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Introduction

This is a supplemental material for the PRIMUS article with the same title, published in the Special Issue
on Modeling in Differential Equations Courses. This material is available for download from the PRIMUS
website. The motivation for the main PRIMUS article was two-fold:
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1. We wanted to discuss and illustrate various free computational resources that can be used for numer-
ically solving systems of linear or nonlinear differential equations that make investigation of realistic
modeling scenarios possible, along with creating reproducible dynamic documents that combine plain
text, TEX expressions and R or Python code with the purpose of creating publication quality project
modules and reports, lecture notes, exams, tutorials, papers etc.

2. We wanted to promote SIMIODE, an online community for faculty and students that provides rich
repositories with interesting applications, student projects and modeling scenarios, lecture notes and
tutorials, video, data, instructional technologies, discussion areas etc.

SIMIODE provides a comprehensive community approach to motivating the study of differential equations
from a modeling perspective. See [1] for more details. Another online community dedicated to providing
resources that support the teaching and learning of ordinary differential equations is CODEE: Community
of Ordinary Differential Equations Educators, [2].

Installing TEX R, Python and RStudio

In order to be able to create dynamic documents with R and Python, using R Markdown with the Knitr R
package, we need to install TEX, R, Python, and RStudio. The following software installers are available for
Windows, Mac, and Linux.

• MiKTeX installer for Windows: http://miktex.org/download

• MacTeX installer for Mac: http://tug.org/mactex/

• R installers: http://cran.stat.ucla.edu/

• RStudio installers: https://www.rstudio.com/

• Anaconda distribution: https://www.anaconda.com/download/

The Anaconda distribution is an open source, easy-to-install Python and R distribution. It includes the
most popular scientific packages for Python and more than 80 of the most used R packages for data science.
The Anaconda Navigator, which is installed automatically with the Anaconda distribution, is a graphical
interface that offers a one stop solution to scientific computing with Python and R. It contains the new
Jupyter Lab, Jupyter Notebook, RStudio, and Spyder IDE.

Computing with R and Python on the Cloud

We list some free resources for cloud-based computing with R and Python:

• CoCalc: https://cocalc.com/

• SageMath: http://www.sagemath.org/

• MS Azure Notebooks: https://notebooks.azure.com/

In particular, CoCalc: Collaborative Calculation in the Cloud, offers free and paid accounts for online
computing using SageMath, R, Python, Julia, Octave, etc., but it also offers document authoring capabilities
using Jupyter Notebooks based on Markdown and LATEX . Additionally, CoCalc allows for the creation of
TEX files with embedded SageMath code. This feature can be used to create randomized exams and homework
assignments, similar to what can be done in RStudio using R Markdown. The Microsoft Azure Notebooks
provide free cloud-based computing environments for R and Python. One can also set up a server and run
the free RStudio server in the Cloud to have a web-based computing environment for R and Python.
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It is worth mentioning that for expensive commercial software, including Matlab, Mathematica, Maple, SAS
and SPSS, the CUNY Virtual Desktop provides free remote access anytime, anywhere to computing resources
for all CUNY students and faculty.

Creating Dynamic Documents in RStudio

We can create dynamic documents in RStudio, [3], using the R Markdown format, [4], which allows us to
write lecture notes, randomizable exams, project reports, presentations and even publication quality papers.
The default computational engine is the R programming language [5], but it can be changed to Python (plus
a few other options), and the same R Markdown document can contain both R and Python code chunks.
However, running Python code inside R Markdown requires the R package reticulate, which provides R
interface to Python.

R Markdown is a custom version of Markdown, which is a simple format that combines plain text, LATEX ex-
pressions (without the heavy mark-up structure of a typical LATEX document), and R or Python code chunks.
The R Markdown document is rendered into the final publication format after clicking the Knit button
in RStudio, and the same source file can produce different output formats. The LATEX expressions, along
with all numerical and graphical output, obtained from the code chunks during the knitting process, are
automatically included into the output document with publication quality formatting and color-coding of
the code chunks. In our experience, we find the R Markdown documents extremely useful for developing
educational materials, as well as organizing, implementing, and maintaining research projects. R Markdown
and the Knitr package offer the following features and more:

• Many output formats, including HTML, PDF, and MS Word.

• Interactive R Notebooks using the R Markdown format.

• Presentations with Beamer, ioslides, reveal.js and Slidy.

• Including raw LATEX expressions within Markdown.

• Including chunks of R, Python, SQL, Bash and other code.

• Expanded support for tables and bibliographies.

• Compiling HTML, PDF or MS Word notebooks from R scripts.

• Creating interactive R Markdown documents with Shiny.

Note that PDF output (including Beamer slides) requires TEX. In fact, this supplement was created from a
simply formatted R Markdown document using the authoring capabilities in the Knitr R package in RStudio.
The most interactive formats are based on the R Notebooks and the more advanced Shiny documents that
allow for developing interactive web-based applications. The same R Markdown format is used to create the
interactive R Notebooks since the code chunks can be executed individually and the output they produce
is immediately rendered below the code chunk. Thus, the R Notebooks allow for interactive step-by-step
development inside RStudio, or a coding HTML or PDF presentation outside of RStudio.

For a short introduction to R, see [6]. The papers [7, 8] give a taste of the computational power of R in the
context of implementing probabilistic simulations using R. The R programming language is still primarily
used for any kind of statistical computing and stochastic simulations, and it is one of the most popular
programming environments for doing modern data science, along with Python. A more recent paper [9], by
one of the authors, implements in R a stochastic model for simulating the Electoral College distribution and
predicting the outcome of the US Presidential Election. However, R is suitable for any kind of numerical
computing and sophisticated visualizations thanks to the thousands of core and contributed packages.

In this paper, we focus our attention mostly on how R can be used to numerically solve systems of ordinary
differential equations, using wrappers, implemented in the deSolve package. We also show how Python can
be used for numerically solving systems of ODEs in the context of a basic SIR model.
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R Markdown Basics

Once, TEX, R, Python and RStudio have been installed, we can make the best of the RStudio IDE (Integrated
Development Environment). A new R Markdown document can be created inside RStudio by clicking the
green

⊕
button in the upper-left corner of the RStudio interface. In the drop-down menu, the third option

is to create an R Markdown document. Choosing the R Markdown option opens a window asking the
user to specify a Title, an Author and a default output format (HTML, PDF, Word), which can later be
changed in the header at the top of the R Markdown file (Rmd). At this point, one can also choose to create
a presentation or a Shiny document, all based on R Markdown. Clicking the OK button generates an R
Markdown template populated with some sample text and code to get you started. The final output format
is rendered by clicking the Knit button in the upper-left corner. Compiling the output document with the
Knit button also creates the TEX source file for the final document (but this output option must be checked
first). Chunks of R or Python code can be inserted into the source Rmd document by clicking the Insert
button in the upper-right corner, and plain text and TEX expressions can freely be added. The compiled final
output includes text, code (optional), rendered TEX expressions and the numerical and graphical output from
any code chunks embedded within the source Rmd document, all formatted to publication quality. Any code
chunk can be independently evaluated inside the Rmd file, and the result immediately displayed beneath
the code. In addition to the code chunks, one can also evaluate inline R expressions by enclosing them with
a single back-tick qualified with r on the left side. Specifically, the inline R expression:
`r exp(sqrt(2))`

computes e
√

2 and returns the number 4.1133 (rounded to 4 digits).

We can use pretty much any TEX expression inside the R Markdown document, either as an inline or
display style expressions. In general, an inline TEX expression can be included using the following syntax:
$inlineExpr$ (no white space is allowed adjacent to the $ delimiters). For display equations, we write
$$displayEqn$$, or use \begin{equation} ... \end{equation} format for numbered equations.

The following line with plain text and inline TEX and R expressions:

The expression $\frac{12-2^3}{-2}-3\times (2-5)^3$ gives `r (12-2^3)/(-2)-3*(2-5)^3`.

results in: The expression 12−23

−2 − 3 × (2 − 5)3 gives 79.

Note that the result is not hard-coded, and if we change the R expression in the Rmd file, the answer in the
output document will also change after we knit it again. For more details on R Markdown, see [4].

Running Python in R Markdown

The reticulate R package provides R interface to Python. The package offers tools for easy interoperability
between R and Python. If your RStudio is using knitr version 1.18 or higher, then the reticulate Python
engine is enabled by default, as long as reticulate is installed, and no further setup is required.

The reticulate package can be installed from CRAN as follows:
install.packages("reticulate")

The call Sys.which("python") shows the Python version found on your PATH. By default, reticulate
uses this version of Python, but the reticulate function use_python() allows us to specify an alternative
version of Python. For example, we can specify Anaconda Python 3.6 as follows:
library(reticulate)
use_python("~/anaconda3/bin/python3.6")

Some of the main features of the reticulate package are the following:

• Binding to different versions of Python.
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• Providing a Python engine for R Markdown.

• Translating between R and Python objects.

The Python engine for R Markdown, provided by the reticulate package, offers some great features:

• Running Python code chunks with shared variables, exactly like R code chunks.

• Printing numerical and graphical (matplotlib) output from Python code chunks.

• Having access in R chunks to objects created inside Python chunks, using the py object. For example,
py$x in an R chunk would access the x variable created in a Python chunk.

• Having access in Python chunks to objects created inside R chunks using the r object. For example,
r.x in a Python chunk would access the x variable created in an R chunk.

For more details, see the reticulate package documentation.

Problem Randomization for Quizzes and Exams

Using a Markdown format, problems can be randomized by combining LATEX with R or Python expressions
that would allow various problem parameters to be randomized, and more generally, the problems to be
algorithmically structured. This can be done either in RStudio, using R Markdown (Rmd), or in CoCalc,
using Jupyter notebooks. We show an example written in an Rmd file in RStudio. The idea is to use one
or more R variables in order to randomize various parameter inside a LATEX math expression, using inline
code chunks. More specifically, the R code chunk below creates a variable a, which contains a single number,
sampled uniformly at random from the sequence −7, −6, . . . , −1.
a<-sample(-7:(-1),1)

We then use the variable a to randomize a parameter inside a LATEX math expression, using inline code
chunks such as `r aˆ2`, and `r abs(a)`. More specifically, we can randomize the coefficients in the limit
below with the following mixture of LATEX and inline R code:
$\lim_{x\to `r a`} \frac{x^2 - `r a^2`}{x + `r abs(a)`}$

which produces a randomized version of the limit: lim
x→−2

x2 − 4
x + 2

.

Basic Function Plotting in R

We can plot the graph of the function f(x) = 2 sin(6πx) + 4 cos(8πx) with the following R code, inserted in
a proper code chunk, based on using the plotting function curve():
f<-function(x) 2*sin(6*pi*x) + 4*cos(8*pi*x) # f(x) as an R function
curve(f,from=-2,to=2,col="blue",n=750,type="p",pch=20,cex=0.3)
abline(h=0,v=0) # add x and y axis

The given R code produces the plot in Figure 1. In the Rmd source file, we used some other optional
graphical parameters to fine-tune the graphical output.

Kepler’s Third Law From Least Squares

In this section, we illustrate how Kepler’s Third Law can be discovered from fitting a power model to
planetary data. With this example we want to illustrate the general approach to fitting a model to data
using linear and nonlinear least squares in R. For more details, see the section of the same title in the main
PRIMUS article.
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Figure 1: A scatterplot of f(x).

We use planetary data collected from NASA’s Lunar and Planetary Science Division, [10]. The planetary
data in Table 1 were derived from the original NASA data by normalizing the distances and the orbital
periods in Earth’s units. The goal is to use the normalized planetary data to find a relationship between the
average distance from the Sun, given in AU, and the orbital period, given in Earth’s years. For this purpose,
we use a power model with two parameters α and β, of the form:

T = αDβ , (1)

where T is the orbital period in Earth’s years, and D is the average distance from the Sun in AU. This
particular model can be linearized, so we can fit the model in (1) using either linear or nonlinear least
squares. In the next two subsections, we illustrate how to do this in R.

Complete R Code for Fitting the Model with Linear Least Squares

We can linearize the model in (1), and then apply linear least squares to fit the model parameters. The
linearization of (1) consists of taking the logarithm on both sides (all values are positive):

log(T ) = log(α) + β log(D). (2)

Now, we have a linear model with respect to the unknown parameters γ = log(α) and β. However, the
response variable is now y = log(T ), and the explanatory (predictor) variable is x = log(D). Thus, the
linearized model can be written in the form:

y = γ + βx. (3)

The main R function used to carry out linear regression (least squares), and fit linear models to data, is
lm(). Linear models for lm() are specified symbolically. A typical model has the form response~predictor,
where response is the numeric response vector, and predictor is a numeric vector that specifies a linear
predictor. In our case, we can use the formula y~x in order to fit the model parameters γ and β in our linear
model (3) to the given data.

In the R code chunks listed below, we provide the complete R code that prints Table 1 of the normalized
planetary data, implements the linear least squares, prints Table 2 with the fitted model parameters, re-fits
the linear model after removing the intercept, which turns out to be statistically insignificant, prints Table
3 with the re-fitted model parameters, and finally plots in Figure 2 the data (as red dots), and the fitted
model (as a blue curve), on the same plot.
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library(xtable) # must install xtable first
options(xtable.comment = FALSE) # suppress comments
# for xtable, one must set results='asis' in the chunk header
planet<-c("Mercury","Venus","Earth","Mars","Jupiter","Saturn","Uranus",

"Neptune","Pluto")
# Planetary data: distance is given in units of 10^6 km, and period in days
dist<-c(57.9,108.2,149.6,227.9,778.6,1433.5,2872.5,4495.1,5906.4)
period<-c(88,224.7,365.2,687,4331,10747,30589,59800,90560)
# Normalized planetary data
D<-dist/dist[3] # normalize distance relative to Earth's
T<-period/period[3] # normalize period relative to Earth's Year
data<-cbind(T,D) # column-bind the data vectors into a matrix
row.names(data)<-planet # use planet names as the row names
colnames(data)<-c("Period T [Earth's Years]","Distance D [AU]")
# print a table of normalized planetary data
xtable(data, digits = 6, caption = "Normalized planetary data.",label = 'table1')

Period T [Earth’s Years] Distance D [AU]
Mercury 0.240964 0.387032

Venus 0.615279 0.723262
Earth 1.000000 1.000000
Mars 1.881161 1.523396

Jupiter 11.859255 5.204545
Saturn 29.427711 9.582219
Uranus 83.759584 19.201203

Neptune 163.745893 30.047460
Pluto 247.973713 39.481283

Table 1: Normalized planetary data.

# Linear least squares to fit a linear model: y = a + bx
y<-log(T) # response data vector
x<-log(D) # predictor data vector
model<-lm(y~x) # linear regression that fits a and b
# print a table of fitted model parameters
xtable(summary(model),caption = "Linear least squares fit for the model $y=a+bx$.",

label = 'table2')

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0003 0.0012 -0.25 0.8095

x 1.4988 0.0005 2787.34 0.0000

Table 2: Linear least squares fit for the model y = a + bx.

# Re-fit the linear model without intercept: y = bx
new.model<-lm(y~0+x)
# print a table of re-fitted model parameters
xtable(summary(new.model),caption = "Linear least squares fit for the model $y=bx$.",

label = 'table3')

Estimate Std. Error t value Pr(>|t|)
x 1.4987 0.0004 3980.08 0.0000

Table 3: Linear least squares fit for the model y = bx.
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Figure 2: The planetary data and the model fitted with linear least squares.

fitT<-function(D) D^{new.model$coef[1]} # fitted model as an R function
# Plot data points and fitted model on the same plot
plot(D,T,pch=20,cex=0.8,col="red",xlab="Average Distance to Sun in AU",

ylab="Orbital Period in Earth's Years",cex.lab=0.7,cex.axis=0.5)
curve(fitT,from=0,to=40,add=TRUE,col="blue",lwd=1) # add graph of fitT

Complete R Code for Fitting the Model with Nonlinear Least Squares

The ability to implement nonlinear least squares is often required for real-world applications, given that
models are often complex and nonlinear, and they cannot be usually linearized.

We can use the nonlinear regression function nls() in R, and work directly with Kepler’s model T = αDβ ,
without having to linearize it first. However, there is one difficulty in using nonlinear regression. The nls()
function uses a numerical method, which requires a starting guess for each of the parameters being fitted. If
a starting guess is not sufficiently close to the actual value, the nls() routine may fail to converge. Starting
guesses for each parameter being fitted are given as a list to the argument start. For Kepler’s model, the
signature of nls() is the following:
fit<-nls(T~alpha*D^beta,data = data.frame(D,T),start=list(alpha=1,beta = 1.5))

In the code below, we implement the nonlinear least squares fit with nls(), and plot in Figure 3, the data
points (as red dots), and the fitted model (as a blue curve).
df<-data.frame(D,T) # bind D and T into a dataframe
fit<-nls(T ~ alpha*D^beta, data = df, start=list(alpha=1,beta = 1.5))
summary(fit)# summary of nonlinear least squars fit

## Formula: T ~ alpha * D^beta
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## alpha 0.972270 0.009207 105.6 1.8e-12 ***
## beta 1.507312 0.002675 563.5 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2067 on 7 degrees of freedom
## Number of iterations to convergence: 3
## Achieved convergence tolerance: 1.713e-08
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Figure 3: The planetary data and the model fitted with nonlinear least squares.

# plot the data points
plot(D,T,pch=20,cex=0.8,xlab="Average distance from the Sun in AU",

ylab = "Orbital period in Earth's years",col = "red",cex.lab=0.7,cex.axis=0.5)
# add a plot of the fitted model over more refined distance vector d
d <- seq(min(D), max(D), length.out = 100)
lines(d,predict(fit, list(D = d)),col = "blue",lwd = 1)

For more details, see the section of the same title in the main PRIMUS article.

Solving ODE Systems with R Package deSolve

In this section, we focus on the computational aspects of numerically solving systems of linear and nonlinear
first-order ODEs. The ODE system can be solved numerically using the R library deSolve, which has a
number of general solvers for Initial Value Problems (IVP) of Ordinary Differential Equations (ODE), Partial
Differential Equations (PDE), Differential Algebraic Equations (DAE), and Delay Differential Equations
(DDE). See [11, 12, 13] for more details on deSolve. To download and install the library one can run the
following code:
# only the first time the library is installed
install.packages("deSolve")

Once the library is installed, it must be loaded to be used. This can be done with library(deSolve).
# once installed, load the library every time you want to use it
library(deSolve)

From the deSolve library, we use the solver ode(), which is really a wrapper around a number of ODE
solvers implemented in FORTRAN and C. The signature of the ODE solver is the following:
ode(y,times,func,parms,method)

where the default method is lsoda(), used for solving initial value problems for systems of first-order ODEs.
The R function lsoda() provides an interface to the FORTRAN ODE solver of the same name. The
documentation of deSolve describes the arguments of ode(). For more details, see the main PRIMUS
article, and the documentation of the deSolve package.
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In the next sections, we illustrate how the ode() solver can be used to solve numerically linear and nonlinear
systems of ODEs, as well as how to visualize the resulting numerical solutions.

The Lorenz Butterfly Simulation in R
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Figure 4: The Lorenz butterfly (x(t), y(t), z(t)).

The Lorenz model was created to represent idealized behavior of the Earth’s atmosphere. The nonlinear
system of ODEs in (4)-(6) implements the Lorenz model. This is a famous example of a system, investigated
in many papers and presented in many texts, which leads to chaotic behavior, shown in Figure 4.

dx

dt
= ax + yz (4)

dy

dt
= b(y − z) (5)

dz

dt
= cy − z − xy, (6)

where x and y represent the horizontal and vertical temperature distribution, and z the convective flow.
This first-order nonlinear system can be solved numerically using the ode() solver of the R library deSolve,
described in the article Section Solving ODE Systems with R package deSolve. The signature of the ODE
solver is ode(y,times,func,parms,method), and we can use it for solving IVP for systems of first-order
ODEs. We use the following values for the parameters a = −3, b = −10 and c = 30, and initial conditions
at time zero x(0) = 1, y(0) = 2 and z(0) = 3.

The function argument func is implemented as the R function Der, whose R code is given below, which
computes the derivatives x′, y′ and z′, specified by the system.
Der<- function(t, initials, parms) { # Derivative func argument for ode()
with(as.list(c(initials,parms)), {
dx <- a*x + y*z
dy <- b*(y - z)
dz <- c*y - z - x*y
return(list(c(dx, dy, dz)))

})}
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Inside the body of our custom function Der(), we use the built-in R function with(data,expr), which
evaluates the R expression(s) expr in a local environment constructed from data that may be a list, a data
frame etc. In the case of Der(), the data is specified by the list that comes from the vector initials with
initial data, and the vector parms with parameter values. The call c(initials,parms) combines the two
vectors. There are three R expressions for dx,dy,dz that are evaluated, using the numerical values of the
named variables in the vector initials (x,y,z), and the named parameters in the vector parms (a,b,c).
The list obtained from the vector c(dx,dy,dz) is returned. For example, the three expressions below return
a list whose first element is the vector c(dx,dy) = (7, 0). See the code below.
initials<-c(x = 3, y = 1)
parms<-c(a = 2, b = 3)
with(as.list(c(initials,parms)),{
dx <- a*x + y
dy <- x - b*y

list(c(dx,dy))
})

## [[1]]
## [1] 7 0

We solve the IVP for 100 time units, generating output every 0.01 time units, by passing the vector times,
defined below, to the times argument of the ode() solver:
times<-seq(from=0,to=100,by=0.01) # a vector of time points

The vector times is created using the built-in R function seq(), which generates numbers from 0 to 100 with
step 0.01. Note that the time step in the vector times does not affect the time step for the ODE integrator,
which is determined by the solver. Let initials be the vector of initial values of x, y and z with name
attributes, created using the built-in R function c(), which combines numbers into vectors:
initials<-c(x=1,y=2,z=3) # a vector with named state variables

In a similar way, we define the vector parms, which contains the numerical values of the named parameters.
parms<-c(a=-3,b=-10,c=30) # a vector with named parameters

Now, the ODE solver ode() is ready to be called with all required arguments supplied.
output<-ode(y=initials,times=times,func=Der,parms=parms)

The ode() solver returns the object output of class deSolve, which is a matrix whose first column always
contains the values of the vector times and it is named time, and the other columns are the solution vectors.
In this case, we have three other columns named x,y,z. We can see inside the matrix output by displaying
the first 3 rows using the function head() (6 rows is the default value).
head(output,2)

## time x y z
## [1,] 0.00 1.000000 2.000000 3.000000
## [2,] 0.01 1.037009 2.122193 3.563496

The deSolve object output can be passed to the plot() method to get the plots of the solution vectors x,
y, z over time. The call is very simple:
plot(output,col="blue") # plotting the solution vectors in output

We can also generate the 3D scatter plot of the solution vectors by using the scatterplot3d() function
in the R library scatterplot3d, which must be installed first and then loaded to be used, similar to the
deSolve library. We just need to extract the x, y and z solution vectors from the corresponding columns
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of the matrix in output. For example, the x-vector can be extracted with output[,"x"]. Thus, we get the
3D scatterplot with the following R code:
# only the first time the library is installed
install.packages("scatterplot3d")
# load the library every time you want to use it
library(scatterplot3d)
scatterplot3d(output[,"x"],output[,"y"],output[,"z"],type = "l")

The results of the plotting calls are shown in Figure 4 and Figure 5, which visualize the solution of the ODE
system. Figure 4 is the famous Lorenz butterfly.
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Figure 5: The x(t) and y(t) solution vectors against time.

Complete R Code Chunk for Simulating the Lorenz Butterfly

# Load libraries after installing them
library(deSolve)
library(scatterplot3d)
par(mfrow=c(2,2)) # 2 by 2 matrix plot
# parameters for the system of ODEs
parms<-c(a=-3,b=-10,c=30)
# initial data for the system of ODEs
initials <- c(x = 1, y = 2, z = 3)
# derivative function
Der<- function(t, initials, parms) {
with(as.list(c(initials,parms)), {
dx <- a*x + y*z
dy <- b*(y - z)
dz <- c*y - z - x*y
return(list(c(dx, dy, dz)))

})
}
# Solve the IVP for 100 time units, producing output every 0.01 time units
times <- seq(from = 0, to = 100, by = 0.01) # vector of time points
# Create an object of class deSolve
output <- ode(y = initials, times = times, func = Der, parms = parms)
# Plot the ode object
plot(output,col="blue",lwd=0.1,cex.main=2,cex.axis=1.4,cex.lab=1.8)
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# Create the 3D scatterplot
scatterplot3d(output[,"x"],output[,"y"],output[,"z"],type = "l",lwd=0.1,

angle=30,color="blue",xlab="",ylab="",zlab="",
main="Lorenz attractor (x,y,z)",
cex.main=2,cex.axis=1.4,cex.lab=1.8)

The Linear Kinetic System of First-Order Reactions

Typically, a chemical reaction consists of a number of steps coupled together. We consider a 3-step chain of
first-order reactions, that is, without autocatalysis. We start with a reactant R, which produces reactant X,
which produces reactant Y , which produces the final product Z. We can represent this chain of reactions as
in (7), where the rates for each step of the chain are given above the arrows.

R
ar→ X

bx→ Y
cy→ Z (7)

For this first-order kinetic scheme, we can write down the linear system of differential equations that specifies
the time evolution of all concentrations r, x, y and z of R, X, Y and Z, respectively.

r′ = −ar (8)
x′ = ar − bx (9)
y′ = bx − cy (10)
z′ = cy (11)

where the constants a, b and c are all positive. Note that since we are considering a closed system, we must
have r(t) + x(t) + y(t) + z(t) = const at any time t. This, of course, implies that r′ + x′ + y′ + z′ = 0.
This linear system can be integrated and analytical solutions obtained. We assume that initially the system
contains only reactant R with initial concentration r(0) = r0, x(0) = 0 and y(0) = 0. In particular, we have
the following expressions for the concentrations r, x and y:

r(t) = r0e−at (12)

x(t) = ar0

b − a
(e−at − e−bt) (13)

y(t) = abr0

b − a

(
e−at − e−ct

c − a
− e−bt − e−ct

c − b

)
(14)

We leave it as an exercise for the reader to verify these expressions. It is instructive to also solve numerically
the linear kinetic system given in (8)-(11), and compare the numerical solution with the exact analytical
solution given in (12)-(14). For this purpose, we provide numerical values for all parameters and initial data:
a = 0.002, b = 0.08, c = 1, r0 = 1/a, x0 = 0 and y0 = 0.

We define the parameters and the initial data via two vectors with named values.
# parameters with named values
parms<-c(a = 0.002, b = 0.08, c = 1, r0 = 500)
# initial data with named values
initials<-c(x = 0, y = 0)

We can now use the ode() solver from the deSolve library to compute the numerical solution for this IVP.
We need to specify the derivative function based on (8)-(10), given by the R code below.

13



Der<- function(t, initials, parms) {
with(as.list(c(initials,parms)), {
dx <- a*r0*exp(-a*t) - b*x
dy <- b*x - c*y
return(list(c(dx, dy)))

})}

On the other hand, the analytical solution for x(t) and y(t) in (13)-(14) can be implemented by first creating
a vector of time points times, and then obtaining the corresponding vectors xt and yt for x and y by using
the vectorizing capabilities of R. In particular, the three lines of R code below implement this approach.
times <- seq(from = 1, to = 700, by = 0.1) # vector of time points
# Analytical solution vectors of the same size as times
xt<-a*r0/(b-a)*(exp(-a*times)-exp(-b*times))
yt<-a*b*r0/(b-a)*((exp(-a*times)-exp(-c*times))/(c-a)-(exp(-b*times)-exp(-c*times))/(c-b))

In Figure 6, we plot the numerical solution vectors for x and y against time, and in Figure 7, we plot the
time evolution of the numerical solution vectors (x(t), y(t), t), but we also superimpose the analytical solution
vectors (xt,yt,times) to make sure that the numerical and analytical solutions are the same, within the
default solver error. We plot the numerical solution vectors with blue dots and the analytical solution vectors
with red dots, but it may be hard to distinguish them because they overlap, as they should.

For a short problem-based introduction to mathematical modeling in chemical engineering, we refer the
reader to the UMAP Module [18].

Complete R Code Chunk for Simulating the Linear Kinetic System

library(deSolve) # must install deSolve first
library(scatterplot3d) # must install scatterplot3d first
par(mfrow=c(1,2))
# parameters
parms<-c(a=0.002,b=0.08,c=1,r0=500)
# initial data
initials <- c(x = 0, y = 0)
# derivative function
Der<- function(t, initials, parms) {
with(as.list(c(initials,parms)), {
dx <- a*r0*exp(-a*t) - b*x
dy <- b*x - c*y
return(list(c(dx, dy)))

})
}
# We solve the IVP for 700 time units, producing output every 0.1 time unit
times <- seq(from = 1, to = 700, by = 0.1) # vector of time points
# an object of class deSolve
output <- ode(y = initials, times = times, func = Der, parms = parms)
# plotting the ode object sol
plot(output,col="blue",lwd=2,main="",xlab="",cex.main=0.8,cex.axis = 0.6,cex.lab = 0.8)

# Analytical Solution
# extract the parameter values
a<-parms["a"]; b<-parms["b"]; c<-parms["c"]; r0<-parms["r0"]
xt<-a*r0/(b-a)*(exp(-a*times)-exp(-b*times))
yt<-a*b*r0/(b-a)*((exp(-a*times)-exp(-c*times))/(c-a)-(exp(-b*times)-exp(-c*times))/(c-b))
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Figure 6: The x(t) (left) and y(t) (right) concentrations of the first-order kinetic system.

s3d<-scatterplot3d(output[,"x"],output[,"y"],output[,"time"],angle=60,pch=20,cex=0.9,
color="blue",xlab="x(t)",ylab="y(t)",zlab="time t",main="",
cex.axis = 0.5,cex.lab = 0.7)

s3d$points3d(xt,yt,times,pch=19,cex=0.2,col="red")

The Nonlinear Kinetic System of Higher-Order Reactions

Instead of focusing on a specific chemical reaction, we develop a general model for an autocatalytic process.
See [16, 17] for a comprehensive introduction to nonlinear chemical reactions and chemical chaos. Consider
an uncatalysed reaction in which species X is being converted into species Y at a rate of ax, where x is the
concentration of species X, and a is some positive constant with appropriate units. We can represent this
process as X

ax→ Y . In the case of an autocatalytic reaction, the species Y also plays the role of a catalyst
for its own production. The rate at which species Y is being produced depends now on some power n of the
concentration of Y (say y), which must be determined empirically or fitted to given data. We can represent
the autocatalysis by the following diagram given in (15), with rate r at which Y is produced:

X + nY → (n + 1)Y, r = αxyn (15)

The rate r for species Y is proportional now to the product of the concentration x of species X, and the nth
power of the concentration y of species Y , that is, r = αxyn. Here, α is again some positive constant with
appropriate units. This empirical observation is often called the Law of Mass Action.

We can extend the linear model from the previous section into a simple isothermal autocatalytic model for
a closed system. This example is discussed in some detail in [19, 20].

We start with reactant R, which is converted into a final product Z via two reactive intermediates X and Y .
We consider a cubic autocatalysis with n = 2. We can represent this chain of reactions in a manner similar to
(7), where the first-order rates for each step of the chain are given above the arrows, while below the arrows
we give the higher-order rates.

R
ar→ X

bx
⇒

αxy2
Y

cy→ Z (16)

The autocatalytic part of this kinetic scheme is contained in the step X →
αxy2

Y , which represents the cubic
autocatalysis X + 2Y → 3Y . For this higher-order kinetic scheme, we can write down the nonlinear system
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Figure 7: The time evolution (x(t), y(t), t) of the concentrations for two reactive intermediates X and Y , for
the linear first-order kinetic system.

of differential equations that specifies the time evolution of all concentrations r, x, y and z of R, X, Y and
Z, respectively.

r′ = −ar (17)
x′ = ar − bx − αxy2 (18)
y′ = bx − cy + αxy2 (19)
z′ = cy (20)

The nonlinear kinetic system in (17)-(20) has no known analytical solution, but we can solve it numerically.
For this purpose, we use the same numerical values for all parameters and initial data, as in the linear case:
a = 0.002, b = 0.08, c = 1, r0 = 1/a, x0 = 0 and y0 = 0. We also set the new parameter α = 1. We can now
use the ode() solver from the deSolve library to compute the numerical solution for this IVP.

The complete R code for obtaining and plotting the numerical solution of the simulated nonlinear kinetic
system is given in the next subsection. In Figure 8, we plot the concentrations x(t) and y(t) of the nonlinear
kinetic system as functions of time. In Figure 9, we plot the time evolution (x(t), y(t), t) of the concentrations
of the two reactive intermediates X and Y in the nonlinear kinetic system.

For more details, see the section of the same title in the main PRIMUS article.

Complete R Code Chunk for Simulating a Nonlinear Kinetic System

library(deSolve) # must install deSolve first
library(scatterplot3d) # must install scatterplot3d first
# parameters for the system of ODEs
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Figure 8: The x(t) (left) and y(t) (right) concentrations of the nonlinear kinetic system.

parms<-c(a=0.002,b=0.08,c=1,r0=500,alpha=1)
# initial data for the system of ODEs
initials<-c(x = 0, y = 0)
# derivative function
Der<- function(t, initials, parms) {
with(as.list(c(initials,parms)), {
dx <- a*r0*exp(-a*t) - b*x - alpha*x*y^2
dy <- b*x - c*y + alpha*x*y^2
return(list(c(dx, dy)))

})}
# Solve the IVP for 700 time units, producing output every 0.1 time units
times <- seq(from = 1, to = 700, by = 0.1) # vector of time points
# Create an object of class deSolve
output <- ode(y = initials, times = times, func = Der, parms = parms)
par(mfrow=c(1,2)) # 1 by 2 matrix plot
# Plot the ode object
plot(output,col="blue",lwd=0.1,main="",cex.main=0.8,xlab="",cex.axis=0.5,cex.lab=0.6)

# Create the 3D scatterplot
par(mfrow=c(1,1)) # 1 by 1 matrix plot
scatterplot3d(output[,"x"],output[,"y"],output[,"time"],type="l",lwd=0.1,angle=60,

color="blue",xlab="x(t)",ylab="y(t)",zlab="time t",cex.axis=0.5,cex.lab=0.7)

Python Simulation of the SIR Model

For more details on Running Python in R Markdown, inside RStudio, see the subsection of the same title.

An IVP can be solved numerically in Python using the scipy module. The scipy module is included in the
Anaconda distribution of Python and is available for use in CoCalc. For this example, we will be using the
solver odeint, which is also a wrapper for the lsoda solver from the FORTRAN library odepack. See [14]
for more details. To access and use the function odeint, one must load the appropriate modules first:
# necessary modules
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
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Figure 9: The time evolution (x(t), y(t), t) of the concentrations for two reactive intermediates X and Y for
the nonlinear kinetic system.

The modules numpy and matplotlib are needed to generate appropriate inputs and plots when working
with odeint. Both are commonly used modules in Python scientific computing and are also included in the
Anaconda distribution and available for use in CoCalc.

The function odeint has a rather long signature. Here we will concentrate on specifying the minimum number
of arguments needed for our application. In particular, we call the solver using only three arguments:
odeint(func, y0, t)

where the three arguments given above are described in the online documentation [14] as follows:

func Callable(y, t0, ...). Computes the derivative of y at t0.

y0 Initial condition on y (can be a vector).

t A sequence of time points for which to solve for y. The initial value point should be the first element
of this sequence.

We are now ready to apply the odeint solver to a specific example. A relatively simple compartmental
model that is often used to model the spread of an infectious disease is the SIR model. This is a model in
epidemiology that separates a population affected by disease into three compartments:

1. Susceptibles - the portion of the population which may be infected.

2. Infected - the portion of the population that is currently infected.

3. Recovered - the portion of the population that has recovered from the disease or developed an immunity.

In this example, we will use a simple SIR model of a generic, non-lethal disease as seen in [15]. For this
model, s will represent the proportion of the population that is susceptible to infection, i will represent the
proportion of the population that is infected, and r will represent the proportion of the population that has
recovered from the infection. Note that we are assuming that s + i + r = 1 and that time is measured in
days. The model is given by the following nonlinear system of ODEs:
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ds

dt
= −bsi (21)

di

dt
= bsi − ki (22)

dr

dt
= ki, (23)

where b is the rate constant for the transmission of the infection from infected to susceptibles and k is the
rate constant for recovery from the infection. First we define our constants. In this example we will use the
constant values b = 0.9 and k = 0.33.
# constants
b, k, finalt, dt = 0.9, 0.33, 50, 0.01

The constant finalt represents the final time for our simulation, while dt represents the time step size in
our discrete approximation of this continuous model. Making dt small can lead to better simulations at the
cost of additional computational time.

Next, we use the numpy function linspace to create an array t containing the sequence of time points for
which to solve the model. The linspace function accepts three arguments, a starting value, an ending value,
and the total number of equally spaced points from the starting value to the ending value. In this case, since
we set finalt = 50 and dt = 0.01, our array represents a period of 50 days subdivided into 5000 equally
spaced times.
t = np.linspace(0, finalt, int(finalt/dt))

For this IVP, we will simulate the result of an outbreak of a disease in a population of 3,000 individuals
where 20 people are infected.
# initial conditions
S0, I0, R0 = 2980, 20, 0
N = S0+I0+R0
y0 = [S0/N,I0/N,R0/N]

We can now construct our callable function to represent the system given by (21)-(23). For the callable
function needed by odeint, we create a function func(y,t0) which simply returns the values of ds, di, and
dr at time t0. Here, y is an array containing the values of s, i, and r at time t0.
# dynamical system
def func(y,t0):

s, i, r = y
ds = -b*s*i
di = b*s*i-k*i
dr = k*i
return [ds,di,dr]

We can now call our main solver function:
sol = odeint(func, y0, t)

which returns an array where each entry is an array containing the values of s, i and r at each time point
given by t. By storing the output of odeint in a variable sol, we can plot the numerical result of our
simulation using the matplotlib module.
# plot
plt.plot(t,sol)
plt.ylabel('Proportion')
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plt.xlabel('Days')
plt.legend(['Susceptibles','Infected','Recovered'],loc='best')
plt.show()

The result of our simulation, shown in Figure 10, suggests that over a period of 30 days, the majority of the
population will become infected and recover from the disease.

Complete Python Code Chunk for Simulating the SIR Model

# necessary modules
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
# constants
b, k, finalt, dt = 0.9, 0.33, 50, 0.01
t = np.linspace(0, finalt, int(finalt/dt))
# initial conditions
S0, I0, R0 = 2980, 20, 0
N = S0+I0+R0
y0 = [S0/N,I0/N,R0/N]
# dynamical system and solver functions
def func(y,t0):

s, i, r = y
ds = -b*s*i
di = b*s*i-k*i
dr = k*i
return [ds,di,dr]

sol = odeint(func, y0, t)
# plot
plt.plot(t,sol)
plt.ylabel('Proportion')
plt.xlabel('Days')
plt.legend(['Susceptibles','Infected','Recovered'],loc='best')
plt.show()
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