Supplementary Information of

Rice sprout endophytic *Enterobacter* sp. SE-5 could improve tolerance of mature rice plants to salt or Cd²⁺ in soils

Yupei Liu^a, Hongming Tan^b, Lixiang Cao^b, and Renduo Zhang^a

^aGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yatsen University, Guangzhou, China; ^bSchool of Life Sciences, Guangdong Provincial Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

CONTACT:

Lixiang Cao; School of Life Sciences, Guangdong Provincial Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China; Email: caolx@mail.sysu.edu.cn

Renduo Zhang; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Email: <u>zhangrd@mail.sysu.edu.cn</u>

Figure S1. Germination of rice seeds treated with sterile water (the control) and endophytic *Enterobacter* sp. SE-5 under the saline stress of 20 g L⁻¹ during different periods.

2d

6d

15d

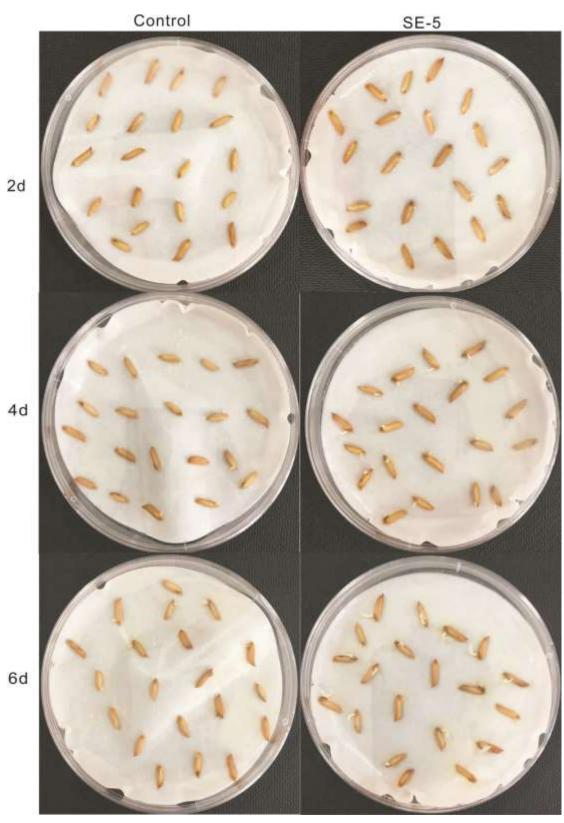


Figure S2. Germination of rice seeds treated with sterile water (the control) and endophytic *Enterobacter* sp. SE-5 under the Cd stress of 0.3 g L^{-1} during different periods.