Synthesis and adsorptive properties of sulfonated nanocomposites based on carbon-encapsulated iron nanoparticles and styrene-*p*-divinylbenzene copolymer

Supplementary Data

Maciej Fronczak¹, Przemysław Strachowski¹, Krzysztof Niciński¹, Mateusz Krawczyk¹, Waldemar Kaszuwara², Michał Bystrzejewski¹*

¹Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland ²Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland

*Corresponding author: Michał Bystrzejewski: mibys@chem.uw.edu.pl

Contents

Reaction path	3
Adsorption/desorption isotherms of nitrogen vapor at 77K and pore distribution diagrams	4
Adsorption/desorption isotherms of nitrogen vapor at 77K and pore distribution diagrams for Amberlite IR 120 Na resin	2
Magnetic hysteresis loops 1	3
Acid-base properties1	17

Reaction path

Formation of sulfonating agent:

Figure S1. Reaction path (idealized) leading to obtain sulfonated cross-linked copolymer of styrene and *p*-divinylbenzene.

Adsorption/desorption isotherms of nitrogen vapor at 77K and pore distribution diagrams

Figure S2. Adsorption/desorption isotherm of nitrogen vapor at 77K onto sulfonated polymer. Red points are connected with desorption, black with adsorption.

Figure S3. Pore distribution diagram for sulfonated polymer.

Figure S4. Adsorption/desorption isotherm of nitrogen vapor at 77K onto SMNCA-10. Red points are connected with desorption, black with adsorption.

Figure S5. Pore distribution diagram for SMNCA-10.

Figure S6. Adsorption/desorption isotherm of nitrogen vapor at 77K onto SMNCA-18. Red points are connected with desorption, black with adsorption.

Figure S7. Pore distribution diagram for SMNCA-18.

Figure S8. Adsorption/desorption isotherm of nitrogen vapor at 77K onto SMNCA-31. Red points are connected with desorption, black with adsorption.

Figure S9. Pore distribution diagram for SMNCA-31.

Figure S10. Adsorption/desorption isotherm of nitrogen vapor at 77K onto SMNCA-36. Red points are connected with desorption, black with adsorption.

Figure S11. Pore distribution diagram for SMNCA-36.

Figure S12. Adsorption/desorption isotherm of nitrogen vapor at 77K onto SMNCA-40. Red points are connected with desorption, black with adsorption.

Figure S13. Pore distribution diagram for SMNCA-40.

Figure S14. Adsorption/desorption isotherm of nitrogen vapor at 77K onto SMNCA-47. Red points are connected with desorption, black with adsorption.

Figure S15. Pore distribution diagram for SMNCA-47.

Figure S16. Adsorption/desorption isotherm of nitrogen vapor at 77K onto SMNCA-53. Red points are connected with desorption, black with adsorption.

Figure S17. Pore distribution diagram for SMNCA-53.

Adsorption/desorption isotherms of nitrogen vapor at 77K and pore distribution diagrams for Amberlite IR 120 Na resin

Figure S18. Adsorption/desorption isotherm of nitrogen vapor at 77K onto Amberlite IR 120 Na.

Figure S19. Pore distribution diagram for Amberlite IR 120 Na.

Magnetic hysteresis loops

Figure S20. Magnetic hysteresis loop for SMNCA-10.

Figure S21. Magnetic hysteresis loop for SMNCA-18.

Figure S22. Magnetic hysteresis loop for SMNCA-31.

Figure S23. Magnetic hysteresis loop for SMNCA-36.

Figure S24. Magnetic hysteresis loop for SMNCA-40.

Figure S25. Magnetic hysteresis loop for SMNCA-47.

Figure S26. Magnetic hysteresis loop for SMNCA-53.

Acid-base properties

Figure S27. Relation between pH of nanocomposite suspension and surface acidic groups content.

Figure S28. Titration curve for sulfonated copolymer of styrene and *p*-divinylbenzene. Red cross marks the equilibrium point.

Figure S29. Titration curve for SMNCA-10. Red crosses mark the equilibrium points.

Figure S30. Titration curve for SMNCA-18. Red crosses mark the equilibrium points.

Figure S31. Titration curve for SMNCA-31. Red crosses mark the equilibrium points.

Figure S32. Titration curve for SMNCA-36. Red cross marks the equilibrium points.

Figure S33. Titration curve for SMNCA-40. Red crosses mark the equilibrium points.

Figure S34. Titration curve for SMNCA-47. Red crosses mark the equilibrium points.

Figure S35. Titration curve for SMNCA-53. Red crosses mark the equilibrium points.