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This document provides detailed proofs for the asymptotic properties given in Sec-
tion 4. Firstly, we demonstrate the proof of Theorem 1.

Proof of Theorem 1. Define Zn(t) =
∑n

i=1 I(Ri ≥ t). When t < τH , Zn(t)
n →

1 −H(∞, t) almost surely by the strong law of large numbers, and 1 −H(∞, t) > 0.
Hence, Zn(t)→∞, which implies Y(n) → τH . In addition, we have that F (τH) ≤ p < 1.
By the conclusion of [1], we obtain

sup
t∈R
|F̂n(t)− F (t)| → 0

in probability. Since Y(n) ≤ τH almost surely, it follows that |F̂n(Y(n))− F (Y(n))| → 0
in probability. When τH < ∞, Y(n) → τH in probability and F is continuous at τH .
Thus

F̂n(Y(n)) = F (Y(n)) + op(1)→ F (τH) = pF0(τH)

in probability. When τH =∞, Y(n) →∞ in probability, so F̂n(Y(n))→ p = pF0(τH) in
probability, again. Note that

τF0
= sup{t : F0(t) < 1} = sup{t : F (t) < p}.

Hence F̂n(Y(n))→ p if and only if F0(τH) = 1, that is τF0
≤ τH , and then the theorem

follows. �
Proof of Theorem 2. Define

Xn(t) =

{
Λ̂∗n(D)− Λ̂∗n(t)

D − t
− Λ̂∗n(t)− Λ̂∗n(0)

t

}
g{t(D − t)}, 0 < t < D,

and

X0
n(t) =

{
Λ̂∗0n (D)− Λ̂∗0n (t)

D − t
− Λ̂∗0n (t)− Λ̂∗0n (0)

t

}
g{t(D − t)}, 0 < t < D,



where Λ̂∗n(t) = − log[−1
p̂{exp(−Λ̂n(t))−1 + p̂}], Λ̂n(t) is obtained by F̂n, and Λ̂∗0n (t) =

− log[−1
p{exp(−Λ̂n) − 1 + p}]. Notice that Λ∗(0) = Λ̂∗0n (0) = Λ(0) = 0. Then X(t) =

tq−1(D − t)q−1{tΛ∗(D) − DΛ∗(t)}. For any ε > 0, let c1 ∈ (0,min{X(τ) − X(τ −
ε), X(τ) −X(τ + ε)}) relying on ε, τ1, τ2, p, θ. Then, if |t − τ | > ε, we have X(τ) −
X(τ + ε) > c1. Noting that Xn(t) attains its maximum at τ̂n, for sufficiently large n,
we have

P (|τ̂ − τ | > ε)

≤ P (X(τ)−X(τ̂) > c1)

≤ P (X(τ)−X(τ̂) +Xn(τ̂)−Xn(τ) > c1)

≤ P (|Xn(τ̂)−X(τ̂)|+ |X(τ)−Xn(τ)| > c1)

= P (|Xn(τ̂)−X(τ̂)|+ |X(τ)−Xn(τ)| > c1, sup
τ1<t<τ2

|Xn(t)−X(t)| > c1

2
)

+P (|Xn(τ̂)−X(τ̂)|+ |X(τ)−Xn(τ)| > c1, sup
τ1<t<τ2

|Xn(t)−X(t)| ≤ c1

2
)

≤ P ( sup
τ1<t<τ2

|Xn(t)−X(t)| > c1

2
) + P (∅)

≤ P ( sup
τ1<t<τ2

|Xn(t)−X0
n(t)| > c1

4
) + P ( sup

τ1<t<τ2
|X0

n(t)−X(t)| > c1

4
)

≤ P (Dτ q−1
1 (D − τ2)q−1 sup

τ1<t<τ2
|U0
n(t)|+ τ q2 (D − τ2)q−1U0

n(D) >
c1

4
)

+P ( sup
τ1<t<τ2

|Xn(t)−X0
n(t)| > c1

4
).

We can obtain the last inequality by

X0
n(t)−X(t) = tq−1(D − t)q−1[t{Λ̂∗0n (D)− Λ∗n(D)} −D{Λ̂∗0n (D)− Λ∗n(D)}]

= tq−1(D − t)q−1U0
n(D)− tq−1(D − t)q−1U0

n(t),

where U0
n = Λ̂∗0(t)− Λ∗(t). Consequently, there exist c2 > 0 and c3 > 0, depending on

c1, τ1, τ2, D and q, such that

P (|τ̂ − τ | > ε)

≤ P ( sup
τ1<t<τ2

|U0
n(t)| > c2) + P (U0

n(D) > c3) + P ( sup
τ1<t<τ2

|Xn(t)−X0
n(t)| > c1

4
)

= I1 + I2 + I3. (1)

From the definition of Λ∗(t), we find that

|U0
n(t)| = | log(−1

p
{e−Λ̂n(t) − 1 + p})− log(−1

p
{e−Λ(t) − 1 + p})|

=

∣∣∣∣ e−α(t)

e−α(t) − 1 + p

∣∣∣∣ · |Λ̂n(t)− Λ(t)|, (2)

where α(t) is between Λ̂(t) and Λ(t). Thus, exp(−α(t)) lies on the segment between

Ŝ(t) = 1 − F̂n(t) and S(t) = 1 − F (t) = 1 − pF0(t). For interval-censored data,

according to [1], supt∈[0,τF0 ] |F̂n(t) − F (t)| → 0 almost surely for τF0
≤ τG. Thus for

2



any α < 1− pF0(D),

exp(−α(t)) > [1− F (D)]− α = [1− pF0(D)]− α = φ(D),

provided that τF0
> D. It follows (2) that

|U0
n(t)| ≤ 1

φ(D)− 1 + p
|Λ̂n(t)− Λ(t)| = 1

φ(D)− 1 + p
|Un(t)|.

By the assumption

h(l, r) > 0, if 0 < F0(l) < F0(r) < 1. (3)

and the likelihood function L(β, θ, p, τ |Oi, i = 1, . . . , n), there exists c4 > 0 relying on
c1, c2, τ1, τ2, D, q, p and F0, satisfying

I1 ≤ P ( sup
τ1<t<τ2

|Un(t)| > c4, τ2 ≤ Y(n)) + P (Y(n) < τ2)

≤ P ( sup
τ1<t<τ2

|Un(t ∧ Y(n))| > c4) +

n∏
i=1

P (Ri < τ2). (4)

We know that

Λ̂n(t ∧ Y(n))− Λ(t ∧ Y(n)) = log
1− F̂n(t ∧ Y(n))

1− F (t ∧ Y(n))
. (5)

By P (limn→∞ supt∈R |F̂n(t)−F (t)| = 0) = 1 obtained by [1], the first term on the right
side of last inequality of (4) converges to 0 as n→∞. Next, by (1), I2 ≤ P (|Un(D)| >
c3, Y(n) ≥ D) + P (Y(n) < D). Similarly, I2 converges to 0 as n→∞.

In order to prove I3 → 0, we rewrite Xn(t) and X0
n(t) as

Xn(t) = tq−1(D − t)q−1[t{Λ̂∗n(t)− Λ̂∗n(t)} − (D − t)Λ̂∗n(t)], (6)

and

X0
n(t) = tq−1(D − t)q−1[t{Λ̂∗0n (D)− Λ̂∗0n (t)} − (D − t)Λ̂∗0n (t)]. (7)

By (4) and (5),

I3 ≤ P ( sup
τ1<t<τ2

|Xn(t)−X0
n(t)| > c1

4
, Y(n) ≥ D) + P (Y(n) < D)

≤ P (2 sup
τ1<t<τ2

|Λ̂∗0n (t)− Λ̂∗0n (t)|τ q2 (D − τ2)q−1 >
c4

8
)

+P ( sup
τ1<t<τ2

|Λ̂∗n(t)− Λ̂∗0n (t)|τ q−1
2 (D − τ2)q >

c4

8
) + P (Y(n) < D)

= I31 + I32 +

n∏
i=1

P (Ri < D).
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We can see that

I31 ≤ P (| log(p̂)− log(p)|+ sup
τ1<t<τ2

∣∣∣∣∣log
eΛ̂n(t) − 1 + p̂

eΛ̂n(t) − 1 + p

∣∣∣∣∣ > c4

8
).

Since p̂ converges to p in probability, and sup0<t<D |Λ̂n(t)−Λ(t)| → 0, we have I31 → 0.
Similarly, I32 → 0. This completes the proof of Theorem 2. �

In order to show the proof of Theorems 3-5, we need some lemmas. We first state
some conditions from [2].

Condition 1.
√
nPn l̇µ(µ0,ν0) = Op∗(1).

For i.i.d. observations, Condition 2 holds automatically if P l̇2µ(µ0,ν0) < ∞ by the
central limit theorem.

Condition 2.

|
√
n(Pn − P )l̇µ(µ̂, ν̂)−

√
n(Pn − P )l̇µ(µ0,ν0)|

1 +
√
n|µ̂− µ0|

= op∗(1),

where |µ̂− µ0| = op∗(1) and |ν̂ − ν0| = op∗(1).

Condition 3.
√
nP l̈µν(µ0,ν0)|ν̂ − ν0| = Op(1).

When ν̂ is a
√
n-consistent, this condition holds automatically.

Condition 4. (Smoothness Condition) For (µ,ν) ∈ Dn,

|P l̇µ(µ,ν)−P l̇µ(µ0,ν0)−P l̈µµ(µ0,ν0)(µ−µ0)−P l̈µν(µ0,ν0)(ν−ν0)| = o(|µ−µ0|)+o(|ν−ν0|),

where Dn = {(µ,ν) : |µ− µ0| ≤ ηn ↓ 0, |ν − ν0| ≤ cn1/2} for some constant c.

Condition 5. Under the probability P ,

√
n

[
(Pn−P )l̇µ(µ0,ν0)

ν̂ − ν0

]
d−→ Λ =

[
Λ1

Λ2

]
, (8)

where Λ ∼ N4(0,Σ) with Σ being a 4× 4 positive definite matrix.
The following Lemmas 1-4 are due to [2], which also correspond to Theorem 6.1 in

[3] for the semi-parametric model with a infinite-dimensional parameter space.

Lemma 1. Suppose that µ0 is the unique solution to P l̇µ(µ,ν0) = 0 and ν̂ such that
|ν̂ − ν0| = op∗(1). If

sup
µ∈Θ1,|ν−ν0|≤ηn

|Pn l̇µ(µ,ν)− P l̇µ(µ,ν0)|
1 + |Pn l̇µ(µ,ν)|+ |P l̇µ(µ,ν0)|

= op∗(1)

for every sequence {ηn} ↓ 0, then µ̂ almost surely solving Pn l̇µ(µ̂, ν̂) = op∗(1) converges
in outer probability to µ0.
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Lemma 2. Suppose that the class of functions {ψ(µ,ν) : |µ−µ0| < γ, |ν−ν0| < γ} is
P -Donsker for some γ > 0, and that P |ψ(µ,ν|X)−ψ(µ0,ν0|X)|2 → 0, as |µ−µ0| → 0

and |ν − ν0| → 0. If µ̂
p∗−→ µ0 and ν̂

p∗−→ ν0, then

|
√
n(Pn − P )(ψ(µ̂, ν̂)− ψ(µ0,ν0))| = op∗(1).

We should note that the conditions of Lemma 2 imply Condition 2. However, there
is a set of simple sufficient conditions for Condition 2, thus we will verify the conditions
of Lemma 2 in the proof of Theorem 5 below.

Lemma 3. Suppose that µ̂ satisfies Pn l̇µ(µ̂, ν̂) = op∗(n−1/2) and is a consisten-

t estimator of µ, which is the unique point for which P l̇µ(µ,ν0) = 0, and ν̂ is

an estimator of ν0 satisfying |ν̂ − ν0| = Op∗(n−1/2). Then under Conditions 1-4,√
n(µ̂− µ0) = Op∗(1).

Lemma 4. Suppose that µ0 is the unique solution to P l̇µ(µ,ν0) = 0 and ν̂ is an

estimator of ν0 satisfying |ν̂−ν0| = Op∗(1). Then under Conditions 2-5,
√
n(µ̂−µ0)

d−→
{−P l̈µµ(µ0,ν0)}−1N4(0,V ), where V = Var(Λ1 + P l̈µν(µ0,ν0)Λ2).

Lemma 5. For l̇β(µ,ν|O) and l̇θ(µ,ν|O) defined in (12) and (13), if |µ−µ0| ≤ ηn ↓ 0

and |ν − ν0| ≤ cn−1/2, then P (l̇µ(µ,ν)− l̇µ(µ0,ν0))2 = op∗(1).

Proof. See Lemma 5 of [5].
Proof of Theorem 3. To prove the consistency of the pseudo estimator µ̂, we
mainly need

sup
µ∈Θ1,|ν−ν0|≤ηn

|Pn l̇µ(µ,ν)− P l̇µ(µ,ν0)| = op∗(1)

for every sequence {ηn} ↓ 0. Then the consistency of µ̂ follows from Lemma 1. Since

|Pn l̇µ(µ,ν)− P l̇µ(µ,ν0)| ≤ |(Pn − P )l̇µ(µ,ν)|+ |P (l̇µ(µ,ν)− l̇µ(µ,ν0))|,

and P l̈µµ(µ,ν|O) obviously tends to zero when |ν − ν0| ≤ α ↓ 0. We need to show

that the class of the functions Fα ≡ {l̇µ(µ,ν) : µ ∈ Θ1 ⊂ R2, |ν − ν0| ≤ ηn} is a
VC-class for some ηn > 0, where Θ1 = {µ = (β, θ)′ : β ≥ A1, θ ≥ A2}. This implies

that the uniform strong law of large numbers holds, i.e., supf∈Fn
(Pn − P )f

p−→ 0 ;
See [4], Chap. 2.6-2.7, for details. Let F1α = {I(−∞,−τ ](R) : |τ − τ0| ≤ α1}, and
F2α = {I(−∞,−τ ](L) : |τ − τ0| ≤ α1}. Then the VC-indexes of the class of functions
F1α and F2α are both 2 by Example 2.6.1 of [4]. Thus the class of functions

{I(−∞,π](L)I(π,∞)(R)
Re−βR−θ(R−τ) − Le−βL

e−βL − e−βR−θ(R−τ)
: µ ∈ Θ1 ⊂ R2, |ν − ν0| ≤ α}

is Donsker by Lemma 2.6.18 and Example 2.10.8 of [4], because (Re−βR−θ(R−τ) −
Le−βL)/(e−βL − e−βR−θ(R−τ)) is bounded. It is similar to show that the other classes
of functions are also Donsker. Thus the class of functions of Fα is VC-class by applying
Example 2.10.7 and Theorem 2.10.6 of [4]. Finally, by Lemma 1, µ̂ is consistent. �
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Proof of Theorem 4. We first verify the stochastic equicontinuity condition:

|
√
n(Pn − P ){l̇µ(µ̂, ν̂)− l̇µ(µ0,ν0)}| = op∗(1). (9)

Let Fγ = {l̇µ(µ,ν) − l̇µ(µ0,ν0) : |µ − µ0| ≤ γ, |ν − ν0| ≤ γ}. Similar to the proof
of Theorem 1 we can show that F is a VC-class. Thus (9) follows from Lemma 2 to-
gether with Lemma 5. Next, the smoothness Condition 4 holds by P l̇µ(µ,ν|O) <∞,

P l̈µµ(µ,ν|O) < ∞, and Lemma 5, and Pn l̇µ(µ0,ν0) converges in distribution to a
normal random variable by the central limit theorem. Thus

√
n|µ̂ − µ| = Op∗(1) by

Lemma 3. �
Proof of Theorem 5. By the consistency of p̂ and τ̂ together with the Slutsky’s
theorem and the central limit theorem, we can show that (8) holds for normally dis-
tributed Λ1 with mean zero and positive variance. Hence by Lemma 4,

√
n(µ̂−µ0) is

asymptotically normal with mean 0 and variance {P l̈µµ(µ0,ν0)}−2V . �
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