
Supplementary Material for ‘Exact group sequential

designs for two-arm experiments with Poisson

distributed outcome variables’

1. Maximal type-I and type-II error-rates for com-

posite null hypotheses

Here, we expand on the issues associated with controlling the error-rates of an exact

group-sequential trial specified in terms of the sets Λ0 and Λ1. As noted in the main

manuscript, such a specification is in general a useful one as in many design scenarios of

practical interest it may be difficult, or in fact impossible, to nominate a point null (or

indeed alternative) hypothesis of the form H0 : λ1 = λ2 = λ0 ∈ R+.

First, it is useful to recognise that the type-I and type-II error-rates can vary widely

across the sets Λ0 and Λ1, and thus it would not be appropriate to use an approach similar

to that employed for the normal approximation design, and work in the design search in

terms of the error-rates calculated at singular points. To this end, Supplementary Figure

1 presents the type-I and type-II error-rates of the exact group sequential design with

n = 42, a = (41, 112), and r = (118, 112), across λ1 ∈ Λ0 = Λ1 = [15, 30] (the near-

optimal design for w1 in Example 1). As noted, their minimal and maximal values differ

substantially.

However, more importantly, we may hope that we could identify analytically where the

maxima occurs. In particular, may hope that it will always occur on the boundary (i.e.,

the infima or suprema) of the sets Λ0 and Λ1. As we discussed in the main manuscript,
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Supplementary Figure 1: Type-I (λ1 = λ2) and type-II (λ1 = λ2 + δ = λ2 + 2.25)
error-rates of the exact design with n = 42, a = (41, 112), and r = (118, 112), when
λ1 ∈ Λ0 = Λ1 = [15, 30].

proving this would likely be extremely challenging, whilst for the type-I error-rate at

least, the location of the maxima does not appear to have a simple form. To demonstrate

this, we performed a search for all 1,410,780 with n ∈ {1, 2, . . . , 20} and a1, r1, r2 ∈

{−2n,−2n + 1, . . . , 2n}, a1 < r1 − 1, to identify the location of the maximal type-I

error-rate across λ1 = λ2 ∈ [15, 30]. We found that for 704,492 of the designs the type-I

error-rate was maximised at λ1 = λ2 = 15, for 689,951 it was maximised at λ1 = λ2 = 30,

and for 16,337 it was maximised at some λ1 = λ2 ∈ (15, 30). Whilst this was not the

case for the type-II error-rate, which appeared to be consistently maximised at λ1 =

λ2 + δ = sup(Λ1). Nonetheless, without a formal proof of where the error-rates will be

maximised, we retain a search for the maximal stopping probabilities in our near-optimal

design determination procedure. Note that code to replicate our results is available at

https://github.com/mjg211/article code.
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2. Example 2

Here, to further explore the utility of our group sequential designs, we reconsider the

example from Menon et al. (2011). They considered a clinical research scenario in which

investigators are interested in the relapse rate per year of an infectious disease on two

treatments. The hypothesised rate for the new treatment (j = 2) was 5.15, whilst the

standard treatment (j = 1) was expected to have rate 6.25, giving Λ0 = Λ1 = λ0 = 6.25

and δ = 1.1 within the notation of the main manuscript. Finally, they desired 90% power

for a type-I error-rate of 5%. Accordingly we take β = 0.1 and α = 0.05, and as for

Example 1 we consider the optimal designs for

w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (1/2, 1/2, 0),

w4 = (1/2, 0, 1/2), w5 = (0, 1/2, 1/2), w6 = (1/3, 0, 1/3),

when K ∈ {2, 3}.

For the case K = 2 we consider all combinations of πA and πR, conform-

ing to our requirements from earlier, with (πA1, πR1) ∈ {0.01, 0.02, . . . , 0.08, 0.09} ×

{0.005, 0.01, . . . , 0.045}. Whilst for K = 3 we examine all permissible combinations with

(πA1, πA2, πR1, πR2) ∈ {0.01, 0.03, 0.05, 0.07}2 × {0.01, 0.015, . . . , 0.035}2.

Thus the optimal designs for K ∈ {2, 3}, amongst the considered πA and πR, were

determined for the six stated values of w. They are displayed, along with the corre-

sponding single-stage designs based on the exact and normal approximation methods, in

Supplementary Table 1.

We observe that, as for Example 1, utilising a group sequential approach reduces the

ESS when λ1 = λ2 = λ0 and when λ1 = λ2 + δ = λ0 relative to using a single-stage

design. The ESS when λ1 = λ2 = λ0 can be reduced by as much as 38% and 40% using

the normal approximation or exact approach respectively (for K = 3, compared to their

respective required sample sizes when K = 1). Similarly, as in Example 1, increasing

the value of K allows us to increase efficiency further in terms of the ESS, at a cost to
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the maximal possible sample sizes. Finally, once more, for both design approaches, there

exist designs that require only minor increases to the maximal possible sample size, which

bring sizeable reductions to the ESSs.
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