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On integers that are covering numbers of groups: Supplementary Material

Martino Garonzi, Luise-Charlotte Kappe, and Eric Swartz

The material presented here is a supplement to the results of the main paper [4]. It contains calculations
of or bounds for the covering number of various monolithic groups with a degree of primitivity at most 129
that could not be dealt with using the methods of the main paper such as Algorithms KNS and GKS as well
as known results.

We use the following notation in the tables. The notation Mi indicates a conjugacy class of maximal
subgroups. Below the symbol Mi, the number in parentheses indicates the number of conjugate subgroups
in the class. The notation “clm,j” refers to a class of elements of order m; the “j” will be omitted when we
are considering a single class of this order. If the (clm,Mi)-entry of the table is nk, then each subgroup of
Mi contains n elements of class clm, and each element in clm is contained in k subgroups ofMi. Instead of
writing n1, we will write n, P to indicate that the elements of clm are partitioned among the subgroups in
Mi. If the (clm,Mi)-entry is written as n, then the information about how many subgroups inMi contain
a given element of clm is unimportant to the proof and is omitted. We observe that the smallest primitivity
degree of each of the following subgroups is an index of one of its maximal subgroups, and hence this value
appears as an index in the corresponding table (when such a table is provided).

One argument that is used repeatedly in the following propositions is the following, which we state here
for emphasis: if there are c elements from class clj remaining to be covered and the (clj ,Mi)-entry of the
table is nk, then at least dc/ne subgroups from Mi are needed to cover the c elements of class clj . In
particular, if a class of maximal subgroupsMi has size m and the (clj ,Mi)-entry of the table is nk, then at
least m/k subgroups from Mi are needed to cover the elements of class clj .

Proposition A.1. We have the following covering number values:

(i) σ(26 : O−(6, 2)) = 67;
(ii) σ(26 : A8) = 71;
(iii) σ((PSL(2, 7)× PSL(2, 7)).4) = 498;
(iv) σ(PSL(2, 64).3) = 2080;
(v) σ(PSL(2, 8) wr 2) = 586;
(vi) σ((A6 ×A6).4) = 1387;
(vii) σ(Sp(8, 2)) = 256.

Proof. (i) Using [4, Algorithm GKS], we have that σ(O−(6, 2)) = 67, and so σ(26 : O−(6, 2)) 6 67.
Suppose, for the purpose of contradiction, that σ(26 : O−(6, 2)) < 67, and let B be this smaller cover. By [4,
Lemma 2.10], this means that all 64 conjugates of the point stabilizer in the primitive action on 64 points
are contained in B. By GAP [3], there is a class of elements of order 12 that are not contained in the point
stabilizers. The most number of elements of this class that are contained in a maximal subgroup is 1920, and
so at least an additional 18 subgroups are needed to cover this class. However, 64 + 18 > 67, a contradiction
to minimality. Therefore, the covering number of 26 : O−(6, 2) is 67.

(ii) Since σ(A8) = 71, if σ(26 : A8) < 71, then by [4, Lemma 2.10], any minimal cover of 26 : A8 would
have to contain all maximal subgroups isomorphic to A8. However, by GAP, there are a total of 128 maximal
subgroups isomorphic to A8, a contradiction.

(iii) By GAP, there are four classes of maximal subgroups, and we have the following distribution of
elements:
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M1 M2 M3 M4

(1) (64) (441) (784)
cl24 4704, P 0 0 0
cl16 0 0 16, P 0
cl12,1 0 2942 0 12, P
cl12,2 0 2942 0 12, P

Table 1. Element distribution in PSL(2, 7)2.4

The unique minimal normal subgroup is the only class containing elements from cl24. Moreover, the
elements of cl16 are partitioned among the 441 subgroups inM3, so these 441 subgroups are also contained in
a minimal cover. Only the two classes cl12,1 and cl12,2 are left uncovered after including these 442 subgroups.
Using [4, Algorithm KNS] and GUROBI [5] for the elements in these two classes, we find that the minimal
cover of these two classes contains 56 subgroups. Therefore, the covering number of (PSL(2, 7)×PSL(2, 7)).4
is 498.

(iv) By GAP, we have the following distribution of elements:

M1 M2 M3 M4 M5 M6

(1) (65) (520) (2016) (2080) (4368)
cl63 12480, P 384 0 0 6 0
cl15 0 0 0 26, P 0 12
cl9,1 0 26882 168 0 42 0
cl9,2 0 26882 168 0 42 0

Table 2. Element distribution in PSL(2, 64).3

The classes cl15, cl9,1, and cl9,2 are not contained in the minimal normal subgroup inM1. The elements
of cl15 are partitioned among the 2016 subgroups of M4, and no subgroup contains more elements of cl15
than a subgroup in M4 does. Using [4, Algorithm KNS] and GUROBI, the minimal cover of cl9,1 and cl9,2
has size 64, and calculations in GAP show that a random choice of 64 subgroups from M2 (say, the first 64
in a given list, excluding the last) plus the 2016 aforementioned maximal subgroups from M4 are a cover.
Therefore, the covering number of PSL(2, 64).3 is 2080.

(v) By GAP, we have the following distribution of elements in PSL(2, 8) wr 2:

M1 M2 M3 M4 M5

(1) (504) (81) (784) (1296)
cl63 8064, P 0 0 0 0
cl18 0 56, P 0 36 0
cl4 0 0 392, P 162 98

Table 3. Element distribution in PSL(2, 8) wr 2

By [4, Algorithm KNS] and GUROBI, the subgroups fromM2 andM3 are a minimal cover of cl18 and
cl4. However, these two classes together are not a cover, whereas including the minimal normal subgroup
from M1 with these is a cover. Therefore, the covering number of PSL(2, 8) wr 2 is 586.

(vi) Here (A6×A6).4 is number 16 of the list AllPrimitiveGroups(NrMovedPoints,100) returned by GAP.
A class of elements of order 40 is only contained in the minimal normal subgroup, and a class of elements
of order 20 is only contained in the 1296 subgroups from another class. The only elements not covered by
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this class are four classes of elements of order 16. By [4, Algorithm KNS] and GUROBI, a minimal cover of
these elements contains 90 subgroups. The result follows.

(vii) Using [4, Algorithm GKS], σ(O+(8, 2) : 2) = σ(O−(8, 2) : 2) = 256. By [4, Lemma 2.10], if
σ(Sp(8, 2)) < 256, then all maximal subgroups isomorphic to either O+(8, 2) : 2 or O−(8, 2) : 2 are in such
a minimal cover. However, there are 136 + 120 = 256 such subgroups, so σ(Sp(8, 2)) > 256. On the other
hand, calculations in GAP show that all 256 subgroups isomorphic to either O+(8, 2) : 2 or O−(8, 2) : 2 are
a cover. The result follows. �

Proposition A.2. We have the following lower and upper bounds for the indicated covering number
values:

(i) 447 6 σ(A7 wr 2) 6 667;
(ii) 196 6 σ(PSp(4, 4).2) 6 222;
(iii) 11859 6 σ(HS : 2) 6 22375;
(iv) 22746 6 σ((A10 ×A10).4) 6 30377;
(v) 344 6 σ(PSU(4, 3)) 6 442;
(vi) 256 6 σ(PSU(4, 3).21) 6 554, where PSU(4, 3).21 is the group U(4, 3).21 in the ATLAS [2];
(vii) 183 6 σ(PSU(4, 3).22) 6 365, where PSU(4, 3).22 is the group U(4, 3).22 in the ATLAS [2];
(viii) 412 6 σ(PSU(4, 3).23) 6 554, where PSU(4, 3).23 is the group U(4, 3).23 in the ATLAS [2];
(ix) 242 6 σ(PSL(4, 3).2) 6 365;
(x) 25706 6 σ(O−(8, 2)) 6 26283;
(xi) 204 6 O+(8, 2) 6 765;
(xii) 570 6 σ(PSL(2, 11) wr 2) 6 926.

Proof. (i) Using GAP, we find the following distribution of elements:

M1 M2 M3 M4 M5 M6 M7 M8

(1) (2520) (2520) (1225) (441) (49) (225) (225)
cl14 0 360 0 0 0 0 4032, P 4032, P
cl12 0 0 420 432 24002 0 0 0
cl3 39200, P 0 0 320 0 3200 0 0

Table 4. Element distribution in A7 wr 2

Either M7 or M8 along with the minimal normal subgroup in M1 constitute a minimal cover of cl14 and
cl12. For the lower bound, it takes at least 221 subgroups from M5 to cover the elements cl12. The upper
bound comes from [4, Algorithm GKS].

(ii) First, by GAP, we have the following distribution of elements:

M1 M2 M3 M4 M5 M6 M7 M8

(1) (85) (85) (120) (120) (136) (136) (1360)
cl10 0 0 0 0 0 1440, P 1440, P 144
cl8 0 1440, P 1440, P 20402 20402 0 0 0

Table 5. Element distribution in PSp(4, 4).2

The elements of cl10 are partioned among the subgroups in M6 and M7 in each class, and each of these
classes contains 136 subgroups, so at least 136 subgroups are necessary to cover these elements. On the other
hand, no maximal subgroup containing an element of cl10 contains an element from cl8. The most number of
elements from cl8 in a single maximal subgroup is 2040, and each element of cl8 is contained in exactly two
of the 120 subgroups in each ofM4 orM5. Hence it takes at least 120/2 subgroups to cover these elements,
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giving a lower bound of 136 + 60 = 196. On the other hand, using GAP, it can be verified that the minimal
normal subgroup in M1 together with M2 and M6 is a cover, giving the upper bound of 222.

(iii) By GAP, we have the following distribution of elements in HS : 2:

M1 M2 M3 M4 M5

(1) (100) (1100) (1100) (3850)
cl11 8064000, P 80640, P 0 0 0
cl30 0 0 0 2688, P 0
cl20,1 0 0 0 0 0
cl20,2 0 0 0 0 0
cl10 0 88704, P 8064 0 2304

Table 6. Element distribution in HS : 2

M6 M7 M8 M9 M10

(4125) (5775) (15400) (22176) (36960)
cl11 0 0 0 0 0
cl30 0 0 0 0 80
cl20,1 0 768, P 0 200, P 0
cl20,2 0 0 288, P 4002 120, P
cl10 0 0 0 400, P 0

Table 7. Element distribution in HS : 2, cont.

Now, using GAP, the subgroups in classes M2, M4, M7, and M8 form a cover, giving the upper bound.
On the other hand, the elements of cl30 are covered by the 1100 maximal subgroups in M4. At least 5775
different subgroups are needed for cl20,1, and the minimal normal subgroup in M1 is a minimal cover of a
class of elements of order 11. At this point, at most 2442000 elements can possibly be covered from cl20,2,
being 120 · 1100 + 5775 · 400 = 2442000. Since 15400 · 288 − (120 · 1100 + 5775 · 400) = 1993200, this
leaves at least 1993200 elements still uncovered. The most elements of this class in any maximal subgroup
is 400, which means at least an additional 4983 subgroups are required to cover these elements. Since
1100 + 5775 + 1 + 4983 = 11859, the covering number is bounded below by 11859.

(iv) Using GAP, we obtain the following information about some classes of elements in (A10 ×A10).4.

M1 M2 M3 M4

(1) (44100) (14400) (2025)
cl72 182891520000, P 0 0 0
cl20 0 0 0 0
cl28 0 0 3259200, P 232243200
cl24,1 0 2073600 127008002 0
cl24,2 0 2073600 127008002 0

Table 8. Element distribution in (A10 ×A10).4
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M5 M6 M7 M8

(100) (893025) (15876) (6350400)
cl72 0 0 0 0
cl20 0 737280 41472000, P 103680
cl28 4702924800, P 0 0 0
cl24,1 0 307200 0 0
cl24,2 0 307200 0 0

Table 9. Element distribution in (A10 ×A10).4, cont.

Using [4, Algorithm GKS], the subgroups in classes M1, M3, M5 and M7 collectively form a cover, giving
the upper bound. On the other hand, the information in Tables 8 and 9 shows the necessity of the subgroup
in M1 to cover the elements in cl72, and it takes at least 15876 additional subgroups to cover cl20. At this
point, since

14400 · 12700800

2
− 15876 · 307200 = 86568652800,

at least 86568652800 elements from each of cl24,1 and cl24,2 are still uncovered. Because

86568652800

12700800
= 6816,

at least 6816 subgroups are still needed to cover the elements from these classes. Noting that⌈
470292480000− 6816 · 32659200

4702924800

⌉
= 53,

at least 53 more subgroups fromM5 are needed to cover the elements of cl28, giving a lower bound of 22746.
(v) Using GAP, we have the following information about elements of PSU(4, 3).

M1 M2 M3 M4 M5 M6 M7 M8

(112) (126) (126) (162) (162) (280) (540) (567)
cl7 0 0 0 2880, P 2880, P 0 864, P 0
cl9,1 1080, P 28803 0 0 0 432, P 0 0
cl9,2 1080, P 0 28803 0 0 432, P 0 0
cl8 0 0 0 0 0 29162 15122 720, P

Table 10. Element distribution in PSU(4, 3)

M9 M10 M11 M12 M13 M14 M15 M16

(567) (1296) (1296) (1296) (1296) (2835) (4536) (4536)
cl7 0 360 360 360 360 0 0 0
cl9,1 0 0 0 0 0 0 0 0
cl9,2 0 0 0 0 0 0 0 0
cl8 720, P 0 0 0 0 144 180 180

Table 11. Element distribution in PSU(4, 3), cont.
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First, [4, Algorithm GKS] shows that the 442 subgroups in M4 and M6 form a cover. On the other hand,
the information in Tables 10 and 11 shows that at least 162 subgroups are needed to cover cl7. Suppose
that we use 162 −m subgroups from M4 and M5 and that we use m7 subgroups from M7. This means
we use (162 −m) + m7 groups to cover cl7. This implies that 864m7 > 2880m, that is, this implies that
m 6 3m7/10, and so 162+(m7−m) > 162+7m7/10. For each group that we use from classM7, potentially
1512 elements from cl8 are covered. Since

408240− 1512m7

2916
= 140− 14m7

27
,

we still need at least 140− 14m7/27 groups to cover cl8. Noting that(
162 +

7m7

10

)
+

(
140− 14m7

27

)
= 302 +

49m7

270
> 302,

at least 302 subgroups are required to cover classes cl7 and cl8. Since 120960−140 ·432 = 60480, at the very
least 60480 of the elements from each of cl9,1 and cl9,2 are still uncovered. Because 2 · 60480/2880 = 42, an
additional 42 subgroups are needed, and hence at least 344 subgroups are needed to cover PSU(4, 3).

(vi) PSU(4, 3).21 is the group U(4, 3).21 in the ATLAS [2]. Using GAP, we have the following information
about elements of PSU(4, 3).21.

M1 M2 M3 M4 M5 M6 M7

(1) (112) (126) (126) (162) (162) (280)
cl14 0 0 0 0 2880, P 2880, P 0
cl10 0 116642 5184, P 5184, P 0 0 0
cl6 0 0 0 0 0 0 108, P

Table 12. Element distribution in PSU(4, 3).21

M8 M9 M10 M11 M12 M13

(540) (567) (567) (2835) (4536) (4536)
cl14 864, P 0 0 0 0 0
cl10 0 0 0 0 144 144
cl6 56010 0 0 969 0 0

Table 13. Element distribution in PSU(4, 3).21, cont.

First, using GAP, the subgroups inM2,M5,M7 are a cover, giving the upper bound of 554. On the other
hand, examining Tables 12 and 13, we see that at least 54 subgroups are needed to cover cl6. Supposing that
54 subgroups from M8 are used to cover cl6, which would be optimal, we would then have covered 864 · 54
elements from cl14. Since

d864(540− 54)/2880e = 146,

at least 146 subgroups are still needed to cover cl14. Finally, at least 56 subgroups are still needed to cover
cl10, since no subgroup that contains an element of cl14 or cl6 contains an element of cl10. Therefore, at least
256 subgroups are needed to cover PSU(4, 3).21.

(vii) PSU(4, 3).22 is the group U(4, 3).22 in the ATLAS [2]. Using GAP, we have the following informa-
tion about elements of PSU(4, 3).22.
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M1 M2 M3 M4 M5 M6

(1) (112) (126) (126) (280) (540)
cl10 0 0 5184, P 5184, P 0 0
cl18 0 3240, P 0 2880 1296 0
cl12,1 0 4860, P 4320 0 0 0
cl12,2 0 0 0 43202 972 2016
cl8 0 0 64802 0 2916 1512
cl7 933120, P 0 0 0 0 1728

Table 14. Element distribution in PSU(4, 3).22

M7 M8 M9 M10 M11

(567) (567) (1296) (1296) (2835)
cl10 0 2304 504 504 0
cl18 0 0 0 0 0
cl12,1 960 0 420 420 192
cl12,2 0 0 0 0 96
cl8 720 720 0 0 144
cl7 0 0 720, P 720, P 0

Table 15. Element distribution in PSU(4, 3).22, cont.

Using GAP, we see that the subgroups in M1, M2, M3, and M4 constitute a cover, demonstrating the
upper bound. On the other hand, Tables 14 and 15 show that at least 126 subgroups are needed for cl10.
Assume that m3 subgroups fromM3, m4 subgroups fromM4, m8 subgroups fromM8, m9 subgroups from
M9, and m10 subgroups fromM10 are used in the cover; thus m := m3 +m4 +m8 +m9 +m10 > 126. Since

112 · 3240− 2880m4

3240
= 112− 8m4

9
,

at least 112− 8m4/9 subgroups are still needed to cover elements from cl18, and, since

112 · 4860− 4320m3 − 420(m9 +m10)

4860
>

112 · 4860− 4320(m−m4)

4860
= 112− 8(m−m4)

9
,

at least 112 − 8(m − m4)/9 subgroups are still needed to cover elements from cl12,1. Now, it is possible
that the elements from classes cl18 and cl12,1 are covered simultaneously by subgroups from classM2, so we
consider two different cases. Suppose first that m4 > 63. Then, at least

m+ (112− 8(m−m4)/9) =
m

9
+ 112 +

8m4

9
> 14 + 112 + 56 = 182

subgroups are still needed to cover classes cl10 and cl12,1. On the other hand, suppose m4 < 63. Then, the
number of subgroups needed to cover classes cl10 and cl18 is

m+

(
112− 8m4

9

)
> 126 + 112− 56 = 182.

In any case, we see that at least 182 subgroups are needed to cover classes cl10, cl18, and cl12,1, collectively.
The class cl7 has not yet been covered (unless 1296 subgroups from classes M9 and M10 have been used),
so the subgroup in M1 is still needed. This gives the lower bound of 183.

(viii) PSU(4, 3).23 is the group U(4, 3).23 in the ATLAS [2]. Using GAP, we note the following distri-
bution of elements in PSU(4, 3).23.
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M1 M2 M3 M4 M5 M6

(1) (112) (162) (162) (280) (540)
cl24 0 0 0 0 972, P 0
cl10 0 0 80642 0 0 0
cl8 0 145802 0 10080 0 0

Table 16. Element distribution in PSU(4, 3).23

M7 M8 M9 M10 M11

(2835) (4536) (4536) (45366) (8505)
cl24 96 0 0 0 0
cl10 0 144 144 144 0
cl8 288 0 0 360 96

Table 17. Element distribution in PSU(4, 3).23, cont.

Using GAP, we see that the subgroups in M2, M3, and M5 constitute a cover, giving the upper bound.
On the other hand, Tables 16 and 17 show that it takes at least 280 subgroups to cover the elements in cl24.
No maximal subgroup that contains elements from cl24 contains elements of cl10, so it takes at least 162/2
subgroups to cover these elements. Finally, because⌈

112 · 145802 − 288 · 280

14580

⌉
= 51,

it takes at least an additional 51 subgroups to cover the elements of cl8. Hence it takes at least 412 groups
to cover these three classes. The result follows.

(ix) The upper bound comes from using [4, Algorithm GKS]. On the other hand, using GAP, we have
the following distribution of elements in PSL(4, 3).2.

M1 M2 M3 M4 M5 M6 M7 M8 M9

(1) (117) (117) (130) (520) (1080) (2106) (8424) (10530)
cl12,1 0 0 4320, P 3888, P 0 0 240 0 48
cl12,2 0 4320, P 0 3888, P 0 0 240 0 48
cl6 0 0 0 103682 1296, P 1872 0 240 64
cl20 606528, P 0 0 0 0 0 288 0 0
cl8 0 6480, P 6480, P 0 29162 1404 0 180 0
cl10,1 0 103682 0 0 0 0 288 0 0
cl10,2 0 0 103682 0 0 0 288 0 0

Table 18. Element distribution in PSL(4, 3).2

Assume that 117−m2,3 subgroups are used from classesM2 andM3 to cover cl8. In this case, an additional
m subgroups from classes M5, M6, and M8 are needed to cover cl8. Now, 6480m2,3 6 2916m, and so
117−m2,3 +m > 117 + 11m/20. At this point, we have covered at most 1872m elements of cl6, and so there
are 673920− 1872m elements still to cover. Since

673920− 1872m

10368
= 65− 13m

72
,
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at least 65− 13m/72 subgroups are needed to cover the remaining elements of cl6. So far, we have used at
least 182 subgroups, since (

117 +
11m

20

)
+

(
65− 13m

72

)
= 182 +

133m

360
> 182.

None of the subgroups that contain elements from cl6 or cl8 contain elements from cl20, so including the
subgroup from M1 means at least 183 subgroups are needed to cover cl6, cl8, and cl20. Of the elements in
cl12,1 and cl12,2, we have covered at most 4320 · 117 + 3888 · 65, which leaves at least 252720 still uncovered.
This means at least an additional d252720/4320e more subgroups are needed, and, since d252720/4320e = 59,
we have a lower bound of 242 subgroups.

(x) The upper bound comes from [4, Algorithm GKS]. Using GAP, we have the following distribution
of elements in O−(8, 2).

M1 M2 M3 M4 M5 M6 M7 M8

(119) (136) (765) (1071) (1632) (24192) (45696) (1175040)
cl17 0 0 0 0 0 480, P 0 0
cl30 0 0 0 6144, P 0 0 144 0
cl21 0 0 245762 0 5760 0 0 0
cl9 3686402 161280, P 0 0 0 0 0 0
cl15 0 967683 0 0 5376 0 96 0

Table 19. Element distribution in O−(8, 2)

It is clear from Table 19 that at least 24192 + 1071 subgroups are needed to cover cl17 and cl30. No maximal
subgroups that contain elements in cl17 or cl30 contain elements in cl21, so at least another d765/2e are
needed. Finally, no subgroup that contains elements in cl17, cl30, or cl21 contains elements in cl9, which
takes at least d119/2e additional subgroups, giving a lower bound of 25706.

(xi) [4, Algorithm GKS] shows that the covering number of O+(8, 2) is at most 765. Using GAP, we
have the following element distribution.

M1 M2 M3 M4 M5 M6 M7 M8

(120) (120) (120) (135) (135) (135) (960) (960)
cl15,1 0 0 96768, P 1720322 0 0 0 0
cl15,2 96768, P 0 0 0 0 1720322 24192 0
cl15,3 0 96768, P 0 0 1720322 0 0 24192

Table 20. Element distribution in O+(8, 2)

M9 M10 M11 M12 M13 M14 M15 M16 M17

(960) (1120) (1120) (1120) (1575) (11200) (12096) (12096)) (12096))
cl15,1 24192 0 10368 0 0 0 0 960 0
cl15,2 0 0 0 10368 0 0 0 0 960
cl15,3 0 10368 0 0 0 0 960 0 0

Table 21. Element distribution in O+(8, 2), cont.
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It is clear from Tables 20 and 21 that no maximal subgroup contains elements from more than one of the
classes cl15,1, cl15,2, or cl15,3. A minimal cover for each class consists of at least d135/2e subgroups, and so
at least 204 subgroups are needed in any cover.

(xii) The upper bound comes from [4, Algorithm GKS]. Using GAP, we have the following distribution
of elements.

M1 M2 M3 M4 M5 M6 M7

(1) (660) (660) (121) (121) (144) (3025)
cl12 0 0 2202 0 0 0 24
cl22 0 60, P 0 0 0 275, P 0
cl6,1 0 220, P 0 12002 12002 0 24
cl6,2 220, P 0 0 0 0 0 4

Table 22. Element distribution in PSL(2, 11) wr 2

Examining Table 22, it is clear that at least 660/2 + 144 subgroups are needed to cover cl12 and cl22, since
these elements lie in disjoint classes of maximal subgroups. Since⌈

145200− 144 · 220

1200

⌉
= 95,

at least 95 more subgroups needed for cl6,1. Finally, not all elements from cl6,2 are covered, and so the
subgroup from M1 is needed, giving the lower bound of 570. �

Proposition A.3. We have the following lower bounds for the indicated covering number values:

(i) σ(PSL(5, 3)) > 393030144;
(ii) σ((A11 ×A11).4) > 213444;
(iii) σ(PSL(7, 2)) > 184308203520.

Proof. (i) A Sylow 11-subgroup of PSL(5, 3) has order 121 and is cyclic. Using GAP (and/or [1, Tables
8.18-8.19]), there are 8 classes of maximal subgroups, and only one has order divisible by 121 (and hence
is the only maximal subgroup containing an element of order 121). A maximal subgroup in this class is
isomorphic to 121 : 5, and the index of one of these groups in G is 393030144. The result follows.

(ii) By [4, Algorithm GKS] (or, more accurately, one iteration of the loop in [4, Algorithm GKS]), there
exists a class cl60 of elements of order 60 that are distributed as follows.

M1 M2 M3 M4 M5 M6 M7

(1) (213444) (108900) (27225) (3025) (121) (131681894400)
cl60 0 124416000 0 0 0 0 0

Table 23. Element distribution in (A11 ×A11).4

The elements in the class cl60 are partitioned among the subgroups inM2, so at least 213444 subgroups are
needed.

(iii) This follows immediately from considering the elements of order 27 − 1 and the result of Kantor [6]
that only field extension subgroups contain a Singer cycle. �
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