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This document provides detailed proofs for the asymptotic properties given in Sec-

tion 4. Firstly, we demonstrate the proof of Theorem 1.

Proof of Theorem 1. Define Z,(t) = > I(R; > t). When ¢ < 7g, ZT;Lt) —
1 — H(oo,t) almost surely by the strong law of large numbers, and 1 — H(oo,t) > 0.
Hence, Z,(t) — oo, which implies Y{,,) — 7p. In addition, we have that F'(ty) <p < 1.

By the conclusion of [I], we obtain

L~

sup [, (t) — F(t)] = 0
teER

in probability. Since Y{,) < 7 almost surely, it follows that \Fn(Y(n)) —F(Y)| =0

in probability. When 77 < oo, Y(n) — 7g in probability and F' is continuous at 7.
Thus

Fo(Yiny) = F(Y) + 0p(1) = F(1r) = pFo(7)

in probability. When 7y = 00, Y(;,) — oo in probability, so Fn(Y(n)) — p = pFy(7g) in
probability, again. Note that

TR, = sup{t : Fy(t) < 1} =sup{t: F(t) < p}.

Hence Fn(Y(n)) — p if and only if Fy(7y) = 1, that is 75, < 77, and then the theorem

follows. O
Proof of Theorem 2. Define

Xu(t) = {A;<D> — M) A - A } D 1)}, 0<t <D,

D—t t

and

4 A (O)}g{t(D—t)},0<t<D,



where A% (t) = — log[—%{exp(—f&n(t)) —1+4p}], A, (t) is obtained by F,, and AX0(t) =
—log[—L{exp(—A,) — 1 + p}]. Notice that A*(0) = A;*(0) = A(0) = 0. Then X(t) =
ti=Y(D — )47 HtA* (D) — DA*(t)}. For any ¢ > 0, let ¢; € (0, min{X (1) — X(7 —
), X(1) — X (7 +¢)}) relying on €, 71, 72, p, 6. Then, if |t — 7| > ¢, we have X(7) —
X (74 ¢€) > ¢1. Noting that X,,(¢) attains its maximum at 7, for sufficiently large n,
we have

P(|7 — 71| >¢)

< P(X(T)—X ’f) >01)

< P(X(1) = X(7) + Xn(7) — Xn(7) > 1)

< P(Xa(7) = X(7)| + [X(7) = Xu(7)| > 1)

= P(IXa(7) = X()| + [X (1) = Xa(n)] > e1, sup |Xa(t) = X(0)] > )
FP(Xn(?) = X (D) +1X(7) = Xa(r)] > 1, swp [ Xalt) = X(1)] < )

< P(swp |Xa(t) = X(0) > ) + P(0)

< P(swp [Xn(t) = X2 > )+ P sup |X00) = X (5] > )

< PDATH D= m)! sup [UR)]+ (D — )" URD) > )

Cc
+P( sup | Xu(t) = Xp(1) > ).
T1<t<T2

We can obtain the last inequality by

X3 = X(1) = #71(D — i f{A(D) - A5(D)} - D{A(D) - A;(D)}
14D — )T UY(D) — 117 (D — )T,

where U = f\E‘;(t) — A*(t). Consequently, there exist co > 0 and ¢3 > 0, depending on
c1, T1, T2, D and ¢, such that

P(|7 — 7| >¢)
< P(sup [UX(H)] > e2) + P(UYD) > ¢5) + P(_sup [ Xo(t) = X(1)] > )
T1<t<T2 71 <t<T2 4
= L+ 1L+ Is. (1)
From the definition of A*(t), we find that
1, _A 1, _
Un ()] = [log(——{e A —14p}) - log(—{e MO —1 4 p})|
e o) A A
= M"| n(t) — A(D)], (2)

where a(t) is between A(t) and A(t). Thus, exp(—a(t)) lies on the segment between

A

S(t) = 1— E,(t) and S(t) = 1 — F(t) = 1 — pFy(t). For interval-censored data,
according to [I], supejor,, ) [Fn(t) — F(1)] — 0 almost surely for 7, < 7¢. Thus for



any a < 1 — pFy(D),
exp(—a(t)) > [1 = F(D)] — = [l = pFo(D)] — a = ¢(D),
provided that 75, > D. It follows that

1 A 1
U0 < ————|A —
By the assumption

h(l,r) >0, if 0 < Fy(l) < Fp(r) < 1. (3)

and the likelihood function L(53,0,p,7|0;, i = 1,...,n), there exists ¢4 > 0 relying on
c1,c9,71,To, D, q,p and Fj, satisfying

Iy < P( sup |Un(t)| > ca, 72 S Y(y)) + P(Y(n) < 72)

T1<t<To
< P( sup |Un(tAY(y) >C4)+HP(Ri<TQ)- (4)
T1<t<To i1

We know that

A

A 1—Fn(t/\Yv(n))

An(t/\Y‘(n)) _A<t/\Y(n)) = log 1 —F(t/\}/( )) : (5)

By P(lim,, o0 Sup,cg |Fin(t) = F(t)| = 0) = 1 obtained by [I], the first term on the right
side of last inequality of () converges to 0 as n — oo. Next, by (1)), o < P(|Un(D)| >
3, Y(n) = D) + P(Y(,) < D). Similarly, I converges to 0 as n — oco.

In order to prove I3 — 0, we rewrite X,,(t) and X2(t) as

Xa(t) = 171D = ) [HAL(D) — A0} = (D~ DAL )] (6)
and
X0(0) = 171D = ) A (D) = AP0} — (D~ )AL (D). (7)
By and ,
I; < P(sup |Xa(t) = X020 > 5, Y 2 D) + P(Yy < D)
T1<t<T2
< P@2 sup [A() - AL(0)IH(D - )Tt > )
T <t<Ty 8
+P( sup [An() =A@ (D = )" > ) + PV < D)
T1<t<To

n
= I31+ I3s +HP(Ri < D).
=1



We can see that

eAn(t) — ]_ —'—]3
log —

04)
eMn) — 14 p

I31 < P(]log(p) —log(p)| + sup <)

T1 <t<7’2

Since p converges to p in probability, and supy., p |An(t) —A(t)| = 0, we have I3; — 0.
Similarly, I3o — 0. This completes the proof of Theorem 2. O

In order to show the proof of Theorems 3-5, we need some lemmas. We first state
some conditions from [2].

Condition 1. \/nP,l,(po,v0) = Op-(1).
For i.i.d. observations, Condition 2 holds automatically if Pli(uo,ug) < o0 by the
central limit theorem.

Condition 2.

V(P — P)lu(fr, 0) — /(P — P)lu(po, vo)|
1+ v/nlf = pol

= Opx(l)’
where |1 — pro| = 0p(1) and [0 — vo| = 0, (1).

Condition 3. /1Pl (po,v0)|P — vo| = O,(1).
When 2 is a y/n-consistent, this condition holds automatically.

Condition 4. (Smoothness Condition) For (p,v) € D,,

| Py (b, 1) = Pl (180, 10)— Ply (B0, v0) (1= H0) = Pl (Ho, v0) (v—10) | = o(|pt—pro] ) +o(|v—w)),

where D,, = {(p,v) : |t — po| < 1 10, |v — 1| < en'/?} for some constant c.

Condition 5. Under the probability P,

_p)i A
(P, Jf)lu(uo,vo)] g)A:[ }
V — g A2

vn (8)

where A ~ N4(0,¥) with X being a 4 x 4 positive definite matrix.
The following Lemmas 1-4 are due to [2], which also correspond to Theorem 6.1 in
[3] for the semi-parametric model with a infinite-dimensional parameter space.

Lemma 1. Suppose that pg is the unique solution to Piu(u, vy) = 0 and U such that
10— vo| = 0p-(1). If

Pl (p,v) — Pl,(u,
sup ’ IL(H‘ V) u(ﬂ VO)’ _ Op*(1>

neO lv—vo|<n, 1 + |Pniu(l‘7 v)|+ |Piu(ﬂ7 vo)|

for every sequence {n,} | 0, then f1 almost surely solving Pniu (o, 0) = 0p- (1) converges
in outer probability to pg.



Lemma 2. Suppose that the class of functions {(p,v) : |p—po| < v, |v—ro| < v} is
P-Donsker for some~y > 0, and that Pl (u, v|X)—(po, 0| X)|[? = 0, as |p—po| — 0

and lv —vy| — 0. If fu LN Ko and v 2w, then

V(P — P) (¢ (2, 0) — ¥ (o, v0))| = 0p- (1).

We should note that the conditions of Lemma 2 imply Condition 2. However, there
is a set of simple sufficient conditions for Condition 2, thus we will verify the conditions
of Lemma 2 in the proof of Theorem 5 below.

Lemma 3. Suppose that fu satisfies Pulu(ft, ) = op-(n~"?) and is a consisten-
t estimator of p, which is the unique point for which Pl,(p,v0) = 0, and U is
an estimator of vy satisfying |0 — vy| = Op- (n=Y2). Then under Conditions 1-4,

Vil — o) = Oy (1),
Lemma 4. Suppose that po is the unique solution to Piu(p, vy) = 0 and v is an

estimator of vy satisfying |0—1p| = Op+(1). Then under Conditions 2-5, v/n(f1—po) 4
{=Pluu(po, 1)} IN4(0, V), where V = Var(A; + Pl (o, vo)A2).

Lemma 5. Forlg(p,v|O) andig(p,v|O) defined in (12) and (13), if |u—po] < nn L 0
and |v — vo| < enV2, then P(i,(11,v) — 1,(pt0,10))* = 0p-(1).

Proof. See Lemma 5 of [5].
Proof of Theorem 3. To prove the consistency of the pseudo estimator [, we
mainly need

sup | Polu (2, v) — Pl (p,10)] = 0pe(1)
pEB,|lv—rp|<n,

for every sequence {n,} | 0. Then the consistency of fi follows from Lemma 1. Since
| Palyu(12,v) = Ply(p,00)| < [(Pr = P)lu(psv)| + [P, v) = l(p2,00))]4

and Pl,,,,(p1,v|0) obviously tends to zero when |v — vy < o | 0. We need to show
that the class of the functions F,, = {i,(p,v) : p € ©1 C R% v — 1| < 1} is a
VC-class for some 7, > 0, where ®1 = {uu = (5,0) : § > A1,6 > As}. This implies
that the uniform strong law of large numbers holds, i.e., supsep (Pn — P)f 20,
See [4], Chap. 2.6-2.7, for details. Let Fio = {[(_o,—r(R) : |7 — 10| < a1}, and
Foo = {I(—o,—r)(L) : |7 — 70| < a1}. Then the VC-indexes of the class of functions
Fi, and Fy, are both 2 by Example 2.6.1 of [4]. Thus the class of functions

Re—BR—6(R—7) _ [,—BL ,
{I(—oo,ﬂ](L)I(moo)(R) o—BL _ o~ BR—O(R—7) tp €O CRY ’V - V0| < a}

is Donsker by Lemma 2.6.18 and Example 2.10.8 of [4], because (Re #H-0(F-7) _
Le Bl J(e=BL — ¢=BE-0(F=7)) is bounded. It is similar to show that the other classes
of functions are also Donsker. Thus the class of functions of Fy, is VC-class by applying
Example 2.10.7 and Theorem 2.10.6 of [4]. Finally, by Lemma 1, fi is consistent. [



Proof of Theorem 4. We first verify the stochastic equicontinuity condition:
V(Pa = P, 2) = lu(po, 10) } = 0p- (1) (9)

Let Fy = {iu(p,v) — lu(po,vo) : | — pol < 7, |v — vo| < 7} Similar to the proof
of Theorem 1 we can show that F' is a VC-class. Thus @ follows from Lemma 2 to-
gether with Lemma 5. Next, the smoothness Condition 4 holds by Pl,(u,v|O) < oo,
Pl',‘“(p, v|0) < oo, and Lemma 5, and Pni”(uo,uo) converges in distribution to a
normal random variable by the central limit theorem. Thus \/n|ft — p| = O,p-(1) by
Lemma 3. O
Proof of Theorem 5. By the consistency of p and 7 together with the Slutsky’s
theorem and the central limit theorem, we can show that holds for normally dis-
tributed A; with mean zero and positive variance. Hence by Lemma 4, /n(ft — po) is
asymptotically normal with mean 0 and variance {Pl,,,(po,v0)} 2V O
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