
Online Supplement for “Sparse Pseudo-input Local Krig-

ing for Large Spatial Datasets with Exogenous Variables”

by Babak Farmanesh and Arash Pourhabib

Appendix A Solving optimization problem (11)

Due to the convex objective function and affine constraints of optimization problem (11), the duality

gap between the primal and dual problems of (11) is zero by Lagrange duality principle (Bazaraa

et al., 2013). This allows us to transform the optimization problem (11) to an unconstrained

optimization problem and maximize the Lagrangian of (11) instead,

max
us(x∗),λs(x∗)

L(us(x∗),λs(x∗)) = us(x∗)
T (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)us(x∗) (23)

−2us(x∗)
T k̃sXsx∗ −

∑
i=1:|Bs|

λis(x∗)(us(bi)
Tys −R(bi)),

where |Bs| is the number of all the control points located on the boundaries of subdomain Ωs, and

λs(x∗) = [λ1s(x∗), . . . , λ|Bs|s(x∗)]
T is the vector of the Lagrange multipliers.

Assuming us(x∗) depends on the covariance between x∗ and Xs, and λis(x∗) depends on the

covariance of bi and x∗, we write us(x∗) = Hsk̃
s
Xsx∗

and λis(x
∗) = βisk̃

s
bix∗

as suggested in (Park

et al., 2011), where Hj is a squared matrix with size equal to the number of data points in Ωs, and

βis is the Lagrange parameter associated with λis that does not depend on x∗. Consequently, we

rewrite Lagrangian (23) as

max
Hs,βs

L(Hs,βs) = k̃sx∗Xs
HT
s (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)Hsk̃
s
Xsx∗ (24)

−2k̃sx∗Xs
HT
s k̃sXsx∗ − k̃sx∗Bs

βs(K̃
s
BsXs

HT
s ys − rs),

where βs is a diagonal matrix with diagonal elements β1s, . . . , β|Bs|s, and rs = [R(b1), . . . ,R(b|Bs|)]
T

is the vectors of boundary values of Ωs.

Due to convexity of function (24) we can calculate the optimal values of Hs and βs analytically

1

by writing out the first order necessary conditions,

dL(Hs,βs)

dHs
= 2(GsHs − Is)k̃

s
Xsx∗ k̃

s
x∗Xs

− ysk̃
s
x∗Bs

βsK̃
s
BsXs

= 0, (25)

dL(Hs,βs)

dβis
= k̃biXsH

T
s yj − ris = 0 ∀i ∈ [|Bs|], (26)

where Gs = (K̃s
XsXs

+ diag(KXsXs − K̃s
XsXs

) + σ2
sIs), and ris is the ith element of the vector rs.

Reordering equation (25),

(k̃sx∗Xs
+ 0.5(k̃jx∗Xs

k̃jXsx∗
)−1k̃jx∗Xs

K̃j
XsBs

βsk̃
j
Bsx∗

yTs)G−1
s ys = k̃sx∗Xs

HT
s ys, (27)

and evaluating it at the boundary locations gives the system of equations with |Bs| equations and

Lagrangian parameters,

(k̃sbiXs
+ 0.5(k̃sbiXs

k̃sXsbi
)−1k̃sbiXs

K̃s
XsBs

βsk̃
s
Bsbi

yTs)G−1
s ys = ris ∀i ∈ [|Bs|]. (28)

After some simple matrix algebra, we obtain the solution to the system of linear equations (28),

βs =
Is(rs − K̃s

BsXs
G−1
s ys){[(diag(K̃s

BsXs
K̃s

XsBs
))−1(K̃s

BsXs
K̃s

XsBs
)] ◦Ks

BsBs
}−1

0.5yTs G−1
s ys

. (29)

Using the values of βs from (29), we can easily obtain the solution to u(x∗) from (25),

u∗s(x∗) = Hsk̃
s
Xsx∗ = G−1

s (k̃sXsx∗ + ws), (30)

where ws = 0.5(k̃sx∗Xs
k̃sXsx∗

)−1ysk̃
s
x∗Bs

βsK̃
s
BsXs

k̃sXsx∗
.

Appendix B Derivation of low-rank covariance approximation er-

ror

We follow the procedure proposed in (Smola and Schölkopf, 2000) to derive the low-rank covariance

approximation error in each subdomain Ωs. In this derivation, given the covariance function φ(·, ·) :

Ωs × Ωs → R as a symmetric positive semidefinite kernel, we intend to approximate the kernel

2

φ(x, ·) : Ωs → RΩs centered at z ∈ Ωs as a linear combination of kernels centered at each element

of Xs, i.e.,

φ(z, ·) ≈
∑
i∈[ms]

ciφ(x̃i, ·). (31)

To this end, let H be a reproducing kernel Hilbert space (RKHS) that is defined as the space of

functions constructed by the span of φ(x, ·) centered at a finite number of elements of Ωs, i.e.,

{∑
i∈[n]

αiφ(xi, ·) : n ∈ N,xi ∈ Ωs, ci ∈ R

}
.

H is also equipped with the inner product

〈 ∑
i∈[n1]

αiφ(xi, ·),
∑
j∈[n2]

βjφ(xj , ·)
〉
H

=
∑
i∈[n1]

∑
j∈[n2]

αiβjφ(xi,xj), (32)

which, for any function f ∈ H, induces the norm

||f ||2H =< f, f >H . (33)

Given suchH, a natural criterion to find an approximation for the covariance function is to minimize

the norm of function φ(z, ·)−
∑

i∈[ms]
ciφ(x̃i, ·), which belongs to H, that is

min
c

∥∥∥∥∥∥φ(z, ·)−
∑
i∈[ms]

ciφ(x̃i, ·)

∥∥∥∥∥∥
2

H

, (34)

where c = [c1, . . . , cms]
T . Assuming φ(z, z) = h, objective function (34) can be expanded after

plugging in (32) and (33) as

min
c

h− 2cTkX̃sz
+ cTKX̃sX̃s

c,

which has the solution c∗ = K−1
X̃sX̃s

kX̃sz
. Therfore, the approximation of φ(z, ·) becomes kzX̃s

K−1
X̃sX̃s

kX̃sz
,

and the error of covariance approximation becomes

h− kzX̃s
K−1

X̃sX̃s
kX̃sz

.

3

We finally note that using z = xi for all xi ∈ Xs in objective function (34) and minimizing the

sum over all terms obtains KXsX̃s
K−1

X̃sX̃s
KX̃sXs

, which is the low-rank approximation of KXsXs in

equation (7).

Appendix C Proof of Theorems

C.1 Proof of Proposition 1

Proof. For any i ∈ [ms], let ui denote the covariance vector between z and the first i elements

of X̃s, and let vi denote the covariance vector between the (i + 1)th element of X̃s and the first

i elements of X̃s. That is, ui = [φ(z, x̃1), . . . , φ(z, x̃i)]
T , and vi = [φ(x̃i+1, x̃1), . . . , φ(x̃i+1, x̃i)]

T .

Also let Ki denote the covariance matrix between the first i elements of X̃s themselves. We now

prove by induction on i. For the base case, i.e, i = 1, the claim clearly holds,

EΩs(u
T
1 K−1

1 u1) = EΩs(φ(z, x̃1)φ(x̃1, x̃1)−1φ(z, x̃1)) =
1

h
EΩs(φ

2(z, x̃1)) =
1

h
EΩs(φ

2(x,x′)). (35)

Suppose the claim holds for ms − 1, we show that it also holds for ms. Expanding uTmsK
−1
msums

gives

uTmsK
−1
msums =

[
uTms−1 φ(z, x̃ms)

]Kms−1 vms−1

vTms−1 h

−1 ums−1

φ(z, x̃ms)

 (36a)

=

[
uTms−1 φ(z, x̃ms)

]K−1
ms−1 + cK−1

ms−1vms−1v
T
ms−1K

−1
ms−1 −cK−1

ms−1vms−1

−cvTms−1K
−1
ms−1 c

 uTms−1

φ(z, x̃ms)

(36b)

= uTms−1K
−1
ms−1ums−1 +

(vTms−1K
−1
ms−1ums−1)2 + φ2(z, x̃ms)− 2vTms−1K

−1
ms−1ums−1φ(z, x̃ms)

c

(36c)

= uTms−1K
−1
ms−1ums−1 +

(vTms−1K
−1
ms−1ums−1 − φ(z, x̃ms))

2

c
(36d)

≥ uTms−1K
−1
ms−1ums−1. (36e)

4

where equality (36b) follows from the block matrix inversion lemma (Hager, 1989), and c = (h −

vTms−1K
−1
ms−1vms−1)−1, which is always non-negative.

By (36) and the induction step,

EΩs(u
T
msK

−1
msums) ≥ EΩs(u

T
ms−1K

−1
ms−1ums−1) ≥ 1

h
EΩs(φ

2(x,x′)). (37)

C.2 Proof of Theorem 1

First, we prove the following lemma

Lemma 3. For the random variables z1 ∼ U(a, a + e) and z2 ∼ U(b, b + e), where a ≤ b and

a, b, e ≥ 0, define v = (z1 − z2)2. Then Ev(exp(−cv)) ≤ Ev(exp(−cv) | a = b) for any c > 0.

Proof. Let z = z1 − z2, then by convolution of probability distributions, we have:

fz(t) =

∫ +∞

−∞
fz1(t+ z2)fz2(z2)dz2 =

1

e

∫ b+e

b
fz1(t+ z2)dz2, (38)

where the last equation follows from the fact that fz2 = 1
e if b ≤ z2 ≤ b+e. Note that the integrand

fz1(z + z2) is zero unless a ≤ t+ z2 ≤ a+ e, which implies a− t ≤ z2 ≤ a+ e− t. Figure 6 shows

the region defined by a − t ≤ z2 ≤ a + e − t and b ≤ z2 ≤ b + e, for the case that a + b < e and

a+ e > b. In the both cases, integration (38) can be calculated as follows:

fz(t) =

1
e2

∫ t
a−e−d dz2 a− b− e ≤ t < a− b

1
e2

∫ a−e
t dz2 a− b ≤ t ≤ a− b+ e

=

1
e2

(t+ b− a+ e) a− b− e ≤ t < a− b

−1
e2

(t+ b− a− e) a− b ≤ t ≤ a− b+ e.

(39)

5

Figure 6: The region defined by a− t ≤ z2 ≤ a+ e− t and b ≤ z2 ≤ b+ e. Left panel corresponds
to the case when a+ b > e and right panel corresponds to the case when a+ e < b.

Hence, Fv(t) = p(v ≤ t) = p(z2 ≤ t) = p(
√
t ≤ z ≤

√
t) can be written as

Fv(t) =

2
√
t

e2
(a− b+ e) 0 ≤

√
t < b− a,

1
e2

(2
√
te− t− (a− b)2) b− a ≤

√
t < a− b+ e,

1− 1
2e2

(
√
t+ a− b− e)2 a− b+ e ≤

√
t ≤ b− a+ e.

(40)

Moreover, Gv(t) = p(v ≤ t | a = b) = p(z2 ≤ t | a = b) = p(
√
t ≤ z ≤

√
t | a = b) can be derived by

setting a = b in CDF (40)

Gv(t) =
1

e2
(2
√
te− t) 0 ≤

√
t ≤ e. (41)

Comparing Gv(t) and Fv(t) for all possible values of t gives

•
√
t < 0: Gv(t) = Fv(t) = 0.

• 0 ≤
√
t < b−a: then Fv(t)−Gv(t) = 1

e2
(2
√
t(a− b) + t). Since

√
t < b−a⇒ t <

√
t(b−a)⇒

t+
√
t(a− b) < 0⇒ t+ 2

√
t(a− b) < 0⇒ Fv(t)−Gv(t) < 0⇒ Fv(t) < Gv(t).

• b−a ≤
√
t < a−b+e: then Fv(t)−Gv(t) = − (a−b)2

e2
< 0⇒ Fv(t)−Gv(t) < 0⇒ Fv(t) < Gv(t).

• a− b+ e ≤
√
t < e: then Fv(t)−Gv(t) = 1− 1

2e2
(
√
t+ a− b− e)2 + 1

e2
(t− 2

√
te).

Note that e(Fv(t)−Gv(t))
et = 1

2e2
(1− a−b+e√

t
) > 0, and therefore, Fv(t)−Gv(t) is a monotonically

increasing function. Due to the monotonicity of Fv(t)−Gv(t), the maximum occurs at e, so

6

maxt Fv(t)−Gv(t) = Fv(e)−Gv(e) = − (a−b)2

e2
< 0. Therefore, Fv(t)−Gv(t) ≤ Fv(e)−Gv(e) <

0⇒ Fv(t) ≤ Gv(t).

• e ≤
√
t < b− a+ e: in this case Gv(t) is always 1, hence, Fv(t) ≤ Gv(t).

• b− a+ e ≤
√
t: in this case Gv(t) = Fv(t) = 1

Therefore, we can conclude that

p(v ≤ t) ≤ p(v ≤ t | a = b) ∀t ∈ R⇒ p(−cv ≥ t′) ≤ p(−cv ≥ t′ | a = b) ∀t′ ∈ R and c > 0,

which implies that random variable (−cv) is stochastically less than random variable (−cv | a = b),

i.e., −cv �st −cv | a = b. Consequently, the expectation of any non-decreasing function of these

two variables are ordered, i.e., Ev(exp(−cv)) ≤ Ev(exp(−cv) | a = b) for any c > 0.

To proceed to the proof of Theorem 1, we use the following characterization for the cutting

hyperplanes and subdomains. Assuming that the cutting hyperplanes are equidistant with distant

W = L/S from each other, we can characterize the `th ∈ [S − 1] cutting hyperplane on Ω with

respect to kth primary axis of Rp using the vector of angles θ = {θ1, . . . , θp}\{θk},

Hθ,k,W,` = {x ∈ Ω | xk −
∑

j∈[p]\{k}

tan(θj)xj − `W = 0} ∀` ∈ [S − 1]. (42)

Note that this cutting hyperplane is orthogonal to the axis k only if θ = 0, that is θj = 0 for

j ∈ [p]\{k}.

Denoting, respectively, the hyperplanes containing the “bottom” and the “top” faces of Ω as

Hθ,k,W,0 = {x ∈ Ω | xk = 0} and Hθ,k,W,S = {x ∈ Ω | xk − L = 0},

we define the sth subdomain as the intersection of area between two consecutive hyperplanes and

Ω, specifically,

Ωθ,k,W,s = {x ∈ Ω | min
x′∈Hθ,k,W,s−1

||x− x′||2 ≤W and min
x′∈Hθ,k,W,s

||x− x′||2 ≤W}, (43)

where ‖ · ‖2 denotes the Euclidean norm.

7

Proof of Theorem 1. Let x{k} = {x1, . . . , xp}\{xk} for any x ∈ Ω. Then, based on how each

Ωθ,k,W,s in (43) is constructed and considering the distribution of the data points in Ω according

to (16), all variables xj ∈ x{i} are independent and have the uniform distribution U(0, L). Moreover,

by the definition of the hyperplanes in (42), and given x{k}, the corresponding values of the variable

xk on the hyperplanes Hθ,k,W,s−1 and Hθ,k,W,s are

∑
j∈[p]\{k}

tan(θj)xj + (s− 1)w &
∑

j∈[p]\{k}

tan(θj)xj + sw. (44)

Therefore, the conditional distribution xk|x{k} in the parallelogram subdomain Ωθ,k,W,s has a uni-

form distribution whose support is bounded by the values calculated in (44). Consequently, given

a parallelogram subdomain Ωθ,k,W,s, for any x ∈ Ωθ,k,W,s−1,

xj ∼ U(0, L) ∀j ∈ [p]\{k}, (45a)

xi|xi ∼ U
(∑
j∈[p]\{k}

tan(θj)xj + (s− 1)w,
∑

j∈[p]\{k}

tan(θj)xj + sw

)
. (45b)

Now that we have the distribution (45), we expand EΩθ,k,W,s

(
φ(x,x′)

)
by conditioning, that is

EΩθ,k,W,s

(
φ(x,x′)

)
= Ex{k},x

′
{k}

(
Exk,x′k

(
φ(x,x′) | x{k},x′{k}

))
(46a)

= Ex{k},x
′
{k}

(
exp

(
−

∑
j∈[p]\{k}

γj(xj − x′j)2

)
Exk,x′k

(
exp

(
− γk(xk − x′k)2

)
| x{k},x′{k}

))
(46b)

= Ex{k},x
′
{k}

(
g(x{k},x

′
{k})h(x{k},x

′
{k})

)
. (46c)

Note that the function g(x{k},x
′
{k}) is always positive and independent of θ, and function

h(x{k},x
′
{k}) is positive that attains its maximum for any given x{k},x

′
{k} at θ = 0 by Lemma (3).

Therefore, θ = 0,

g(x{k},x
′
{k})h(x{k},x

′
{k}) ≤ g(x{k},x

′
{k})h(x{k},x

′
{k} | θ = 0) ∀x{k},x′{k},

which results in

EΩθ,k,W,s

(
φ(x,x′)

)
≤ EΩθ,k,W,s

(
φ(x,x′) | θ = 0

)

8

⇒ arg max
θ

EΩθ,k,W,s

(
φ(x,x′)

)
= 0.

C.3 Proof of Theorem 2

First, we prove the following lemma

Lemma 4. Ez1,z2
(

exp
(
− c(z1 − z2)2

))
=
∫ b2

0 exp(−ct)(1
b
√
t
− 1

b2
)dt, where z1, z2

i.i.d∼ U(a, a+ b).

Proof. Let v = (z1 − z2)2, then Philip (2007) shows that v has the following PDF:

fv(t) =
1√
tb
− 1

b2
∀ 0 ≤ t ≤ b2;

therefore,

Ez1,z2
(

exp
(
− c(z1 − z2)2

))
= Ev

(
exp(−cv)

)
=

∫ b2

0
exp(−ct)fs(t)dt =

∫ b2

0
exp(−ct)(1

b
√
t
− 1

b2
)dt.

Proof of Theorem 2. By the assumptions of uniform distribution of points in Ω (16), and inde-

pendence of the dimensions due to geometry of Ω0,k,W,s, for any x ∈ Ω0,i,W,s,

xk ∼ U
(
(s− 1)W, sW

)
& xj ∼ U

(
0, L

)
∀j ∈ [p]\{k}. (47)

Letting Gk = EΩ0,k,W,s
(φ(x,x′)), and using distribution (47),

Gk = Exk

(
exp

(
− γk(xk − x′k)2

)) ∏
j∈[p]\{k}

Exj
(

exp
(
− γj(xj − x′j)2

))
(48a)

= Evk

(
exp(−γkvk)

) ∏
j∈[p]\{k}

Evj
(

exp(−γjvj)
)

(48b)

=

(∫ W 2

0
exp(−γkt)(

1

W
√
t
− 1

W 2
)dt

)(∏
j∈[p]\{k}

(∫ L2

0
exp(−γjt)(

1

L
√
t
− 1

L2
)dt

))
(48c)

=

(∫ W 2

0
gWk (t)dt

)(∏
j∈[p]\{k}

(∫ L2

0
gLj (t)dt

))
, (48d)

9

where equality (48a) follows from the independence of dimensions in each Ω0,i,W,s, equalities (48b)

and (48c) follow from Lemma (4) with fvk(t) = 1√
tW
− 1

W 2 0 ≤ t ≤W 2 and fvj (t) = 1√
tL
− 1

L2 0 ≤

t ≤ L2, and gm` (t) = exp(−γ`t)(1
m
√
t
− 1

m2) in (48d).

To show that Gp −Gk ≥ 0 for any k ∈ [p], We first expand Gp −Gk,

Gp −Gk =

(∫ W2

0

gWp (t)dt

)(∏
j∈[p]\{p}

(∫ L2

0

gLj (t)dt

))
−

(∫ W2

0

gWk (t)dt

)(∏
j∈[p]\{k}

(∫ L2

0

gLj (t)dt

))

=

(∏
j∈[p]\{k,p}

(∫ L2

0

gLj (t)dt

))(∫ W2

0

gWp (t)dt

∫ L2

0

gLk (t)dt−
∫ W2

0

gWk (t)dt

∫ L2

0

gLp (t)dt

)
= A ∗B.

Note that A is always positive, since each
∫ L2

0 gLj (t)dt is the expectation of the random variable

exp(−γjvj) which is positive. Hence, it is enough to show that B is positive. Expanding B further,

B =

(∫ W2

0

gWp (t)dt

)(∫ W2

0

gLk (t)dt+

∫ L2

W2

gLk (t)dt

)
−
(∫ W2

0

gWk (t)dt

)(∫ W2

0

gLp (t)dt+

∫ L2

W2

gLp (t)dt

)
(49a)

=

∫ W2

tk:0

∫ W2

tp:0

gWp (tk)g
L
k (tp)dtkdtp +

∫ W2

tk:0

∫ L2

tp:W2

gWp (tk)g
L
k (tp)dtkdtp

−
∫ w2

tk:0

∫ w2

tp:0

gwk (tk)g
L
p (tp)dtkdtp −

∫ w2

tk:0

∫ L2

tp:w2

gwk (tk)g
L
p (tp)dtkdtp (49b)

=

∫ W2

tk:0

∫ W2

tp:0

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)(1

W
√
tk
− 1

W 2

)(1

L
√
tp
− 1

L2

)
dtkdtp

+

∫ W2

tk:0

∫ L2

tp:W2

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)(1

W
√
tk
− 1

W 2

)(1

L
√
tp
− 1

L2

)
dtkdtp (49c)

=

∫ W2

tk:0

∫ W2

tp:0

c(tk, tp)dtkdtp +

∫ W2

tk:0

∫ L2

tp:W2

c(tk, tp)dtkdtp. (49d)

Note that for any member of set

{(W,L, tp, tk, γp, γk) | 0 < W < L, 0 < γk < γp, 0 ≤ tk ≤W 2, W 2 ≤ tp ≤ L2}, (50)

we have

(1

w
√
tk
− 1

w2

)(1

L
√
tp
− 1

L2

)
> 0, (51)

10

and also

(−γptk − γktp)− (−γktk − γptp) = (γp − γk)(tp − tk) > 0, (52)

where the latter results in

exp(−γptk − γktp)− exp(−γktk − γptp) > 0. (53)

Therefore, by (51) and (53), the integrand c(tk, tp) in (49d) is positive for any member of

set (50), so is integral
∫W 2

tk:0

∫ L2

tp:W 2 c(tk, tp)dtkdtp. Hence, to complete the proof we need to show

integral
∫ w2

tk:0

∫ w2

tp:0 c(tk, tp)dtkdtp in (49d) is also positive. To show this, we expand the integral,

∫ W2

tk:0

∫ W2

tp:0

c(tk, tp)dtkdtp =

∫ W2

tk:0

∫ W2

tp:tk

c(tk, tp)dtkdtp +

∫ W2

tp:0

∫ W2

tk:tp

c(tk, tp)dtpdtk (54a)

=

∫ W2

tk:0

∫ W2

tp:tk

c(tk, tp)dtkdtp +

∫ W2

tk:0

∫ W2

tp:tk

c(tp, tk)dtkdtp =

∫ W2

tk:0

∫ W2

tp:tk

(
c(tk, tp) + c(tp, tk)

)
dtkdtp (54b)

=
1

wL

∫ W2

tk:0

∫ W2

tp:tk

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)
(

1√
tk
− 1√

tp
)(

1

W
− 1

L
)dtkdtp. (54c)

Similar to (50)-(53), for any member of set

{(W,L, tp, tk, γp, γk) | 0 < W < L, 0 < γk < γp, 0 ≤ tk ≤W 2, tk ≤ tp ≤W 2}, (55)

we have (1√
tk
− 1√

tp
) > 0, (1

W −
1
L) > 0, and

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)
> 0. Hence

the integrand in (54c) is positive for any member of set (55), so is integral (54c), and the proof is

complete.

11

Appendix D A simulation study on the relation between expected

error (15) and EΩs
(φ2(x,x′))

Consider the squared exponential Gaussian kernel φ(x, x′) = exp(−γ(x− x′)2) with γ > 0 defined

on

Ωs = {x ∈ R|a ≤ x ≤ a+ b} (56)

with uniform sampling distribution

x ∼ U(a, a+ b) ∀x ∈ Ωs. (57)

To have a general simulation study, we need the following lemma.

Lemma 5. Ez1,z2
(

exp
(
− c(z1−z2)2

))
, where z1, z2

i.i.d∼ U(a, a+ b), is a monotonically decreasing

function of c and b.

Proof. We need to show that ∇g(b, c) = [∂g(b,c)∂b , ∂g(b,c)∂c]T < 0 for all [b, c]T > 0, where

g(b, c) = Ez1,z2
(

exp
(
− c(z1 − z2)2

))
=

∫ b2

0
exp(−ct)(1

b
√
t
− 1

b2
)dt

by Lemma 4.

We can write ∂g(b,c)
∂b as

∂g(b, c)

∂b
=

1

b2

∫ b2

0
exp(−ct)(2

b
− 1√

t
)dt (58a)

=
1

b2

([
exp(−ct)(2t

b
− 2
√
t)

]b2
0

−
∫ b2

0
−c exp(−ct)(2t

b
− 2
√
t)

)
(58b)

=
2c

b2

∫ b2

0
exp(−ct)(t

b
−
√
t), (58c)

where equalities (58a) and (58b) follow from the Leibniz integral differentiation and the integration

by part rules, respectively. It is easy to check that integrand exp(−ct)(tb −
√
t) is always negative

for any member of set {(b, c, t) | 0 < b, 0 < c, 0 ≤ t ≤ b2}; therefore, we always have ∂g(b,c)
∂b < 0.

12

Moreover, for ∂g(b,c)
∂c ,

∂g(b, c)

∂c
=

∫ b2

0
−t exp(−ct)(1

b
√
t
− 1

b2
)dt =

−1

b

∫ b2

0
t exp(−ct)(1√

t
− 1

b
)dt.

It is again easy to check that the integrand t exp(−ct)(1√
t
− 1

b) is positive for any member of set

{(b, c, t) | 0 < b, 0 < c, 0 ≤ t ≤ b2}. Therefore, ∂g(b,c)
∂c is always negative.

By Lemma 5, expectation function

EΩs(φ
2(x,x′)) = Ex,x′(exp(−2γ(x− x′)2) (59)

is a monotonically decreasing function of γ and b. This means that there are only two ways to

increase expectation EΩs(φ
2(x,x′)), which are either decreasing γ or decreasing b. The approxi-

mation of expected error function (15) on domain (56) and sampling distribution (57) for varying

values of γ and b and a fixed value of ms using a heat map plot is shown in Figure 7. We observe

that as the values of γ or b decrease, or equivalently, EΩs(φ
2(x,x′)) increases, the approximation

of the expected error function decreases.

Figure 7: Heat map of the approximation of expected error function (15) on domain (56) and
sampling distribution (57) for varying values of γ and b and a fixed value of ms

Our simulation study can be used to infer a more general case. Consider the covariance function

as φ(x,x′) = exp(−
∑p

i=1 γk(xk − x′k)) defined on Ωs as a p-dimensional hyper-rectangle with side

lengths b1, . . . , bp with a uniform sampling distribution, i.e., xk ∼ U(ak, ak + bk) ∀x ∈ Ωs. With

13

this setup, we can write

EΩs(φ
2(x,x′)) =

p∏
i=1

Exk,x′k(exp(−2γk(xk − x′k)), (60)

which is a monotonic function in each bi and γi by lemma 5. Therefore, our simulation results are

valid for this generalized case as well.

Finally, we present some intuition behind the theoretical results in Section 3. The reason

why the direction a, found by solving optimization problem (20), results in a better covariance

approximation in each subdomain can be visually perceived for a two-dimensional domain. Suppose

we can partition the domain of two-dimensional function f(x) = cos(0.05x1 + 0.1x2) by cutting

orthogonal to either of three directions [1, 0], [0.43, 0.9], or [0, 1], where direction [0.43, 0.9] is the

direction of the fastest covariance decay obtained by optimizing (20). Figure 8 shows the 3-D

presentations of three local functions created by cutting orthogonal to each direction. We observe

that the local functions created by cutting orthogonal to the desired direction have a less fluctuating

behaviour compared to those of directions [1, 0] and [0, 1]. That the function has less fluctuation

allows a random point on the local functions of Figure 8b to have (on average) higher correlation

to its neighboring data points. Therefore, we can obtain a better approximation of local covariance

structures by using the same number of pseudo data points located in each subdomain.

(a) a = [1, 0]t (b) a = [0.43, 0.9]t (c) a = [0, 1]t

Figure 8: Local functions created by cutting orthogonal to directions [1, 0], [0.43, 0.9] (solution
of (19)), and [0, 1] on a synthetic dataset

14

Appendix E Solving optimization problem (20)

Let first write the partial derivatives of objective function in (20),

∂L(ā)

∂ak
= −yTn (Kā

n + σ2In)−1∂Kā
n

∂ak
(Kā

n + σ2In)−1yn + tr((Kā
n + σ2In)−1∂Kā

n

∂ak
), (61)

where ∂Kā
n

∂ak
is the matrix of element-wise derivatives with respect to the kth element of ā. Note that

each element of ∂Kā
n

∂ak
involves the term 1√

1−āT ā
. Therefore, the gradient of the objective function

in (20) does not exist on the boundary of the feasible region, i.e., ∇L(ā) → ∞ as āT ā → 1.

Therefore, to avoid an undefined gradient on the boundary, we modify the optimization by making

the feasible region slightly tighter, i.e.,

min
ā

L(ā) = yTn (Kā
n + σ2In)−1yn + log|Kā

n + σ2In|

subject to āT ā ≤ 1− ε,
(62)

where ε is a very small number. In our experiments, we set ε = 0.001.

Due to the simple convex structure of constraint āT ā ≤ 1 − ε, i.e., a d − 1-dimensional hyper-

sphere, optimization (62) can be solved by the Projected Gradient Descent algorithm (Nesterov

and Nemirovskii, 1994). In this projection algorithm, the (j + 1)th decent step is defined by

āj+1 = P
(
āj − α

||∇L(āj)||
∇L(āj)

)
, (63)

where α
||∇L(āj)|| is a normalized length step, and

P(z) = argminw||w − z||

subject to wTw ≤ 1− ε.
(64)

P(z) = z when zT z ≤ 1 − ε, otherwise the solution to P(z) occurs at the point that the line

defined by z and the center of the hypersphere, (0), crosses the boundary of the hypersphere, i.e,

intersection of w1
z1

= w2
z2

= . . . =
wp−1

zp−1
and wTw = 1 − ε. Therefore, the solution to P(z) has the

15

closed form,

P(z) =

z zT z ≤ 1− ε

[z1√
zT z

, . . . ,
zp−1√
zT z

]T zT z > 1− ε.
(65)

Appendix F Practical Considerations

F.1 Creating boundaries, control points, and boundary functions

The focus of this section is on the practical implementation of SPLK, and therefore, the charac-

terization of cutting hyperplanes differs from the discussion in Section 3.2. Here, instead of using

a vector of angles corresponding to primary axes of input space, we use a given direction, which

can be the solution to optimization (20) or any other arbitrary direction, to define the cutting

hyperplanes.

Recall that in our partitioning policy all the cutting hyperplanes are parallel to each other, and

therefore, orthogonal to a unique direction, which is characterized by a vector a = [a1, . . . , ap]
T .

Let Z = {xTi a | xi ∈ X} denote the projection of all the input vectors onto a. Next, consider the

ordered set {z1, . . . , zS−1}, where min Z < z1 and zS−1 < max Z, and z` < z`+1, for ` ∈ [S − 1].

Given the set {z1, . . . , zS−1} and direction a, which is in fact the normal vector of all of the

cutting hyperplanes, we define the `th cutting hyperplane orthogonal to a as H`,a = {x ∈ Ω |

a1x1 + . . .+ apxp = z`} for ` ∈ [S − 1]. We use the data points close to H`,a to locate the control

points. To this end, we first define ∆` = {xi ∈ X| |xTi a − z`| < δ} as the set of training data

points whose Euclidean distance to H`,a is less than a predefined constant δ. Then, calculate the

maximum and minimum of the kth dimension of the data points in ∆`, respectively,

τ1,k,` = max
xi∈∆`

xTi ek and τ0,k,` = min
xi∈∆`

xTi ek, (66)

where ek is the unit vector along the kth primary axis of the space for k ∈ [p]. As such, the set

V` =
{

[τb,1,`, . . . , τb,p,`]
T |b = 0, 1

}
characterizes the vertices of the hyper-rectangle inscribing ∆`.

Next, we uniformly sample Q > 0 points from V` and denote the set of all these points as U`. We

16

obtain the set of control points on H`,a denoted as C` by projecting the points in U` on H`,a,

C` = {(z` − uTa)a + u | ∀u ∈ U`}. (67)

There are several ways to choose the width of each subdomain, i.e., z`+1 − z` for ` ∈ [S −

1]. One way is to choose a fixed width for the subdomains; however, this approach results in

subdomains with different numbers of local data points depending on their distribution on the

domain. Also adaptive mesh generation techniques (Becker and Rannacher, 2001) can be used to

vary the widths to balance the error among the subdomains. In Section 4, we use varying widths for

the subdomains to balance the numbers of local data points across the subdomains. This approach

helps us to control the computation time of the algorithm, because it is evenly distributed among

the subdomains.

Furthermore, to impose connectivity on the optimization procedure discussed in Section 3.1,

we need to specify the boundary values for each control point c ∈ C`. To this end, we fit a

boundary GPR over the hyper-rectangle defined by V` using the data points in ∆`. We then use

the predictive mean function of this GPR to determine the boundary values. Letting R`(.) denote

as the predictive mean function of the GPR constructed by ∆`, the boundary value for each c ∈ C`

is

R`(c) = kc∆`
(K∆`∆`

+ σ2
` I`)

−1y∆`
, (68)

where kc∆`
is the covariance vector between the control point c ∈ C` and the neighboring data

points in ∆`, and K∆`∆`
is the covariance matrix between the neighboring data points in ∆`

themselves. In Section 3.1, with a slight abuse of notation, we denote R(.) as a function that

takes a control point as an input and returns R`(.), depending on the location of the control point.

Note that since the set of neighboring data points ∆` is a small set, we use a full GPR to obtain

functions 68.

17

Dataset q Time MSE NLPD

3 145.50 12.18 2.61
TCO 4 145.61 12.15 2.61

5 146.06 11.98 2.60

3 134.48 25.50 2.60
Levitus 4 134.47 25.44 2.59

5 135.36 25.25 2.59

3 157.62 0.42 4.01
Dasilva 4 159.98 0.38 3.30

5 167.79 0.38 3.05

2.2 147.53 17.41 2.67
Protein 2.5 202.09 17.39 2.66

3 3651.33 17.38 2.65

Table 1: Effect of q on efficiency of SPLK. S = 30 and κ = 4 across all the datasets

F.2 Control points density

As discussed in Section 3.4, we use a density parameter and the dimension of the boundary space,

i.e., q and p− 1, to determine the number of control points to be uniformly located on each bound-

ary. Notably, our experiments show that setting q to small values usually results in satisfactory

performance, while increasing it does not significantly affect the prediction accuracy, but increases

the computation burden, particularly in higher dimensional domains. The results of testing SPLK

on our four datasets with varying values of q and all other parameters fixed are reported in Table 1.

An increase in the value of q slightly improves the prediction accuracy in terms of NLPD and MSE.

Moreover, as the dimension of the domain of data increases, an increase in the value of q results in

much longer computation time.

F.3 Hyperparameter learning

Maximizing the marginal likelihood of the training data, p(y), is a popular method for learning

the hyperparameters of a model (Rasmussen and Williams, 2006). In SPLK, instead of one global

marginal likelihood function, there are S local functions p(ys), each of which can be trained inde-

pendently. Recall that our local predictors are in fact SPGP predictors that consider pseudo-inputs

as parameters of the model. Therefore, we have two types of parameters: one is the location of local

pseudo-inputs and the other is the hyperparameters of the underlying covariance function. Maxi-

mizing the logarithm of the local SPGP marginal likelihood functions using gradient descent with

respect to local pseudo-inputs and hyperparameters provides local optimal locations. Specifically,

18

the logarithm of the marginal likelihood of SPLK’s sth local model is

log(p(ys)) = −1

2
log |Gs| −

1

2
yTs G−1

s ys −
ns
2

log 2π, (69)

where Gs is the same as that of Section 3.1.

Moreover, we use anti-isotropic squared exponential function as the choice of our local covariance

functions,

φ(x,x′) = C exp
(
− (x− x′)TΓ(x− x′)

)
, (70)

where Γ is a diagonal matrix with length-scale parameters γ1, . . . , γp on the diagonal. This covari-

nace function automatically determines the significance of predictors after training its parameters

by minimizing local likelihood function (69).

Appendix G A simulation study on the performance of SPLK

In this section, we conduct a simulation study to further investigate the performance of SPLK

comparing to the other competing algorithms in terms of MSE. As mentioned in Section 4.2, when

the rates of covariance decay highly vary in different directions (similar to the Dataset Dasilva),

SPLK can perform better than the competing algorithms considered in this study. This is because

SPLK partitions the domain of data orthogonal to the direction of the fastest rate of covariance

decay, which potentially reduces the degree of mismatch on the boundaries compared with the

other directions.

To test this claim we generate 10,000 samples from a Gaussian process with covariance func-

tion (17) and highly different length scale parameters γ1 = 50, γ2 = 10, and γ3 = 0.001. To this

end, we first generate 10,000 vectors, xi, uniformly from the cube [0, 5]× [0, 5]× [0, 5] and form the

covariance matrix KXX. Then we draw 10,000 responses, yi, using KXX and add a noise to each

response from distribution N (0, 4). Finally, we use 9,000 of these samples for training and 1,000 fo

r testing.

For this simulated dataset, SPLK partitions the domain of data from the first direction which

has the largest associated length scale parameter. Figures 9a and 9b show the performance of all the

19

competing algorithms in terms of MSE and NLPD versus computation time. As expected, due to

the designed covariance structure, i.e., highly varying rates of covariance decay, SPLK outperforms

the other competing algorithms in terms of MSE, while performs as well as PWK and PIC in terms

of NLPD.

0 50 100 150 200
4

4.5

5

5.5

6

6.5

7

7.5

Time

MS
E

SPLK
BCM
BGP
PIC
LPR
PWK

(a) MSE vs. computation time

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

22

Time

NL
PD

SPLK
BCM
BGP
PIC
LPR
PWK

(b) NLPD vs. computation time

Figure 9: MSE and NLPD versus computation time. For SPLK, q = 3 and k ∈ {2, 4, 6, 8}. The
value of parameter S is selected from the set {8, 16, 32, 64, 128, 256}.

References

Becker, R. and R. Rannacher (2001). An optimal control approach to a posteriori error estimation

in finite element methods. Acta Numerica 10, 1–102.

Philip, J. (2007). The probability distribution of the distance between two random points in a box.

TRITA MAT 10(7).

20

	Solving optimization problem (11)
	Derivation of low-rank covariance approximation error
	Proof of Theorems
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2

	A simulation study on the relation between expected error (15) and Es(2(x,x'))
	Solving optimization problem (20)
	Practical Considerations
	Creating boundaries, control points, and boundary functions
	Control points density
	Hyperparameter learning

	A simulation study on the performance of SPLK

