
Supplementary Online Appendix

to

Improved Nonparametric Bootstrap Tests of Lorenz

Dominance

Zhenting Sun1 and Brendan K. Beare2

1National School of Development, Peking University
2School of Economics, University of Sydney

July 4, 2019

This supplement to our paper “Improved nonparametric bootstrap tests of Lorenz dom-
inance” is organized as follows. Section A contains proofs of Propositions 3.1, 3.2 and 3.5
appearing in Section 3 of the main paper. Section B contains the results of additional numer-
ical simulations for the matched pairs sampling framework, complementing those given for
the independent sampling framework in Section 4 of the main paper. References not given in
the main paper are listed at the end of the supplement.

A Proofs of Propositions 3.1, 3.2 and 3.5

For j = 1, 2 and p, t ∈ (0, 1), define

Hj,p(t) =
1

µj

(
Lj(p)Qj(t)−Qj(t ∧ p)

)
.

Note that Hj,p(·) is square-integrable under Assumption 2.1. The following lemma is used in
the proofs of Propositions 3.1 and 3.5.

Lemma A.1. Under Assumptions 2.1 and 2.2, L1 and L2 satisfy Var(L1(p)) = Var(H1,p(U)),
Var(L2(p)) = Var(H2,p(V )), and

Cov(L1(p),L2(p)) = Cov(H1,p(U), H2,p(V ))
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for each p ∈ (0, 1), where (U, V ) is a pair of random variables whose joint CDF is the copula C.

Proof of Lemma A.1. In view of (2.5), the covariances between the Brownian bridges B1 and
B2 satisfy

Cov(B1(s),B2(t)) = C(s, t)− st, s, t ∈ [0, 1], (A.1)

where under Assumption 2.2(i) (independent sampling), C is the product copula, and under
Assumption 2.2(ii) (matched pairs), C is the bivariate copula common to the pairs (X1

i , X
2
i ).

For j = 1, 2 and p, t ∈ (0, 1), define

hj,p(t) =
1

µj
(Lj(p)− 1(t ≤ p))Q′j(t).

Note that almost sure integrability of hj,p(·)Bj(·) follows from the fact that n1/2j (Q̂j −Qj) 
−Q′j · Bj in L1(0, 1), as shown by Kaji (2018). Note also that Lj(p) =

∫ 1

0
hj,p(t)Bj(t)dt.

Therefore, applying (A.1) and Fubini’s theorem, we obtain

Cov (L1(p),L2(p)) =

∫ 1

0

∫ 1

0

h1,p(s)h2,p(t)(C(s, t)− st)dsdt.

The function Hj,p is the antiderivative of hj,p: it satisfies Hj,p(·) =
∫ •

0
hj,pdt. A generalization

of Hoeffding’s lemma due to Lo (2017, Thm. 3.1) – see also Cuadras (2002) and Beare (2009)
– thus implies that

Cov(H1,p(U), H2,p(V )) =

∫ 1

0

∫ 1

0

h1,p(s)h2,p(t)(C(s, t)− st)dsdt.

This proves our claimed covariance formula. From this we obtain the claimed variance formu-
las for L1(p) and L2(p) by setting F1 = F2 and setting C equal to the Fréchet-Hoeffding upper
bound, so that H1,p(U) = H2,p(V ) almost surely. (Note that the derivation of our covariance
formula was valid for any copula C, including the Fréchet-Hoeffding upper bound.)

Proof of Proposition 3.1. The CDFs F1 and F2 are continuous under Assumption 2.1, so the
pair of random variables (F1(X1), F2(X2)) has joint CDF given by the copula C. It therefore
follows from Lemma A.1 that

Var(Lj(p)) = Var(Hj,p(Fj(X
j))) = Var

(
1

µj
(Lj(p)X

j −Qj(p) ∧Xj)

)
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for j = 1, 2, and

Cov(L1(p),L2(p)) = Cov(H1,p(F1(X1)), H2,p(F2(X2)))

= Cov

(
1

µ1
(L1(p)X1 −Q1(p) ∧X1),

1

µ2
(L2(p)X2 −Q2(p) ∧X2)

)
.

The desired result follows easily.

For δ > 0, define Bδ(φ) = {p ∈ [0, 1] : |φ(p)| ≤ δ}. The following lemma is used in the
proof of Proposition 3.2.

Lemma A.2. Suppose that Assumptions 2.1 and 2.2 are satisfied, and that τn → ∞ and
T
−1/2
n τn → 0 as n→∞. If H0 is true, then for any δ > 0 we have

P
(
B0(φ) ⊆ B̂0(φ) ⊆ Bδ(φ)

)
→ 1.

Proof of Lemma A.2. We first show that supp∈[0,1] V̂ (p) is Oa.s.(1). Since L̂j(p)X
j
i and Q̂j(p)∧

Xj
i are both nonnegative and |L̂j(p)| ≤ 1, we have∣∣L̂j(p)Xj

i − Q̂j(p) ∧X
j
i

∣∣ ≤ (L̂j(p)Xj
i

)
∨
(
Q̂j(p) ∧Xj

i

)
≤ Xj

i ,

for j = 1, 2 and p ∈ [0, 1]. Using this bound and the strong law of large numbers, it is simple
to show that Ṽ satisfies

sup
p∈[0,1]

Ṽ (p) ≤ Tn
µ̂2
1n

2
1

n1∑
i=1

(X1
i )2 +

Tn
µ̂2
2n

2
2

n2∑
i=1

(X2
i )2 → 1− λ

µ2
1

E(X1)2 +
λ

µ2
2

E(X2)2

almost surely under Assumption 2.2(i) (independent sampling), or

sup
p∈[0,1]

Ṽ (p) ≤ 1

2n

n∑
i=1

(
1

µ̂1
X1
i +

1

µ̂2
X2
i

)2

≤ 1

µ̂2
1n

n∑
i=1

(X1
i )2 +

1

µ̂2
2n

n∑
i=1

(X2
i )2

→ 1

µ2
1

E(X1)2 +
1

µ2
2

E(X2)2

almost surely under Assumption 2.2(ii) (matched pairs). Thus supp∈[0,1] V̂ (p) is Oa.s.(1) as
claimed.

Let ‖ · ‖ denote the uniform norm on C[0, 1]. The set B̂0(φ) will contain B0(φ) if, for all
p ∈ [0, 1], we have |T 1/2

n (φ̂(p) − φ(p))| ≤ τnV̂ (p)1/2. Since V̂ (p) ≥ ν, this will certainly be
true if ‖T 1/2

n (φ̂− φ)‖ ≤ τnν1/2. Therefore,

P
(
B0(φ) ⊆ B̂0(φ)

)
≥ P

(
‖T 1/2

n (φ̂− φ)‖ ≤ τnν1/2
)
→ 1,
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with the convergence to one following from the fact that τnν1/2 →∞ while T 1/2
n (φ̂−φ) L̄

in C[0, 1] by Lemma 2.1.
Let εn = T

−1/2
n τn supp∈[0,1] V̂ (p). Since supp∈[0,1] V̂ (p) is Oa.s.(1), we have εn → 0 almost

surely. The set Bδ(φ) will contain B̂0(φ) if |φ(p)| ≤ δ whenever |T 1/2
n φ̂(p)| ≤ τnV̂ (p)1/2. If

εn < δ, then this occurs if φ̂ is everywhere within δ − εn of φ. Since εn → 0 almost surely, for
sufficiently large n we therefore have

P
(
B̂0(φ) ⊆ Bδ(φ)

)
≥ P

(
‖T 1/2

n (φ̂− φ)‖ ≤ T 1/2
n (δ − εn)

)
→ 1,

with the convergence to one following from the fact that T 1/2
n (δ − εn) → ∞ almost surely

while T 1/2
n (φ̂− φ) L̄ in C[0, 1] by Lemma 2.1.

Proof of Proposition 3.2. It is easy to see that our estimated functionals satisfy the Lipschitz
conditions

|Ŝ ′φ(h1)− Ŝ ′φ(h2)| ≤ ‖h1 − h2‖ and |Î ′φ(h1)− Î ′φ(h2)| ≤ ‖h1 − h2‖

for h1, h2 ∈ C[0, 1]. Therefore, Lemma S.3.6 of Fang and Santos (2019) implies that a suffi-
cient condition for Ŝ ′φ and Î ′φ to satisfy their Assumption 4 is that, for any ε > 0,

P
(∣∣∣Ŝ ′φ(h)− S ′φ(h)

∣∣∣ > ε
)
→ 0 and P

(∣∣∣Î ′φ(h)− I ′φ(h)
∣∣∣ > ε

)
→ 0 (A.2)

for each h ∈ C[0, 1]. Moreover, since n1/2(φ̂∗−φ̂) is a Borel measurable map into the separable
space C[0, 1], Assumption 4 of Fang and Santos (2019) is equivalent to our Assumption 3.1;
see their Remark 3.3. Thus we need only verify (A.2).

To verify the first part of (A.2), fix h ∈ C[0, 1] and ε > 0, and choose δ > 0 small enough
that |h(p)− h(q)| < ε whenever |p− q| < δ. Next choose η > 0 small enough that |p− q| < δ

for some q ∈ B0(φ) whenever p ∈ Bη(φ). Observe that if

B0(φ) ⊆ B̂0(φ) ⊆ Bη(φ),

then it must be the case that∣∣∣Ŝ ′φ(h)− S ′φ(h)
∣∣∣ ≤ sup

p∈Bη(φ)

h(p)− sup
p∈B0(φ)

h(p) ≤ ε.

The first part of (A.2) now follows from Lemma A.2.
To verify the second part of (A.2), fix h ∈ C[0, 1] and ε > 0, and choose δ > 0 small
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enough that

‖h‖
∫ 1

0

1(0 < |φ(p)| ≤ δ)dp ≤ ε,

which is possible by the dominated convergence theorem. Observe that if

B0(φ) ⊆ B̂0(φ) ⊆ Bδ(φ),

then it must be the case that∣∣∣Î ′φ(h)− I ′φ(h)
∣∣∣ ≤ ‖h‖ ∫ 1

0

1(0 < |φ(p)| ≤ δ)dp ≤ ε.

The second part of (A.2) now follows from Lemma A.2.

The following lemma is used in the proof of Proposition 3.5.

Lemma A.3. Under Assumptions 2.1 and 2.2, the variance of L̄(p) is strictly positive for all
p ∈ (0, 1).

Proof. Under Assumption 2.2(i) (independent sampling) L1(p) and L2(p) are independent.
Therefore, since each of them has strictly positive variance for p ∈ (0, 1) by Lemma A.1, their
weighted difference L̄(p) trivially also has strictly positive variance. It remains to establish
that L̄(p) has strictly positive variance under Assumption 2.2(ii) (matched pairs). Since C
has maximal correlation strictly less than one, we must have

Cov (H1,p(U), H2,p(V )) <
√

Var(H1,p(U))Var(H2,p(V )). (A.3)

We thus deduce from Lemma A.1 that

Cov (L1(p),L2(p)) <
√

Var(L1(p))Var(L2(p)), (A.4)

meaning that the correlation between L1(p) and L2(p) must be strictly less than one. The
weighted difference L̄(p) therefore cannot have zero variance.

Proof of Proposition 3.5. We first observe that since L̄ is Gaussian and the directional deriva-
tives S ′φ and I ′φ are continuous and convex, Theorem 11.1 of Davydov et al. (1998) can be
used to show that the CDFs of S ′φ(L̄) and I ′φ(L̄) are continuous everywhere except perhaps
at zero, and that if either CDF assigns probability less than one to zero, then it is strictly
increasing on (0,∞). Thus if either CDF is not continuous and strictly increasing at its 1− α
quantile, then it must assign probability of at least 1− α to zero.
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To demonstrate claim (a), observe that if the set Ψ(φ) includes some point p0 /∈ {0, 1},
then

P
(
S ′φ(L̄) > 0

)
≥ P

(
L̄(p0) > 0

)
=

1

2
,

with the final equality following from Lemma A.3 and the fact that L̄(p0) is a centered Gaus-
sian random variable. Thus the CDF of S ′φ(L̄) can assign probability of no greater than one
half to zero. Since 1 − α > 1/2, we conclude that the CDF must be continuous and strictly
increasing at its 1 − α quantile. On the other hand, if Ψ(φ) does not include any point
p0 /∈ {0, 1}, then clearly S ′φ(L̄) is degenerate at zero.

To demonstrate claim (b), suppose that I ′φ(L̄) is not degenerate at zero. Since we have
assumed H0 to be satisfied, we have B+(φ) = ∅, and so B0(φ) must be a set of positive
measure. Thus the Lebesgue density theorem ensures the existence of p0 ∈ B0 ∩ (0, 1) such
that the set (p0 − ε, p0 + ε) ∩ B0 has positive measure for all ε > 0. Since L̄(p) is continuous
in p, if L̄(p0) > 0 then we must have L̄ > 0 on (p0 − ε, p0 + ε) for some ε > 0, implying that

I ′φ(L̄) ≥
∫
(p0−ε,p0+ε)∩B0

L̄(p)dp > 0.

Thus we have

P
(
I ′φ(L̄) > 0

)
≥ P

(
L̄(p0) > 0

)
=

1

2
,

with the final equality following from Lemma A.3 and the fact that L̄(p0) is a centered Gaus-
sian random variable. Thus the CDF of I ′φ(L̄) can assign probability of no greater than one
half to zero, and since 1−α > 1/2, we conclude that the CDF must be continuous and strictly
increasing at its 1− α quantile.

B Further numerical simulations

The numerical simulations reported in Section 4 pertained to the independent sampling
framework. Here we report analogous simulations for the matched pairs sampling frame-
work. The simulation design is the same as described in Section 4.1, except that dependence
between pairs was induced by linking the random variables X1

i and X2
i with a Gaussian cop-

ula with parameter ρ = 0.25, 0.5, 0.75. In Tables B.1, B.2 and B.3 we report results analogous
to those reported in Table 4.1, and in Figure B.1 we report results analogous to those reported
in Figure 4.2. Qualitatively, the results for the matched pairs sampling framework are similar
to those for the independent sampling framework.
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α τn
β

1 2 3 4 5 6 7 8
F

=
S

2

1 12.6 12.5 12.5 12.5 12.5 12.5 12.5 12.4
2 5.1 4.9 4.9 4.8 4.8 4.8 4.8 4.8
3 5.1 4.9 4.9 4.8 4.8 4.8 4.8 4.8
4 5.1 4.9 4.9 4.8 4.8 4.8 4.8 4.8
∞ 5.1 4.9 4.9 4.8 4.8 4.8 4.8 4.8

3

1 10.3 10.8 10.8 10.9 10.8 10.8 10.8 10.7
2 4.8 4.6 4.6 4.5 4.6 4.6 4.6 4.7
3 4.8 4.6 4.5 4.5 4.6 4.6 4.6 4.6
4 4.8 4.6 4.5 4.5 4.6 4.6 4.6 4.6
∞ 4.8 4.6 4.5 4.5 4.6 4.6 4.6 4.6

4

1 8.8 9.5 9.9 10.0 10.1 10.1 10.2 10.3
2 4.8 4.7 4.7 4.7 4.7 4.7 4.8 4.7
3 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.6
4 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.6
∞ 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.6

5

1 9.4 9.3 9.3 9.6 9.7 9.8 9.8 10.0
2 4.9 4.6 4.7 4.7 4.7 4.6 4.6 4.7
3 4.8 4.5 4.6 4.7 4.6 4.6 4.6 4.6
4 4.8 4.5 4.6 4.7 4.6 4.6 4.6 4.6
∞ 4.8 4.5 4.6 4.7 4.6 4.6 4.6 4.6

F
=

I

2

1 18.3 17.9 17.8 17.9 17.8 17.9 17.9 17.9
2 6.0 5.7 5.7 5.6 5.6 5.5 5.5 5.5
3 5.5 5.4 5.3 5.4 5.4 5.3 5.4 5.3
4 5.5 5.4 5.3 5.4 5.4 5.3 5.4 5.3
∞ 5.5 5.4 5.3 5.4 5.4 5.3 5.4 5.3

3

1 17.4 17.6 17.3 17.5 17.6 17.6 17.6 17.6
2 5.9 5.5 5.5 5.4 5.4 5.3 5.3 5.3
3 5.2 5.0 4.9 4.9 4.9 4.9 4.9 4.9
4 5.2 4.9 4.9 4.9 4.9 4.9 4.9 4.9
∞ 5.2 4.9 4.9 4.9 4.9 4.9 4.9 4.9

4

1 16.3 16.7 16.6 16.7 16.8 16.7 16.8 16.8
2 5.8 5.7 5.7 5.7 5.7 5.7 5.7 5.7
3 4.9 5.1 5.0 5.1 5.1 5.2 5.2 5.2
4 4.9 5.1 5.0 5.1 5.1 5.2 5.2 5.2
∞ 4.9 5.1 5.0 5.1 5.1 5.2 5.2 5.2

5

1 16.7 16.5 16.8 16.9 17.0 17.0 17.0 17.0
2 5.9 5.8 5.8 5.8 5.8 5.7 5.6 5.6
3 5.1 5.1 5.0 5.1 5.2 5.2 5.1 5.1
4 5.1 5.1 5.0 5.1 5.1 5.1 5.1 5.1
∞ 5.1 5.1 5.0 5.1 5.1 5.1 5.1 5.1

Table B.1: Null rejection rates with X1 ∼ X2 ∼ dP(α, β) and n = 2000 matched pairs linked
by a Gaussian copula with correlation parameter ρ = 0.25. Rejection rates are in bold when
they exceed the corresponding rate obtained with τn =∞ by more than 0.1 percentage point.
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α τn
β

1 2 3 4 5 6 7 8
F

=
S

2

1 12.9 12.8 12.7 12.6 12.6 12.7 12.7 12.7
2 5.7 5.5 5.4 5.4 5.4 5.4 5.4 5.4
3 5.7 5.5 5.4 5.4 5.4 5.4 5.4 5.4
4 5.7 5.5 5.4 5.4 5.4 5.4 5.4 5.4
∞ 5.7 5.5 5.4 5.4 5.4 5.4 5.4 5.4

3

1 10.3 10.4 10.4 10.4 10.4 10.5 10.5 10.4
2 4.8 4.7 4.6 4.7 4.8 4.7 4.7 4.7
3 4.7 4.7 4.6 4.7 4.8 4.7 4.7 4.7
4 4.7 4.7 4.6 4.7 4.8 4.7 4.7 4.7
∞ 4.7 4.7 4.6 4.7 4.8 4.7 4.7 4.7

4

1 9.2 9.3 9.4 9.6 9.7 9.7 9.7 9.7
2 5.0 4.9 4.9 4.8 4.8 4.8 4.8 4.8
3 5.0 4.9 4.9 4.8 4.8 4.8 4.8 4.8
4 5.0 4.9 4.9 4.8 4.8 4.8 4.8 4.8
∞ 5.0 4.9 4.9 4.8 4.8 4.8 4.8 4.8

5

1 8.5 8.8 9.0 9.3 9.4 9.5 9.5 9.5
2 4.8 4.8 4.7 4.7 4.7 4.8 4.8 4.7
3 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
4 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
∞ 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7

F
=

I

2

1 18.9 18.7 18.8 18.7 18.7 18.7 18.6 18.6
2 6.3 6.2 6.1 6.0 6.0 6.0 5.9 5.9
3 6.0 5.9 5.8 5.8 5.8 5.8 5.8 5.8
4 6.0 5.9 5.8 5.8 5.8 5.8 5.8 5.8
∞ 6.0 5.9 5.8 5.8 5.8 5.8 5.8 5.8

3

1 17.2 17.2 17.1 17.1 17.1 17.0 17.0 17.0
2 6.1 5.9 5.9 5.9 5.6 5.5 5.5 5.5
3 5.2 5.3 5.3 5.2 5.1 5.1 5.0 5.1
4 5.2 5.3 5.3 5.2 5.1 5.1 5.0 5.1
∞ 5.2 5.3 5.3 5.2 5.1 5.1 5.0 5.1

4

1 16.7 16.7 16.8 16.7 16.7 16.6 16.7 16.6
2 6.2 6.2 5.9 6.0 5.9 5.7 5.8 5.7
3 5.3 5.3 5.1 5.1 5.2 5.2 5.2 5.1
4 5.2 5.3 5.1 5.1 5.2 5.2 5.2 5.1
∞ 5.2 5.3 5.1 5.1 5.2 5.2 5.2 5.1

5

1 16.0 16.5 16.1 16.0 16.2 16.2 16.2 16.3
2 5.9 5.9 5.7 5.8 5.6 5.8 5.8 5.8
3 5.0 4.9 4.9 5.0 5.0 5.0 5.1 5.1
4 5.0 4.9 4.9 5.0 5.0 5.0 5.1 5.1
∞ 5.0 4.9 4.9 5.0 5.0 5.0 5.1 5.1

Table B.2: Null rejection rates with X1 ∼ X2 ∼ dP(α, β) and n = 2000 matched pairs linked
by a Gaussian copula with correlation parameter ρ = 0.50. Rejection rates are in bold when
they exceed the corresponding rate obtained with τn =∞ by more than 0.1 percentage point.
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α τn
β

1 2 3 4 5 6 7 8
F

=
S

2

1 13.2 13.0 12.9 12.9 12.9 12.9 12.9 12.9
2 5.6 5.5 5.4 5.4 5.3 5.3 5.3 5.3
3 5.5 5.5 5.4 5.3 5.3 5.3 5.3 5.3
4 5.5 5.5 5.4 5.3 5.3 5.3 5.3 5.3
∞ 5.5 5.5 5.4 5.3 5.3 5.3 5.3 5.3

3

1 10.1 10.0 10.0 10.1 10.1 10.2 10.1 10.1
2 4.8 4.7 4.7 4.6 4.6 4.6 4.6 4.6
3 4.8 4.7 4.7 4.6 4.6 4.6 4.6 4.6
4 4.8 4.7 4.7 4.6 4.6 4.6 4.6 4.6
∞ 4.8 4.7 4.7 4.6 4.6 4.6 4.6 4.6

4

1 9.0 9.5 9.8 9.9 10.0 10.1 10.0 10.0
2 4.9 4.9 5.0 5.0 5.0 4.9 5.0 4.9
3 4.9 4.9 4.9 5.0 4.9 4.9 4.9 4.9
4 4.9 4.9 4.9 5.0 4.9 4.9 4.9 4.9
∞ 4.9 4.9 4.9 5.0 4.9 4.9 4.9 4.9

5

1 8.3 8.4 8.6 8.8 9.0 9.2 9.3 9.3
2 4.8 4.7 4.7 4.7 4.6 4.7 4.8 4.8
3 4.7 4.6 4.7 4.6 4.6 4.7 4.8 4.8
4 4.7 4.6 4.7 4.6 4.6 4.7 4.8 4.8
∞ 4.7 4.6 4.7 4.6 4.6 4.7 4.8 4.8

F
=

I

2

1 19.3 19.0 18.9 18.8 18.9 18.8 18.8 18.8
2 6.6 6.2 6.0 5.9 5.8 5.8 5.8 5.7
3 6.1 5.8 5.6 5.6 5.6 5.6 5.5 5.5
4 6.1 5.8 5.6 5.6 5.6 5.6 5.5 5.5
∞ 6.1 5.8 5.6 5.6 5.6 5.6 5.5 5.4

3

1 17.0 16.9 17.3 17.3 17.3 17.3 17.2 17.2
2 6.3 5.8 5.7 5.6 5.4 5.4 5.4 5.4
3 5.4 5.0 5.0 5.0 4.9 5.0 5.0 5.0
4 5.3 5.0 5.0 5.0 4.9 5.0 5.0 5.0
∞ 5.3 5.0 5.0 5.0 4.9 5.0 5.0 5.0

4

1 17.1 17.5 17.3 17.3 17.3 17.6 17.6 17.5
2 6.5 6.5 6.3 6.2 6.2 6.1 6.1 6.1
3 5.4 5.5 5.5 5.5 5.3 5.3 5.3 5.3
4 5.4 5.5 5.5 5.4 5.3 5.3 5.3 5.3
∞ 5.4 5.5 5.5 5.4 5.3 5.3 5.3 5.3

5

1 16.2 16.3 16.5 16.6 16.7 16.4 16.3 16.4
2 6.0 5.9 5.9 5.9 5.9 5.9 5.8 5.7
3 5.0 4.9 4.9 5.0 5.0 5.0 5.1 5.0
4 5.0 4.9 4.9 5.0 5.0 5.0 5.1 5.0
∞ 5.0 4.9 4.9 5.0 5.0 5.0 5.1 5.0

Table B.3: Null rejection rates with X1 ∼ X2 ∼ dP(α, β) and n = 2000 matched pairs linked
by a Gaussian copula with correlation parameter ρ = 0.75. Rejection rates are in bold when
they exceed the corresponding rate obtained with τn =∞ by more than 0.1 percentage point.
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Figure B.1: Power withX1 ∼ dP(3, 1.5) andX2
(β) ∼ dP(2.1, β) as a function of the parameter

β. Going from top to bottom in each panel, the five power curves correspond to our test with
τn = 1, 2, 3, 4, and the test of Barrett et al. (2014). Samples are n = 2000 matched pairs
linked by a Gaussian copula with correlation parameter ρ.
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