} =$

 $k_{(WD1)} + k_{(WD1a)}, \quad k'_{(WD1)} = k'_{(WD1)} + k'_{(WD1a)}, \\ k_{(WD2)} = k_{(WD2)} + k'_{(WD2a)}, \\ k'_{(WD2)} = k'_{(WD2)} + k'_{(WD2a)}, \\ k'_{(WD1)} = k_{eq}(HNO_{2}\cdots(H_{2}O)_{2}) \bullet [(H_{2}O)_{2}] \bullet k_{(WD1a)}, \\ k'_{(WD1a)} = k_{eq}(HO\cdots(H_{2}O)_{2}) \bullet [(H_{2}O)_{2}] \bullet k_{(WD1a)}, \\ k'_{(WD2a)} = k_{eq}(HO\cdots(H_{2}O)_{2}) \bullet [(H_{2}O)_{2}] \bullet k_{(WD2a)}, \\ k'_{(WD2a)} = k_{eq}(HO\cdots(H_{2}O)_{2}) \bullet [(H_{2}$

 $K_{eq}(IM_WT2)$ is the equilibrium constant for the process of $HNO_2\cdots(H_2O)_3 + HO \rightarrow IM_WT2$, $K_{eq}(IM_WT2a)$ is the equilibrium constant for the process of HNO_2 ···(H_2O)₃a + HO \rightarrow IM_WT2a, K_{eq}(IM_WT3) is the equilibrium constant for the process of HO···(H₂O)₃ + HNO₂ \rightarrow IM_WT3, K_{eq}(IM_WT3a) is the equilibrium constant for the process of HO···(H₂O)₃a + HNO₂ \rightarrow IM_WT3a, respectively. $k_{(TS_WT2)}$ is the rate constant for the process of $IM_WT2 \rightarrow TS_WT2 \rightarrow IMF_WT2 \rightarrow (H_2O)_4 + NO_2, k_{(TS_WT2a)}$ is the rate constant for the process of IM_WT2a; $k_{(TS_WT3)}$ is the rate constant for the process of IM_WT3 \rightarrow TS_WT3 \rightarrow IMF_WT3 \rightarrow (H₂O)₄ + NO₂, $k_{(TS_WT3a)}$ is the rate constant for the process of IM_WT3a \rightarrow TS_WT3a \rightarrow IMF_WT3a \rightarrow (H₂O)₄ + NO₂, respectively. k(WT2) is the rate constant for the process of HNO_2 ···(H_2O_3 + $HO \rightarrow IM_WT1 \rightarrow TS_WT1 \rightarrow IM_WT2 \rightarrow TS_WT2 \rightarrow TS_WT2$ $IMF_WT2 \rightarrow (H_2O)_4 + NO_2$, k(WT2a) is the rate constant for the process of HO + HNO₂···(H₂O)₃a \rightarrow IM_WT1a \rightarrow TS_WT1a \rightarrow IM_WT2a \rightarrow TS_WT2a \rightarrow IMF_WT2a \rightarrow (H₂O)₄ + NO₂, respectively. k(WT3) is the rate constant for the process of HO···(H₂O)₃ + HNO₂ \rightarrow IM_WT3 \rightarrow TS_WT3 \rightarrow IMF_WT3 \rightarrow (H₂O)₄ + NO₂. k(WT3a) is the rate constant for the process of HNO₂ + HO···(H₂O)₃a \rightarrow IM_WT3a \rightarrow TS_WT3a \rightarrow IMF_WT3a \rightarrow (H₂O)₄ + NO₂, respectively. k'(WT2) is the effective rate constant for the process of HO + HNO₂···(H₂O)₃ \rightarrow $IM_WT1 \rightarrow TS_WT1 \rightarrow IM_WT2 \rightarrow TS_WT2 \rightarrow IMF_WT2 \rightarrow (H_2O)_4 + NO_2, k'(WT2a)$ is the effective rate constant for the process of HO + HNO₂···(H₂O)₃a \rightarrow IM_WT1a \rightarrow TS_WT1a \rightarrow IM_WT2a \rightarrow TS_WT2a \rightarrow $IMF_WT2a \rightarrow (H_2O)_4 + NO_2$, respectively. k'(WT3) is the effective rate constant for the process of $HNO_2 +$ HO... $(H_2O)_3 \rightarrow IM_WT3 \rightarrow TS_WT3 \rightarrow IMF_WT3 \rightarrow (H_2O)_4 + NO_2, k'(WT3a)$ is the effective rate constant for the process of $HNO_2 + HO^{(1)}(H_2O)_3 \rightarrow IM_WT3a \rightarrow TS_WT3a \rightarrow IMF_WT3a \rightarrow (H_2O)_4 + NO_2$, respectively. k(WT1), k(WT2) is the rate constant of water dimer-assisted Channels WT1, WT2, respectively. k'(WT1), k'(WT2) is the effective rate constant of water dimer-assisted Channels WT1, WT2, respectively. $k_{(WT1)} = k_{(WT1)} + k_{(WT1a)}$, $k'(w_{T1}) = k'(w_{T1}) + k'(w_{T1a}), \\ k(w_{T2}) = k(w_{T2}) + k(w_{T2a}), \\ k'(w_{T2a}) = k'(w_{T2}) + k'(w_{T2a}), \\ 1/k(w_{T1a}) = 1/k(w_{T1a}) + 1/k(w_{T1a}), \\ 1/k(w_{T1a}) = 1/k(w_{T1a}) + 1/k(w_{T1a}), \\ 1/k(w_{T1a}) = 1/k(w_{T1a}) + 1/k(w_{T1a}), \\ 1/k(w_{T1a}) = 1/k(w_{T1a}) + 1/k(w_{T1a}) +$ $K_{eq}(HNO_2 \cdot \cdot \cdot (H_2O_3) \cdot [(H_2O_3) \cdot k_{(WT1)},$ $1/(TS_WT1a)$ $^{+}$ 1/(TS WT2a), *k*'(wt1) = k'(WT1a) = = $K_{eq}(HNO_2\cdots(H_2O)_{3a})\bullet[(H_2O)_3]\bullet k_{(WT1a)},$ *k*'(WT2) = $K_{eq}(HO\cdots(H_2O)_3)\bullet[(H_2O)_3]\bullet k_{(WT2)},$ k'(wt2a) = $K_{eq}(HO\cdots(H_2O)_{3a}) \cdot [(H_2O)_3] \cdot k_{(WT3a)}$, respectively.