Tables S1 – S4

Classes of contaminants		Example of common measurement parameters	
Physical		Turbidity, electrical conductivity, total hardness, temperature, oxidation reduction potential (ORP), dissolved oxygen (DO), refractive index etc	
Chemical	Inorganic	pH, DO level, disinfectants, metals, fluoride, nutrients, engineered nanomaterial/nanoparticles	
	Organic	Total organic carbon (TOC), hydrocarbon, volatile organic compounds, pesticides, disinfection by products	
Microbiological		Algae, protozoa, pathogenic microorganisms (bacteria and viruses), biological oxygen demand (BOD)	
Hydraulics		Flow rate, pressure, valve status, water level in reservoir tank, sensor alarms, pump status (on / off and variable speed)	

Table S1.	Common	water	quality	contaminants	and	hydraulic	parameters

Table S2. World Health Organisation Limits of Safe Drinking Water

Water Quality Parameters	Water Safe Range	Unit of Measurement
pH at 25°C	6.5-8.5	рН
Turbidity	0.03-5	NTU
Electrical Conductivity	300-800	micro S/cm
ORP		mV
Dissolved Oxygen	13-14	milligram
Temperature	-	degree Celsius
Lead (Pb)	0.0003 - 0.010	mg/l
Escherichia coli	100-250	ml
Pesticides	0.0001-0.0003	mg/L
Chlorine (Cl2)	0.5 – 2.99	mg/L

S/N	Research Focus	Study		
1	Sensor development for	(Hall 2009; Raich 2013, 1-33; Tatari et al. 2016; Zulkifli, Rahim,		
	detection of contaminants	and Lau 2017, 2657-2689)		
2	Optimal sensor placement for	(Eliades, Kyriakou, and Polycarpou 2014, 602-611; Mukherjee,		
	contamination and leak	Diwekar, and Vaseasht 2017, 91-102; Propato, Cheung, and Piller		
	detection in WDS	2006, 1-8; Rathi and Gupta 2014, 181-188; Rosich, Sarrate, and		
		Nejjari 2012, 776-781; Casillas et al. 2013, 14984-15005; Berry et		
		al. 2006, 218-224; R. Murray et al. 2010, 1-92)		
3	Real-time monitoring via	(Allen, Preis, and Iqbal 2013; Lambrou et al. 2014, 2765-2772;		
	WSN	Zabasta et al. Sept 2014, 42-47)		
4	Identification of the source of	(Deuerlein, Meyer-Harries, and Guth 2017, 53-59; Propato,		
	contaminants	Cheung, and Piller 2006, 1-8; Klise et al. 2016, 4016001)		
5	Optimal response after	(Mukherjee, Diwekar, and Vaseasht 2017, 91-102; Rasekh and		
	detection of contaminants to	Brumbelow 2014, 12–25)		
	mitigate adverse effects on			
	public health			
6	Anomaly detection using AI	Deng and Wang, 2017; Inoue, Yamagata, Chen, Poskitt, and Sun,		
	and data mining techniques	2017; Tian, Jiang, Guo, and Wang 2012; Vries, van den Akker,		
		Vonk, de Jong, and van Summeren, 2016; Zohrevand et al. 2016;		
		Zhang et al. 2014; Zhang, Zhu, Yue, and Wong 2017.		

Table S3. Summary of Science and Engineering Research Direction Related to WQAD

Table S4. Confusion Matrix for Two-class Scenario

	Predicted class				
		Class =Anomaly = Yes	Class = Not Anomaly= No		
Actual class	Class = Anomaly = Yes	True Positive (TP)	False Negative (FP)		
	Class = Not Anomaly = No	False Positive (FP)	True Negative (TN)		

Figures S1 – S3

Figure S1. Traditional WQM framework (Adu-Manu et al. 2017)

Figure S2. Architecture of autoencoder learning algorithm (Andrew Ng 2011)

Figure. S3. Restricted boltzmann machine model (Chu et al. 2017)